File: GB_mx_object_to_mxArray.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (361 lines) | stat: -rw-r--r-- 11,728 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//------------------------------------------------------------------------------
// GB_mx_object_to_mxArray
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Convert a GraphBLAS sparse or full matrix to a built-in struct C containing
// C.matrix and a string C.class.  The GraphBLAS matrix is destroyed.

// This could be done using only user-callable GraphBLAS functions, by
// extracting the tuples and converting them into a built-in sparse matrix.  But
// that would be much slower and take more memory.  Instead, most of the work
// can be done by pointers, and directly accessing the internal contents of C.
// If C has type GB_BOOL_code or GB_FP64_code, then C can be converted to a
// built-in matrix in constant time with essentially no extra memory allocated.
// This is faster, but it means that this Test interface will only work with
// this specific implementation of GraphBLAS.

// Note that the GraphBLAS matrix may contain explicit zeros.

// If the GraphBLAS matrix is iso, it is converted to non-iso, but if it is
// returned as a struct, the C.iso is set true.  Then when the struct is read
// back into GraphBLAS, the flag can be used to restore the iso property of the
// GraphBLAS matrix .

#include "GB_mex.h"

#define GB_AS_IF_FREE(p)                \
{                                       \
    GB_Global_memtable_remove (p) ;     \
    (p) = NULL ;                        \
}

static const char *MatrixFields [ ] = { "matrix", "class", "iso", "values" } ;

mxArray *GB_mx_object_to_mxArray   // returns the built-in mxArray
(
    GrB_Matrix *handle,             // handle of GraphBLAS matrix to convert
    const char *name,
    const bool create_struct        // if true, then return a struct
)
{
    GB_CONTEXT ("GB_mx_object_to_mxArray") ;

    // get the inputs
    mxArray *A, *Astruct, *X = NULL ;
    GrB_Matrix C = *handle ;
    GrB_Type ctype = C->type ;

    // may have pending tuples
    ASSERT_MATRIX_OK (C, name, GB0) ;

    // C must not be shallow
    ASSERT (!C->p_shallow) ;
    ASSERT (!C->h_shallow) ;
    ASSERT (!C->b_shallow) ;
    ASSERT (!C->i_shallow) ;
    ASSERT (!C->x_shallow) ;

    // make sure there are no pending computations
    if (GB_IS_FULL (C) || GB_IS_BITMAP (C))
    {
        ASSERT (!GB_JUMBLED (C)) ;
        ASSERT (!GB_ZOMBIES (C)) ;
        ASSERT (!GB_PENDING (C)) ;
    }
    else
    {
        // this may convert C to full
        GrB_Matrix_wait (C, GrB_MATERIALIZE) ;
        C = (*handle) ;
    }

    // must be done after GrB_Matrix_wait:
    int64_t cnz = GB_nnz (C) ;

    ASSERT_MATRIX_OK (C, "TO mxArray after assembling pending tuples", GB0) ;

    // ensure C is sparse or full, not hypersparse or bitmap
    GxB_Matrix_Option_set_(C, GxB_SPARSITY_CONTROL, GxB_FULL + GxB_SPARSE) ;
    ASSERT_MATRIX_OK (C, "TO mxArray, sparse or full", GB0) ;
    ASSERT (!GB_IS_HYPERSPARSE (C)) ;
    ASSERT (!GB_IS_BITMAP (C)) ;

    // get the current sparsity
    int sparsity ;
    GxB_Matrix_Option_get_(C, GxB_SPARSITY_STATUS, &sparsity) ;
    ASSERT (sparsity == GxB_FULL || sparsity == GxB_SPARSE) ;

    // make sure it's CSC
    if (!C->is_csc)
    {
        GxB_Matrix_Option_set_(C, GxB_FORMAT, GxB_BY_COL) ;
    }

    // setting to CSC may have transposed the matrix
    ASSERT (GB_JUMBLED_OK (C)) ;
    GrB_Matrix_wait (C, GrB_MATERIALIZE) ;
    ASSERT (!GB_JUMBLED (C)) ;
    cnz = GB_nnz (C) ;

    ASSERT_MATRIX_OK (C, "TO mxArray, non-hyper CSC", GB0) ;
    ASSERT (!GB_JUMBLED (C)) ;
    ASSERT (!GB_IS_HYPERSPARSE (C)) ;
    ASSERT (!GB_IS_BITMAP (C)) ;
    ASSERT (GB_IS_SPARSE (C) || GB_IS_FULL (C)) ;
    ASSERT (C->is_csc) ;

    // convert C to non-iso
    bool C_iso = C->iso ;
    if (C_iso)
    {
        GB_convert_any_to_non_iso (C, true, NULL) ;
        ASSERT_MATRIX_OK (C, "TO mxArray, non-iso non-hyper CSC", GB0) ;
    }

    // empty built-in matrices don't want NULL pointers
    if (C->x == NULL)
    {
        ASSERT (cnz == 0) ;
        C->x = (GB_void *) GB_malloc_memory (2 * sizeof (double),
            sizeof (GB_void), &(C->x_size)) ;
        memset (C->x, 0, 2 * sizeof (double)) ;
        C->x_shallow = false ;
    }

    bool C_is_full = (sparsity == GxB_FULL) ;
    if (!C_is_full)
    {
        // empty built-in sparse matrices don't want NULL pointers
        if (C->i == NULL)
        {
            ASSERT (cnz == 0) ;
            C->i = (int64_t *) GB_malloc_memory (1, sizeof (int64_t),
                &(C->i_size)) ;
            C->i [0] = 0 ;
            C->i_shallow = false ;
        }
        if (C->p == NULL)
        {
            ASSERT (cnz == 0) ;
            C->p = (int64_t *) GB_malloc_memory (C->vdim + 1, 
                sizeof (int64_t), &(C->p_size)) ;
            memset (C->p, 0, (C->vdim + 1) * sizeof (int64_t)) ;
            C->p_shallow = false ;
        }
    }

    //--------------------------------------------------------------------------
    // create the built-in matrix A and link in the numerical values of C
    //--------------------------------------------------------------------------

    if (C_is_full)
    {
        // C is full.
        // allocate an empty dense matrix of the right type, then set content

        void *Cx = (void *) C->x ;

        if (ctype == GrB_BOOL)
        { 
            A = mxCreateLogicalMatrix (0, 0) ;
            mxSetData (A, Cx) ;
        }
        else if (ctype == GrB_FP32)
        { 
            A = mxCreateNumericMatrix (0, 0, mxSINGLE_CLASS, mxREAL) ;
            mxSetSingles (A, Cx) ;
        }
        else if (ctype == GrB_FP64)
        { 
            A = mxCreateNumericMatrix (0, 0, mxDOUBLE_CLASS, mxREAL) ;
            mxSetDoubles (A, Cx) ;
        }
        else if (ctype == GrB_INT8)
        { 
            A = mxCreateNumericMatrix (0, 0, mxINT8_CLASS, mxREAL) ;
            mxSetInt8s (A, Cx) ;
        }
        else if (ctype == GrB_INT16)
        { 
            A = mxCreateNumericMatrix (0, 0, mxINT16_CLASS, mxREAL) ;
            mxSetInt16s (A, Cx) ;
        }
        else if (ctype == GrB_INT32)
        { 
            A = mxCreateNumericMatrix (0, 0, mxINT32_CLASS, mxREAL) ;
            mxSetInt32s (A, Cx) ;
        }
        else if (ctype == GrB_INT64)
        { 
            A = mxCreateNumericMatrix (0, 0, mxINT64_CLASS, mxREAL) ;
            mxSetInt64s (A, Cx) ;
        }
        else if (ctype == GrB_UINT8)
        { 
            A = mxCreateNumericMatrix (0, 0, mxUINT8_CLASS, mxREAL) ;
            mxSetUint8s (A, Cx) ;
        }
        else if (ctype == GrB_UINT16)
        { 
            A = mxCreateNumericMatrix (0, 0, mxUINT16_CLASS, mxREAL) ;
            mxSetUint16s (A, Cx) ;
        }
        else if (ctype == GrB_UINT32)
        { 
            A = mxCreateNumericMatrix (0, 0, mxUINT32_CLASS, mxREAL) ;
            mxSetUint32s (A, Cx) ;
        }
        else if (ctype == GrB_UINT64)
        { 
            A = mxCreateNumericMatrix (0, 0, mxUINT64_CLASS, mxREAL) ;
            mxSetUint64s (A, Cx) ;
        }
        else if (ctype == GxB_FC32)
        {
            A = mxCreateNumericMatrix (0, 0, mxSINGLE_CLASS, mxCOMPLEX) ;
            mxSetComplexSingles (A, Cx) ;
        }
        else if (ctype == Complex || ctype == GxB_FC64)
        {
            A = mxCreateNumericMatrix (0, 0, mxDOUBLE_CLASS, mxCOMPLEX) ;
            mxSetComplexDoubles (A, Cx) ;
        }
        else
        {
            mexErrMsgTxt ("... unsupported type") ;
        }

        mexMakeMemoryPersistent (C->x) ;
        C->x_shallow = false ;
        GB_AS_IF_FREE (C->x) ;   // unlink C->x from C; now in built-in C

    }
    else if (C->type == GrB_BOOL)
    {
        // C is boolean, which is the same as a built-in logical sparse matrix
        A = mxCreateSparseLogicalMatrix (0, 0, 0) ;
        mexMakeMemoryPersistent (C->x) ;
        mxSetData (A, (bool *) C->x) ;
        C->x_shallow = false ;

        // C->x is treated as if it was freed
        GB_AS_IF_FREE (C->x) ;   // unlink C->x from C; now in built-in C

    }
    else if (C->type == GrB_FP64)
    {
        // C is double, which is the same as a built-in double sparse matrix
        A = mxCreateSparse (0, 0, 0, mxREAL) ;
        mexMakeMemoryPersistent (C->x) ;
        mxSetData (A, C->x) ;
        C->x_shallow = false ;

        // C->x is treated as if it was freed
        GB_AS_IF_FREE (C->x) ;   // unlink C->x from C; in built-in C

    }
    else if (C->type == Complex || C->type == GxB_FC64)
    {

        // user-defined Complex type, or GraphBLAS GxB_FC64
        A = mxCreateSparse (C->vlen, C->vdim, cnz, mxCOMPLEX) ;
        memcpy (mxGetComplexDoubles (A), C->x, cnz * sizeof (GxB_FC64_t)) ;

    }
    else if (C->type == GxB_FC32)
    {

        // C is single complex, typecast to sparse double complex
        A = mxCreateSparse (C->vlen, C->vdim, cnz, mxCOMPLEX) ;
        GB_void *Ax = (GB_void *) mxGetComplexDoubles (A) ;
        if (Ax == NULL && cnz > 0) mexErrMsgTxt ("Ax is NULL!\n") ;
        GB_cast_array (Ax, GB_FC64_code, C->x, C->type->code, NULL, cnz, 1) ;

    }
    else
    {

        // otherwise C is cast into a built-in double sparse matrix
        A = mxCreateSparse (0, 0, 0, mxREAL) ;
        size_t Sx_size ;
        double *Sx = (double *) GB_malloc_memory (cnz+1, sizeof (double),
            &Sx_size) ;
        if (Sx == NULL && cnz > 0) mexErrMsgTxt ("Sx is NULL!\n") ;
        GB_cast_array ((GB_void *) Sx, GB_FP64_code, C->x, C->type->code,
            NULL, cnz, 1) ;
        mexMakeMemoryPersistent (Sx) ;
        mxSetPr (A, Sx) ;

        // Sx was just malloc'd.  Treat it as if GraphBLAS has freed it
        GB_AS_IF_FREE (Sx) ;

        if (create_struct)
        {
            // If C is int64 or uint64, then typecasting can lose information,
            // so keep an uncasted copy of C->x as well.
            X = GB_mx_create_full (0, 0, C->type) ;
            mxSetM (X, cnz) ;
            mxSetN (X, 1) ;
            mxSetData (X, C->x) ;
            mexMakeMemoryPersistent (C->x) ;
            C->x_shallow = false ;
            // treat C->x as if it were freed
            GB_AS_IF_FREE (C->x) ;
        }
    }

    // set nrows, ncols, nzmax, and the pattern of A
    mxSetM (A, C->vlen) ;
    mxSetN (A, C->vdim) ;
    mxSetNzmax (A, cnz) ;

    if (!C_is_full)
    {
        mxFree (mxGetJc (A)) ;
        mxFree (mxGetIr (A)) ;
        mexMakeMemoryPersistent (C->p) ;
        mexMakeMemoryPersistent (C->i) ;
        mxSetJc (A, (size_t *) C->p) ;
        mxSetIr (A, (size_t *) C->i) ;

        // treat C->p as if freed
        GB_AS_IF_FREE (C->p) ;

        // treat C->i as if freed
        C->i_shallow = false ;
        GB_AS_IF_FREE (C->i) ;
    }

    // free C, but leave any shallow components untouched
    // since these have been transplanted into the built-in matrix.
    GrB_Matrix_free_(handle) ;

    if (create_struct)
    {
        // create the type
        mxArray *atype = GB_mx_Type_to_mxstring (ctype) ;
        // create the iso flag
        mxArray *c_iso = mxCreateLogicalScalar (C_iso) ;
        // create the output struct
        Astruct = mxCreateStructMatrix (1, 1,
           (X == NULL) ? 3 : 4, MatrixFields) ;
        mxSetFieldByNumber (Astruct, 0, 0, A) ;
        mxSetFieldByNumber (Astruct, 0, 1, atype) ;
        mxSetFieldByNumber (Astruct, 0, 2, c_iso) ;
        if (X != NULL)
        {
            mxSetFieldByNumber (Astruct, 0, 3, X) ;
        }
        return (Astruct) ;
    }
    else
    {
        return (A) ;
    }
}