File: codegen_axb_method.m

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (670 lines) | stat: -rw-r--r-- 23,071 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
function codegen_axb_method (addop, multop, add, addfunc, mult, ztype, ...
    xytype, identity, terminal, omp_atomic, omp_microsoft_atomic)
%CODEGEN_AXB_METHOD create a function to compute C=A*B over a semiring
%
% codegen_axb_method (addop, multop, add, addfunc, mult, ztype, xytype, ...
%   identity, terminal, omp_atomic, omp_microsoft_atomic)

% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0

if (nargin >= 5 && isempty (mult))
    return
end

f = fopen ('control.m4', 'w') ;

is_first  = false ;
is_second = false ;
is_pair   = false ;
is_positional = false ;
switch (multop)
    case { 'firsti', 'firsti1', 'firstj', 'firstj1', 'secondj', 'secondj1' }
        is_positional = true ;
    case { 'first' }
        is_first = true ;
    case { 'second' }
        is_second = true ;
    case { 'pair' }
        is_pair = true ;
end

is_any = isequal (addop, 'any') ;
is_max = isequal (addop, 'max') ;
is_min = isequal (addop, 'min') ;
is_eq  = isequal (addop, 'eq') ;
is_any_pair = is_any && isequal (multop, 'pair') ;

if (is_any_pair)
    % the any_pair_iso semiring does not access any numerical values
    add = ' ' ;
    addfunc = ' ' ;
    mult = ' ' ;
    ztype = 'iso' ;
    xytype = 'any type' ;
    identity = ' ' ;
    terminal = 'break' ;
    omp_atomic = 1 ;
    omp_microsoft_atomic = 0 ;
    % the any_pair_iso semiring is never disabled by GBCUDA_DEV
    fprintf (f, 'define(`ifndef_GBCUDA_DEV'', `#if 1'')\n') ;
    fprintf (f, 'define(`if_not_any_pair_semiring'', `#if 0'')\n') ;
else
    % all other semirings are disabled by GBCUDA_DEV
    fprintf (f, 'define(`ifndef_GBCUDA_DEV'', `#ifndef GBCUDA_DEV'')\n') ;
    fprintf (f, 'define(`if_not_any_pair_semiring'', `#if 1'')\n') ;
end

ztype_is_real = ~codegen_contains (ztype, 'FC') ;
ztype_is_fp = isequal (ztype, 'float') || isequal (ztype, 'double') ;
is_any_complex = is_any && ~ztype_is_real ;
is_plus_pair_real  = isequal (addop, 'plus') && isequal (multop, 'pair' ) && ztype_is_real ;
is_plus_times_fp = isequal (addop, 'plus') && isequal (multop, 'times') && ztype_is_fp ;

t_is_simple = isequal (multop, 'pair') || codegen_contains (multop, 'first') || codegen_contains (multop, 'second') ;
t_is_nonnan = isequal (multop (1:2), 'is') || (multop (1) == 'l') ;

switch (ztype)
    case { 'iso' }
        ztype_is_float = false ;
        ztype_ignore_overflow = true ;
        nbits = 0 ;
        bits = '0' ;
    case { 'bool' }
        ztype_is_float = false ;
        ztype_ignore_overflow = false ;
        nbits = 8 ;
        bits = '0x1L' ;
    case { 'int8_t', 'uint8_t' }
        ztype_is_float = false ;
        ztype_ignore_overflow = false ;
        nbits = 8 ;
        bits = '0xffL' ;
        xbits = '0xFF' ;
    case { 'int16_t', 'uint16_t' }
        ztype_is_float = false ;
        ztype_ignore_overflow = false ;
        nbits = 16 ;
        bits = '0xffffL' ;
        xbits = '0xFFFF' ;
    case { 'int32_t', 'uint32_t' }
        ztype_is_float = false ;
        ztype_ignore_overflow = false ;
        nbits = 32 ;
        bits = '0xffffffffL' ;
        xbits = '0xFFFFFFFF' ;
    case { 'int64_t', 'uint64_t' }
        ztype_is_float = false ;
        ztype_ignore_overflow = true ;
        nbits = 64 ;
        bits = '0' ;
        xbits = '0xFFFFFFFFFFFFFFFFL' ;
    case { 'float' }
        ztype_is_float = true ;
        ztype_ignore_overflow = true ;
        nbits = 32 ;
        bits = '0' ;
    case { 'double', 'GxB_FC32_t' }
        ztype_is_float = true ;
        ztype_ignore_overflow = true ;
        nbits = 64 ;
        bits = '0' ;
    case { 'GxB_FC64_t' }
        ztype_is_float = true ;
        ztype_ignore_overflow = true ;
        nbits = 128 ;
        bits = '0' ;
    otherwise
        error ('unknown type') ;
end

% bits: special cases for the PAIR multiplier
fprintf (f, 'define(`GB_ctype_bits'', `%s'')\n', bits) ;
fprintf (f, 'define(`GB_cnbits'', `%d'')\n', nbits) ;

% nbits: # of bits in the type, needed for the atomic compare-exchange:
if (nbits == 0)
    % iso semiring: no atomic compare-exchanged needed
    fprintf (f, 'define(`GB_atomic_compare_exchange'', `;'')\n') ;
else
    fprintf (f, 'define(`GB_atomic_compare_exchange'', `GB_ATOMIC_COMPARE_EXCHANGE_%d (target, expected, desired)'')\n', nbits) ;
end

if (is_pair)
    % these semirings are renamed to any_pair, and not thus created
    if (isequal (addop, 'land') || isequal (addop, 'eq'   ) || ...
        isequal (addop, 'lor' ) || isequal (addop, 'max'  ) || ...
        isequal (addop, 'min' ) || isequal (addop, 'times'))
        return
    end
end

if (is_any_pair)
    fname = 'iso' ;
    unsigned = true ;
    bits = 0 ;
    zname = 'iso' ;
else
    [fname, unsigned, bits] = codegen_type (xytype) ;
    [zname, ~, ~] = codegen_type (ztype) ;
end

name = sprintf ('%s_%s_%s', addop, multop, fname) ;

% function names
fprintf (f, 'define(`_Adot2B'', `_Adot2B__%s'')\n', name) ;
fprintf (f, 'define(`_Adot3B'', `_Adot3B__%s'')\n', name) ;
fprintf (f, 'define(`_Asaxpy3B'', `_Asaxpy3B__%s'')\n', name) ;
fprintf (f, 'define(`_Asaxpy3B_M'', `_Asaxpy3B_M__%s'')\n', name) ;
fprintf (f, 'define(`_Asaxpy3B_noM'', `_Asaxpy3B_noM__%s'')\n', name) ;
fprintf (f, 'define(`_Asaxpy3B_notM'', `_Asaxpy3B_notM__%s'')\n', name) ;
fprintf (f, 'define(`_AsaxbitB'', `_AsaxbitB__%s'')\n', name) ;
fprintf (f, 'define(`GB_AxB'', `GB_AxB__%s'')\n', name) ;

% type of C, A, and B
fprintf (f, 'define(`GB_ctype'', `%s'')\n', ztype) ;
fprintf (f, 'define(`GB_atype'', `%s'')\n', xytype) ;
fprintf (f, 'define(`GB_btype'', `%s'')\n', xytype) ;

if (is_any_pair)
    fprintf (f, 'define(`GB_csize'', `0'')\n', ztype) ;
    fprintf (f, 'define(`GB_asize'', `0'')\n', xytype) ;
    fprintf (f, 'define(`GB_bsize'', `0'')\n', xytype) ;
else
    fprintf (f, 'define(`GB_csize'', `sizeof (%s)'')\n', ztype) ;
    fprintf (f, 'define(`GB_asize'', `sizeof (%s)'')\n', xytype) ;
    fprintf (f, 'define(`GB_bsize'', `sizeof (%s)'')\n', xytype) ;
end

% flag if ztype can ignore overflow in some computations
fprintf (f, 'define(`GB_ctype_ignore_overflow'', `%d'')\n', ztype_ignore_overflow) ;

% simple typecast from 1 (or 2) real scalars to any other type
switch (ztype)
    case { 'GxB_FC32_t' }
        fprintf (f, 'define(`GB_ctype_cast'', `GxB_CMPLXF (((float) $1), ((float) $2))'')\n') ;
    case { 'GxB_FC64_t' }
        fprintf (f, 'define(`GB_ctype_cast'', `GxB_CMPLX (((double) $1), ((double) $2))'')\n') ;
    case { 'iso' }
        fprintf (f, 'define(`GB_ctype_cast'', `'')\n') ;
    otherwise
        fprintf (f, 'define(`GB_ctype_cast'', `((GB_ctype) $1)'')\n') ;
end

% simple typecast from 1 (or 2) real scalars to any other type
switch (xytype)
    case { 'GxB_FC32_t' }
        fprintf (f, 'define(`GB_atype_cast'', `GxB_CMPLXF (((float) $1), ((float) $2))'')\n') ;
    case { 'GxB_FC64_t' }
        fprintf (f, 'define(`GB_atype_cast'', `GxB_CMPLX (((double) $1), ((double) $2))'')\n') ;
    case { 'any type' }
        fprintf (f, 'define(`GB_atype_cast'', `'')\n') ;
    otherwise
        fprintf (f, 'define(`GB_atype_cast'', `((GB_atype) $1)'')\n') ;
end

% identity and terminal values for the monoid
fprintf (f, 'define(`GB_identity'', `%s'')\n', identity) ;

if (is_any_pair)
    fprintf (f, 'define(`GB_is_any_pair_semiring'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_any_pair_semiring'', `0'')\n') ;
end

if (is_any_pair)
    fprintf (f, 'define(`GB_is_plus_pair_real_semiring'', `0'')\n') ;
    fprintf (f, 'define(`GB_cij_declare'', `'')\n') ;
elseif (is_plus_pair_real)
    fprintf (f, 'define(`GB_is_plus_pair_real_semiring'', `1'')\n') ;
    fprintf (f, 'define(`GB_cij_declare'', `%s cij = 0'')\n', ztype) ;
else
    fprintf (f, 'define(`GB_is_plus_pair_real_semiring'', `0'')\n') ;
    fprintf (f, 'define(`GB_cij_declare'', `%s cij'')\n', ztype) ;
end

if (is_plus_times_fp)
    % plus_times_fp32 and plus_times_fp64 are accelerated with AVX2 or AVX512f instructions.
    % More semirings will be accelerated in the future.
    fprintf (f, 'define(`GB_semiring_has_avx_implementation'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_semiring_has_avx_implementation'', `0'')\n') ;
end

if (is_pair)
    fprintf (f, 'define(`GB_is_pair_multiplier'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_pair_multiplier'', `0'')\n') ;
end

if (is_eq)
    fprintf (f, 'define(`GB_is_eq_monoid'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_eq_monoid'', `0'')\n') ;
end

if (is_any)
    % the ANY monoid terminates on the first entry seen
    fprintf (f, 'define(`GB_is_any_monoid'', `1'')\n') ;
    fprintf (f, 'define(`GB_terminal'', `break ;'')\n') ;
    fprintf (f, 'define(`GB_dot_simd_vectorize'', `;'')\n') ;
    fprintf (f, 'define(`GB_monoid_is_terminal'', `1'')\n') ;
elseif (~isempty (terminal))
    % terminal monoids terminate when cij equals the terminal value
    fprintf (f, 'define(`GB_is_any_monoid'', `0'')\n') ;
    fprintf (f, 'define(`GB_terminal'', `if (cij == %s) { break ; }'')\n', ...
        terminal) ;
    fprintf (f, 'define(`GB_dot_simd_vectorize'', `;'')\n') ;
    fprintf (f, 'define(`GB_monoid_is_terminal'', `1'')\n') ;
else
    % non-terminal monoids
    fprintf (f, 'define(`GB_is_any_monoid'', `0'')\n') ;
    fprintf (f, 'define(`GB_terminal'', `;'')\n') ;
    fprintf (f, 'define(`GB_monoid_is_terminal'', `0'')\n') ;
    op = '' ;
    if (ztype_is_real)
        switch (addop)
            case { 'plus' }
                op = '+' ;
            case { 'times' }
                op = '*' ;
            case { 'lor' }
                op = '||' ;
            case { 'land' }
                op = '&&' ;
            case { 'lxor' }
                op = '^' ;
            case { 'bor' }
                op = '|' ;
            case { 'band' }
                op = '&' ;
            case { 'bxor' }
                op = '^' ;
            otherwise
                op = '' ;
        end
    end
    if (isempty (op))
        fprintf (f, 'define(`GB_dot_simd_vectorize'', `;'')\n') ;
    else
        pragma = sprintf ('GB_PRAGMA_SIMD_REDUCTION (%s,$1)', op) ;
        fprintf (f, 'define(`GB_dot_simd_vectorize'', `%s'')\n', pragma) ;
    end
end

if (ztype_is_real)
    % The ANY monoid is atomic on any architecture.
    % MIN, MAX, EQ, XNOR are implemented with atomic compare/exchange.
    fprintf (f, 'define(`GB_has_atomic'', `1'')\n') ;
    if (is_any)
        % disable the ANY monoid for saxpy4
        fprintf (f, 'define(`_Asaxpy4B'', `_Asaxpy4B__%s'')\n', '(none)') ;
        fprintf (f, 'define(`if_saxpy4_enabled'', `#if 0'')\n') ;
    else
        fprintf (f, 'define(`_Asaxpy4B'', `_Asaxpy4B__%s'')\n', name) ;
        fprintf (f, 'define(`if_saxpy4_enabled'', `#if 1'')\n') ;
    end
else
    % complex monoids are not atomic, except for 'plus'
    if (isequal (addop, 'plus'))
        fprintf (f, 'define(`GB_has_atomic'', `1'')\n') ;
        fprintf (f, 'define(`_Asaxpy4B'', `_Asaxpy4B__%s'')\n', name) ;
        fprintf (f, 'define(`if_saxpy4_enabled'', `#if 1'')\n') ;
    else
        fprintf (f, 'define(`GB_has_atomic'', `0'')\n') ;
        fprintf (f, 'define(`_Asaxpy4B'', `_Asaxpy4B__%s'')\n', '(none)') ;
        fprintf (f, 'define(`if_saxpy4_enabled'', `#if 0'')\n') ;
    end
end

if (is_any)
    % dot4 is disabled for the ANY monoid
    fprintf (f, 'define(`_Adot4B'', `_Adot4B__%s'')\n', '(none)') ;
    fprintf (f, 'define(`if_dot4_enabled'', `#if 0'')\n') ;
else
    fprintf (f, 'define(`_Adot4B'', `_Adot4B__%s'')\n', name) ;
    fprintf (f, 'define(`if_dot4_enabled'', `#if 1'')\n') ;
end

if (is_any)
    % saxpy5 is disabled for the ANY monoid
    fprintf (f, 'define(`_Asaxpy5B'', `_Asaxpy5B__%s'')\n', '(none)') ;
    fprintf (f, 'define(`if_saxpy5_enabled'', `#if 0'')\n') ;
else
    fprintf (f, 'define(`_Asaxpy5B'', `_Asaxpy5B__%s'')\n', name) ;
    fprintf (f, 'define(`if_saxpy5_enabled'', `#if 1'')\n') ;
end

% firsti or firsti1 multiply operator
if (codegen_contains (multop, 'firsti'))
    fprintf (f, 'define(`GB_is_firsti_multiplier'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_firsti_multiplier'', `0'')\n') ;
end

% firstj or firstj1 multiply operator
if (codegen_contains (multop, 'firstj'))
    fprintf (f, 'define(`GB_is_firstj_multiplier'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_firstj_multiplier'', `0'')\n') ;
end

% secondj or secondj1 multiply operator
if (codegen_contains (multop, 'secondj'))
    fprintf (f, 'define(`GB_is_secondj_multiplier'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_secondj_multiplier'', `0'')\n') ;
end

% offset for (first,second)*i1 or (first,second)*j1 multiply operator
if (codegen_contains (multop, 'i1') || codegen_contains (multop, 'j1'))
    fprintf (f, 'define(`GB_offset'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_offset'', `0'')\n') ;
end

% plus_fc32 monoid:
if (isequal (addop, 'plus') && isequal (ztype, 'GxB_FC32_t'))
    fprintf (f, 'define(`GB_is_plus_fc32_monoid'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_plus_fc32_monoid'', `0'')\n') ;
end

% plus_fc64 monoid:
if (isequal (addop, 'plus') && isequal (ztype, 'GxB_FC64_t'))
    fprintf (f, 'define(`GB_is_plus_fc64_monoid'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_plus_fc64_monoid'', `0'')\n') ;
end

% any_fc32 monoid:
if (isequal (addop, 'any') && isequal (ztype, 'GxB_FC32_t'))
    fprintf (f, 'define(`GB_is_any_fc32_monoid'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_any_fc32_monoid'', `0'')\n') ;
end

% any_fc64 monoid:
if (isequal (addop, 'any') && isequal (ztype, 'GxB_FC64_t'))
    fprintf (f, 'define(`GB_is_any_fc64_monoid'', `1'')\n') ;
else
    fprintf (f, 'define(`GB_is_any_fc64_monoid'', `0'')\n') ;
end

% min monoids:
if (is_min)
    if (codegen_contains (ztype, 'int'))
        % min monoid for signed or unsigned integers
        fprintf (f, 'define(`GB_is_imin_monoid'', `1'')\n') ;
        fprintf (f, 'define(`GB_is_fmin_monoid'', `0'')\n') ;
    else
        % min monoid for float or double
        fprintf (f, 'define(`GB_is_imin_monoid'', `0'')\n') ;
        fprintf (f, 'define(`GB_is_fmin_monoid'', `1'')\n') ;
    end
else
    % not a min monoid
    fprintf (f, 'define(`GB_is_imin_monoid'', `0'')\n') ;
    fprintf (f, 'define(`GB_is_fmin_monoid'', `0'')\n') ;
end

% max monoids:
if (is_max)
    if (codegen_contains (ztype, 'int'))
        % max monoid for signed or unsigned integers
        fprintf (f, 'define(`GB_is_imax_monoid'', `1'')\n') ;
        fprintf (f, 'define(`GB_is_fmax_monoid'', `0'')\n') ;
    else
        % max monoid for float or double
        fprintf (f, 'define(`GB_is_imax_monoid'', `0'')\n') ;
        fprintf (f, 'define(`GB_is_fmax_monoid'', `1'')\n') ;
    end
else
    % not a max monoid
    fprintf (f, 'define(`GB_is_imax_monoid'', `0'')\n') ;
    fprintf (f, 'define(`GB_is_fmax_monoid'', `0'')\n') ;
end

% only PLUS, TIMES, LOR, LAND, and LXOR can be done with OpenMP atomics
% in gcc and icc.  However, only PLUS and TIMES work with OpenMP atomics
% in Microsoft Visual Studio; the LOR, LAND, and LXOR atomics don't compile.
fprintf (f, 'define(`GB_has_omp_atomic'', `%d'')\n', omp_atomic) ;
fprintf (f, 'define(`GB_microsoft_has_omp_atomic'', `%d'')\n', omp_microsoft_atomic) ;

% to get an entry from A
if (is_any_pair)
    fprintf (f, 'define(`GB_a_is_pattern'', `1'')\n') ;
    fprintf (f, 'define(`GB_geta'', `;'')\n') ;
    fprintf (f, 'define(`GB_loada'', `;'')\n') ;
elseif (is_second || is_pair || is_positional)
    % value of A is ignored for the SECOND and PAIR operators
    fprintf (f, 'define(`GB_a_is_pattern'', `1'')\n') ;
    fprintf (f, 'define(`GB_geta'', `;'')\n') ;
    fprintf (f, 'define(`GB_loada'', `$1 [$2] = GBX ($3, $4, $5)'')\n') ;
else
    fprintf (f, 'define(`GB_a_is_pattern'', `0'')\n') ;
    fprintf (f, 'define(`GB_geta'', `%s $1 = GBX ($2, $3, $4)'')\n', xytype) ;
    fprintf (f, 'define(`GB_loada'', `$1 [$2] = GBX ($3, $4, $5)'')\n') ;
end

% to get an entry from B
if (is_first || is_pair || is_positional)
    % value of B is ignored for the FIRST and PAIR operators
    fprintf (f, 'define(`GB_b_is_pattern'', `1'')\n') ;
    fprintf (f, 'define(`GB_getb'', `;'')\n') ;
    fprintf (f, 'define(`GB_loadb'', `;'')\n') ;
else
    fprintf (f, 'define(`GB_b_is_pattern'', `0'')\n') ;
    fprintf (f, 'define(`GB_getb'', `%s $1 = GBX ($2, $3, $4)'')\n', xytype) ;
    fprintf (f, 'define(`GB_loadb'', `$1 [$2] = GBX ($3, $4, $5)'')\n') ;
end

% access the values of C
if (is_any_pair)
    fprintf (f, 'define(`GB_cx'', `'')\n') ;
    fprintf (f, 'define(`GB_putc'', `'')\n') ;
    fprintf (f, 'define(`GB_cij_write'', `'')\n') ;
else
    fprintf (f, 'define(`GB_cx'', `Cx [p]'')\n') ;
    fprintf (f, 'define(`GB_putc'', `Cx [p] = cij'')\n') ;
    fprintf (f, 'define(`GB_cij_write'', `Cx [p] = t'')\n') ;
end

% type-specific idiv
if (~isempty (strfind (mult, 'idiv')))
    if (unsigned)
        mult = strrep (mult, 'idiv', sprintf ('idiv_uint%d', bits)) ;
    else
        mult = strrep (mult, 'idiv', sprintf ('idiv_int%d', bits)) ;
    end
end

% create the multiply operator (assignment)
if (is_any_pair)
    fprintf (f, 'define(`GB_multiply'', `'')\n') ;
else
    mult2 = strrep (mult,  'xarg', '`$2''') ;
    mult2 = strrep (mult2, 'yarg', '`$3''') ;
    fprintf (f, 'define(`GB_multiply'', `$1 = %s'')\n', mult2) ;
end

% create the add update, of the form w += t
if (is_any_pair)
    add2 = ';' ;
elseif (is_min)
    if (codegen_contains (ztype, 'int'))
        % min monoid for signed or unsigned integers
        add2 = 'if ($1 > $2) { $1 = $2 ; }' ;
    else
        % min monoid for float or double, with omitnan property
        if (t_is_nonnan)
            add2 = 'if (!islessequal ($1, $2)) { $1 = $2 ; }' ;
        else
            add2 = 'if (!isnan ($2) && !islessequal ($1, $2)) { $1 = $2 ; }' ;
        end
    end
elseif (is_max)
    if (codegen_contains (ztype, 'int'))
        % max monoid for signed or unsigned integers
        add2 = 'if ($1 < $2) { $1 = $2 ; }' ;
    else
        % max monoid for float or double, with omitnan property
        if (t_is_nonnan)
            add2 = 'if (!isgreaterequal ($1, $2)) { $1 = $2 ; }' ;
        else
            add2 = 'if (!isnan ($2) && !isgreaterequal ($1, $2)) { $1 = $2 ; }';
        end
    end
else
    % use the add function as given
    add2 = strrep (add,  'w', '`$1''') ;
    add2 = strrep (add2, 't', '`$2''') ;
end
fprintf (f, 'define(`GB_add_update'', `%s'')\n', add2) ;

if (is_any_pair)
    fprintf (f, 'define(`GB_hx_write'', `;'')\n') ;
    fprintf (f, 'define(`GB_cij_gather'', `;'')\n') ;
    fprintf (f, 'define(`GB_cij_memcpy'', `;'')\n') ;
else
    fprintf (f, 'define(`GB_hx_write'', `Hx [i] = t'')\n') ;
    fprintf (f, 'define(`GB_cij_gather'', `Cx [p] = Hx [i]'')\n') ;
    fprintf (f, 'define(`GB_cij_memcpy'', `memcpy (Cx +(p), Hx +(i), (len) * sizeof(%s));'')\n', ztype) ;
        
end

% create the add function, of the form w + t
if (is_any_pair)
    fprintf (f, 'define(`GB_add_function'', `'')\n') ;
else
    add2 = strrep (addfunc,  'w', '`$1''') ;
    add2 = strrep (add2,     't', '`$2''') ;
    fprintf (f, 'define(`GB_add_function'', `%s'')\n', add2) ;
end

% create the multiply-add statement, of the form:
%   z += x*y ;
is_imin_or_imax = (isequal (addop, 'min') || isequal (addop, 'max')) && codegen_contains (ztype, 'int') ;
if (is_any_pair)
    fprintf (f, 'define(`GB_multiply_add'', `'')\n') ;
elseif (~is_imin_or_imax && ...
    (isequal (ztype, 'float') || isequal (ztype, 'double') || ...
     isequal (ztype, 'bool') || is_first || is_second || is_pair || is_positional))
    % float and double do not get promoted.
    % bool is OK since promotion of the result (0 or 1) to int is safe.
    % first and second are OK since no promotion occurs.
    % is* operators are OK too.
    multadd = strrep (add, 't',  mult) ;
    multadd = strrep (multadd, 'w', '`$1''') ;
    multadd = strrep (multadd, 'xarg', '`$2''') ;
    multadd = strrep (multadd, 'yarg', '`$3''') ;
    fprintf (f, 'define(`GB_multiply_add'', `%s'')\n', multadd) ;
else
    % use explicit typecasting to avoid ANSI C integer promotion.
    add2 = strrep (add,  'w', '`$1''') ;
    add2 = strrep (add2, 't', 'x_op_y') ;
    fprintf (f, 'define(`GB_multiply_add'', `{ %s x_op_y = %s ; %s ; }'')\n', ...
        ztype, mult2, add2) ;
end

% determine the identity byte
idbyte = '' ;

switch (addop)

    % any monoid
    case { 'any' }

    % boolean monoids (except eq / lxnor)
    case { 'lor' }
        idbyte = '0' ;
    case { 'land' }
        idbyte = '1' ;
    case { 'lxor' }
        idbyte = '0' ;

    % min/max monoids:
    case { 'min' }
        if (codegen_contains (ztype, 'uint'))
            idbyte = '0xFF' ;
        end
    case { 'max' }
        if (codegen_contains (ztype, 'uint'))
            idbyte = '0' ;
        end

    % plus monoid: special cases for some multipliers
    case { 'plus' }
        idbyte = '0' ;

    % bitwise monoids (except bxnor)
    case { 'bor' }
        idbyte = '0' ;
    case { 'band' }
        idbyte = '0xFF' ;
    case { 'bxor' }
        idbyte = '0' ;

    case { 'eq' }
        idbyte = '1' ;
    case { 'times' }
        idbyte = '' ;
    case {'bxnor' }
        idbyte = '0xFF' ;
end

if (isempty (idbyte))
    fprintf (f, 'define(`GB_has_identity_byte'', `0'')\n') ;
    fprintf (f, 'define(`GB_identity_byte'', `(none)'')\n') ;
else
    fprintf (f, 'define(`GB_has_identity_byte'', `1'')\n') ;
    fprintf (f, 'define(`GB_identity_byte'', `%s'')\n', idbyte) ;
end

% create the disable flag
if (is_any_pair)
    % never disable the any_pair_iso semiring
    fprintf (f, 'define(`GB_disable'', `0'')\n') ;
    fprintf (f, 'define(`if_disabled'', `#if 0'')\n') ;
    fprintf (f, 'define(`if_not_disabled'', `#if 1'')\n') ;
else
    disable  = sprintf ('GxB_NO_%s', upper (addop)) ;
    if (~isequal (addop, multop))
        disable = [disable (sprintf (' || GxB_NO_%s', upper (multop)))] ;
    end
    disable = [disable (sprintf (' || GxB_NO_%s', upper (fname)))] ;
    disable = [disable (sprintf (' || GxB_NO_%s_%s', upper (addop), upper (zname)))] ;
    if (~ (isequal (addop, multop) && isequal (zname, fname)))
        disable = [disable (sprintf (' || GxB_NO_%s_%s', upper (multop), upper (fname)))] ;
    end
    disable = [disable (sprintf (' || GxB_NO_%s_%s_%s', ...
        upper (addop), upper (multop), upper (fname))) ] ;
    fprintf (f, 'define(`GB_disable'', `(%s)'')\n', disable) ;
    fprintf (f, 'define(`if_disabled'', `#if GB_DISABLE'')\n') ;
    fprintf (f, 'define(`if_not_disabled'', `#if ( !GB_DISABLE )'')\n') ;
end

fclose (f) ;

nprune = 76 ;

if (is_any_pair)
    % the ANY_PAIR_ISO semiring goes in Generated1
    k = 1 ;
else
    % all other semirings go in Generated2
    k = 2 ;
end

% construct the *.c file for the semiring
cmd = sprintf ('cat control.m4 Generator/GB_AxB.c | m4 | tail -n +%d > Generated%d/GB_AxB__%s.c', nprune, k, name) ;
system (cmd) ;

fprintf ('.') ;

% append to the *.h file
cmd = sprintf ('cat control.m4 Generator/GB_AxB.h | m4 | tail -n +%d >> Generated%d/GB_AxB__include%d.h', nprune, k, k) ;
system (cmd) ;

delete ('control.m4') ;