1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
//------------------------------------------------------------------------------
// GB_mex_setElement: interface for A(i,j) = x
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// x = A (i,j), where i and j are zero-based. If i and j arrays, then
// x (k) = A (i (k), j (k)) is done for all k.
// I and J and zero-based
#include "GB_mex.h"
#define USAGE "A = GB_mex_setElement (A, I, J, X, debug_wait,scalar)"
bool debug_wait = false ;
bool do_scalar = false ;
GrB_Type xtype = NULL ;
#define FREE_ALL \
{ \
GrB_Matrix_free_(&A) ; \
GB_mx_put_global (true) ; \
}
#if defined ( __GNUC__ )
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
#endif
#define Return(info) { GrB_Scalar_free (&Scalar) ; return (info) ; }
//------------------------------------------------------------------------------
// set all elements of a matrix and return if an error is encountered
//------------------------------------------------------------------------------
#define setEl(prefix,name,type) \
GrB_Info set_ ## name \
(GrB_Matrix A, type *X, GrB_Index *I, GrB_Index *J, GrB_Index ni) \
{ \
GrB_Info info ; \
GrB_Scalar Scalar = NULL ; \
if (do_scalar) \
{ \
info = GrB_Scalar_new (&Scalar, xtype) ; \
if (info != GrB_SUCCESS) \
{ \
Return (info) ; \
} \
} \
for (int64_t k = 0 ; k < ni ; k++) \
{ \
if (do_scalar) \
{ \
info = prefix ## Scalar_setElement_ ## name \
(Scalar, AMPERSAND (X [k])) ; \
if (info != GrB_SUCCESS) \
{ \
Return (info) ; \
} \
info = GrB_Matrix_setElement_Scalar \
(A, Scalar, I [k], J [k]) ; \
} \
else \
{ \
info = prefix ## Matrix_setElement_ ## name \
(A, AMPERSAND (X [k]), I [k], J [k]) ; \
} \
if (info != GrB_SUCCESS) \
{ \
Return (info) ; \
} \
} \
if (debug_wait) \
{ \
Return (GB_wait (A, "A", NULL)) ; \
} \
Return (GrB_SUCCESS) ; \
}
//------------------------------------------------------------------------------
// create all the local set_TYPE functions
//------------------------------------------------------------------------------
#define AMPERSAND(x) x
setEl (GrB_, BOOL , bool ) ;
setEl (GrB_, INT8 , int8_t ) ;
setEl (GrB_, UINT8 , uint8_t ) ;
setEl (GrB_, INT16 , int16_t ) ;
setEl (GrB_, UINT16 , uint16_t ) ;
setEl (GrB_, INT32 , int32_t ) ;
setEl (GrB_, UINT32 , uint32_t ) ;
setEl (GrB_, INT64 , int64_t ) ;
setEl (GrB_, UINT64 , uint64_t ) ;
setEl (GrB_, FP32 , float ) ;
setEl (GrB_, FP64 , double ) ;
setEl (GxB_, FC32 , GxB_FC32_t ) ;
setEl (GxB_, FC64 , GxB_FC64_t ) ;
#undef AMPERSAND
#define AMPERSAND(x) &x
setEl (GrB_, UDT , GxB_FC64_t) ;
#undef AMPERSAND
//------------------------------------------------------------------------------
// set all elements of a vector and return if an error is encountered
//------------------------------------------------------------------------------
#define vsetEl(prefix,name,type) \
GrB_Info vset_ ## name \
(GrB_Matrix A, type *X, GrB_Index *I, GrB_Index ni) \
{ \
GrB_Info info ; \
GrB_Scalar Scalar = NULL ; \
if (do_scalar) \
{ \
info = GrB_Scalar_new (&Scalar, xtype) ; \
if (info != GrB_SUCCESS) Return (info) ; \
} \
GrB_Vector w = (GrB_Vector) A ; \
for (int64_t k = 0 ; k < ni ; k++) \
{ \
if (do_scalar) \
{ \
info = prefix ## Scalar_setElement_ ## name \
(Scalar, AMPERSAND (X [k])) ; \
if (info != GrB_SUCCESS) Return (info) ; \
info = GrB_Vector_setElement_Scalar \
(w, Scalar, I [k]) ; \
} \
else \
{ \
info = prefix ## Vector_setElement_ ## name \
(w, AMPERSAND (X [k]), I [k]) ; \
} \
if (info != GrB_SUCCESS) Return (info) ; \
} \
if (debug_wait) \
{ \
Return (GB_wait (A, "A", NULL)) ; \
} \
Return (GrB_SUCCESS) ; \
}
//------------------------------------------------------------------------------
// create all the local set_TYPE functions
//------------------------------------------------------------------------------
#define AMPERSAND(x) x
vsetEl (GrB_, BOOL , bool ) ;
vsetEl (GrB_, INT8 , int8_t ) ;
vsetEl (GrB_, UINT8 , uint8_t ) ;
vsetEl (GrB_, INT16 , int16_t ) ;
vsetEl (GrB_, UINT16 , uint16_t ) ;
vsetEl (GrB_, INT32 , int32_t ) ;
vsetEl (GrB_, UINT32 , uint32_t ) ;
vsetEl (GrB_, INT64 , int64_t ) ;
vsetEl (GrB_, UINT64 , uint64_t ) ;
vsetEl (GrB_, FP32 , float ) ;
vsetEl (GrB_, FP64 , double ) ;
vsetEl (GxB_, FC32 , GxB_FC32_t ) ;
vsetEl (GxB_, FC64 , GxB_FC64_t ) ;
#undef AMPERSAND
#define AMPERSAND(x) &x
vsetEl (GrB_, UDT , GxB_FC64_t) ;
#undef AMPERSAND
//------------------------------------------------------------------------------
// GB_mex_setElement
//------------------------------------------------------------------------------
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
bool malloc_debug = GB_mx_get_global (true) ;
GrB_Matrix A = NULL ;
GB_void *Y ;
GrB_Index *I = NULL, ni = 0, I_range [3] ;
GrB_Index *J = NULL, nj = 0, J_range [3] ;
bool is_list ;
// check inputs
if (nargout > 1 || nargin < 4 || nargin > 6)
{
mexErrMsgTxt ("Usage: " USAGE) ;
}
// get A (deep copy)
#define GET_DEEP_COPY \
A = GB_mx_mxArray_to_Matrix (pargin [0], "A input", true, true) ;
#define FREE_DEEP_COPY GrB_Matrix_free_(&A) ;
GET_DEEP_COPY ;
if (A == NULL)
{
FREE_ALL ;
mexErrMsgTxt ("A failed") ;
}
// get I
if (!GB_mx_mxArray_to_indices (&I, pargin [1], &ni, I_range, &is_list))
{
FREE_ALL ;
mexErrMsgTxt ("I failed") ;
}
if (!is_list)
{
mexErrMsgTxt ("I is invalid; must be a list") ;
}
// get J
if (!GB_mx_mxArray_to_indices (&J, pargin [2], &nj, J_range, &is_list))
{
FREE_ALL ;
mexErrMsgTxt ("J failed") ;
}
if (!is_list)
{
mexErrMsgTxt ("J is invalid; must be a list") ;
}
if (ni != nj)
{
FREE_ALL ;
mexErrMsgTxt ("I and J must be the same size") ;
}
// get X
if (ni != mxGetNumberOfElements (pargin [3]))
{
FREE_ALL ;
mexErrMsgTxt ("I and X must be the same size") ;
}
if (!(mxIsNumeric (pargin [3]) || mxIsLogical (pargin [3])))
{
FREE_ALL ;
mexErrMsgTxt ("X must be a numeric or logical array") ;
}
if (mxIsSparse (pargin [3]))
{
FREE_ALL ;
mexErrMsgTxt ("X cannot be sparse") ;
}
// get debug_wait (if true, to GB_wait after setElements)
GET_SCALAR (4, bool, debug_wait, false) ;
// get do_scalar (if true use GrB_*_setElement_Scalar)
GET_SCALAR (5, bool, do_scalar, false) ;
if (mxIsComplex (pargin [3]))
{
xtype = Complex ;
Y = (GB_void *) mxGetComplexDoubles (pargin [3]) ;
}
else
{
Y = mxGetData (pargin [3]) ;
xtype = GB_mx_Type (pargin [3]) ;
if (xtype == NULL)
{
FREE_ALL ;
mexErrMsgTxt ("X must be numeric") ;
}
}
size_t s = 2 * sizeof (double) ;
// A (i,j) = x, for a list of elements
// the METHOD (...) macro is not used on each call to setElement, but
// to all of them. Thus, if any failure occurs, the computation is rolled
// back to the very beginning, and another fresh, deep, copy of A is made,
// and the sequence of setElements is tried again. If a setElement fails
// by running out of memory, it clears to whole matrix, so recovery cannot
// be made.
if (A->vdim == 1)
{
// test GrB_Vector_setElement
switch (xtype->code)
{
case GB_BOOL_code : METHOD (vset_BOOL (A, (bool *) Y, I, ni)) ; break ;
case GB_INT8_code : METHOD (vset_INT8 (A, (int8_t *) Y, I, ni)) ; break ;
case GB_INT16_code : METHOD (vset_INT16 (A, (int16_t *) Y, I, ni)) ; break ;
case GB_INT32_code : METHOD (vset_INT32 (A, (int32_t *) Y, I, ni)) ; break ;
case GB_INT64_code : METHOD (vset_INT64 (A, (int64_t *) Y, I, ni)) ; break ;
case GB_UINT8_code : METHOD (vset_UINT8 (A, (uint8_t *) Y, I, ni)) ; break ;
case GB_UINT16_code : METHOD (vset_UINT16 (A, (uint16_t *) Y, I, ni)) ; break ;
case GB_UINT32_code : METHOD (vset_UINT32 (A, (uint32_t *) Y, I, ni)) ; break ;
case GB_UINT64_code : METHOD (vset_UINT64 (A, (uint64_t *) Y, I, ni)) ; break ;
case GB_FP32_code : METHOD (vset_FP32 (A, (float *) Y, I, ni)) ; break ;
case GB_FP64_code : METHOD (vset_FP64 (A, (double *) Y, I, ni)) ; break ;
case GB_FC32_code : METHOD (vset_FC32 (A, (GxB_FC32_t *) Y, I, ni)) ; break ;
case GB_FC64_code : METHOD (vset_FC64 (A, (GxB_FC64_t *) Y, I, ni)) ; break ;
case GB_UDT_code : METHOD (vset_UDT (A, (void *) Y, I, ni)) ; break ;
default:
FREE_ALL ;
mexErrMsgTxt ("unsupported type") ;
}
}
else
{
// test GrB_Matrix_setElement
switch (xtype->code)
{
case GB_BOOL_code : METHOD (set_BOOL (A, (bool *) Y, I, J, ni)) ; break ;
case GB_INT8_code : METHOD (set_INT8 (A, (int8_t *) Y, I, J, ni)) ; break ;
case GB_INT16_code : METHOD (set_INT16 (A, (int16_t *) Y, I, J, ni)) ; break ;
case GB_INT32_code : METHOD (set_INT32 (A, (int32_t *) Y, I, J, ni)) ; break ;
case GB_INT64_code : METHOD (set_INT64 (A, (int64_t *) Y, I, J, ni)) ; break ;
case GB_UINT8_code : METHOD (set_UINT8 (A, (uint8_t *) Y, I, J, ni)) ; break ;
case GB_UINT16_code : METHOD (set_UINT16 (A, (uint16_t *) Y, I, J, ni)) ; break ;
case GB_UINT32_code : METHOD (set_UINT32 (A, (uint32_t *) Y, I, J, ni)) ; break ;
case GB_UINT64_code : METHOD (set_UINT64 (A, (uint64_t *) Y, I, J, ni)) ; break ;
case GB_FP32_code : METHOD (set_FP32 (A, (float *) Y, I, J, ni)) ; break ;
case GB_FP64_code : METHOD (set_FP64 (A, (double *) Y, I, J, ni)) ; break ;
case GB_FC32_code : METHOD (set_FC32 (A, (GxB_FC32_t *) Y, I, J, ni)) ; break ;
case GB_FC64_code : METHOD (set_FC64 (A, (GxB_FC64_t *) Y, I, J, ni)) ; break ;
case GB_UDT_code : METHOD (set_UDT (A, (void *) Y, I, J, ni)) ; break ;
default:
FREE_ALL ;
mexErrMsgTxt ("unsupported type") ;
}
}
// only do debug checks after adding lots of tuples
if (ni > 1000) { ASSERT_MATRIX_OK (A, "A added pending tuples", GB0) ; }
// return A as a struct and free the GraphBLAS A
pargout [0] = GB_mx_Matrix_to_mxArray (&A, "A output", true) ;
FREE_ALL ;
}
|