File: GB_mex_complex.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (107 lines) | stat: -rw-r--r-- 2,618 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
//------------------------------------------------------------------------------
// GB_mex_complex: convert a real matrix into a complex one
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// If A is real, C has an all-zero imaginary part.
// If A is complex, then C = A.

// This is a sparse version of the built-in 'complex' function, which does not
// work for sparse matrices.  This is self-contained and does not use GraphBLAS
// at all.

#include "mex.h"
#include "matrix.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

#define USAGE "C = GB_mex_complex (A)"

void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{

    // check inputs
    if (nargout > 1 || nargin != 1)
    {
        mexErrMsgTxt ("Usage: " USAGE) ;
    }

    // get the input matrix
    const mxArray *A = pargin [0] ;
    bool A_is_sparse = mxIsSparse (A) ;
    if (mxIsLogical (A))
    {
        mexErrMsgTxt ("A must be double or double complex") ;
    }

    int64_t *Ap, *Ai ;

    if (A_is_sparse)
    {
        Ap = (int64_t *) mxGetJc (A) ;
        Ai = (int64_t *) mxGetIr (A) ;
    }
    else
    {
        Ap = NULL ;
        Ai = NULL ;
    }

    double *Ax = NULL ;
    if (mxIsComplex (A))
    {
        Ax = (double *) mxGetComplexDoubles (pargin [0]) ;
    }
    else
    {
        Ax = (double *) mxGetDoubles (pargin [0]) ;
    }

    int64_t m = mxGetM (A) ;
    int64_t n = mxGetN (A) ;
    int64_t anz = (A_is_sparse) ? Ap [n] : (m*n) ;

    // create the output matrix
    if (A_is_sparse)
    {
        // A and C are sparse
        pargout [0] = mxCreateSparse (m, n, anz+1, mxCOMPLEX) ;
        int64_t *Cp = (int64_t *) mxGetJc (pargout [0]) ;
        int64_t *Ci = (int64_t *) mxGetIr (pargout [0]) ;
        // copy the pattern of A into C
        memcpy (Cp, Ap, (n+1) * sizeof (int64_t)) ;
        memcpy (Ci, Ai, anz   * sizeof (int64_t)) ;
    }
    else
    {
        // A and C are full
        pargout [0] = mxCreateDoubleMatrix (m, n, mxCOMPLEX) ;
    }

    // copy the values of A into C
    double *Cx = (double *) mxGetComplexDoubles (pargout [0]) ;
    if (mxIsComplex (A))
    {
        memcpy (Cx, Ax, anz * 2 * sizeof (double)) ;
    }
    else
    {
        for (int64_t k = 0 ; k < anz ; k++)
        {
            Cx [2*k  ] = Ax [k] ;
            Cx [2*k+1] = 0 ;
        }
    }
}