1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
function C = GB_spec_assign (C, Mask, accum, A, I, J, descriptor, scalar)
%GB_SPEC_ASSIGN a mimic of GrB_assign (but not Row or Col variants)
%
% Usage:
% C = GB_spec_assign (C, Mask, accum, A, I, J, descriptor, scalar)
%
% Computes C<Mask>(I,J) = accum(C(I,J),A), in GraphBLAS notation.
%
% This function does the same thing as GrB_Matrix_assign, GrB_Vector_assign,
% GrB_Matrix_assign_TYPE, and GrB_Vector_assign_TYPE. For these uses, the Mask
% must always be the same size as C. All of C can be affected (if C_replace is
% true, for example).
%
% This function does not mimic the GrB_Row_assign and GrB_Col_assign functions
% since they behave differently; their Mask is a single row/column, and they do
% not affect any part of C outside that row or column. Those two functions
% have their own GB_spec_Row_assign.m and GB_spec_Col_assign.m functions.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
%-------------------------------------------------------------------------------
% get inputs
%-------------------------------------------------------------------------------
if (nargout > 1 || nargin ~= 8)
error ('usage: C = GB_spec_assign (C, Mask, accum, A, I, J, descriptor, scalar)') ;
end
% Convert inputs to dense matrices with explicit patterns and types,
% and with where X(~X.pattern)==identity for all matrices A, B, and C.
C = GB_spec_matrix (C) ;
A = GB_spec_matrix (A) ;
[C_replace Mask_comp Atrans Btrans Mask_struct] = ...
GB_spec_descriptor (descriptor) ;
Mask = GB_spec_getmask (Mask, Mask_struct) ;
%-------------------------------------------------------------------------------
% do the work via a clean *.m interpretation of the entire GraphBLAS spec
%-------------------------------------------------------------------------------
% apply the descriptor to A
if (Atrans)
A.matrix = A.matrix.' ;
A.pattern = A.pattern' ;
end
% expand I and J if empty
if (ischar (I) & isempty (I))
% I = '' is treated as the empty list
I = [ ] ;
elseif (isempty (I) || isequal (I, ':'))
% I = [ ] is treated as ":"
nrows = size (C.matrix, 1) ;
I = 1:nrows ;
end
if (ischar (J) & isempty (J))
% J = '' is treated as the empty list
J = [ ] ;
elseif (isempty (J) || isequal (J, ':'))
% J = [ ] is treated as the ":"
ncols = size (C.matrix, 2) ;
J = 1:ncols ;
end
if (scalar)
% scalar expansion: remove duplicates and expand A into a matrix
I = unique (I) ;
J = unique (J) ;
ni = length (I) ;
nj = length (J) ;
A.matrix (1:ni, 1:nj) = A.matrix (1,1) ;
A.pattern (1:ni, 1:nj) = A.pattern (1,1) ;
end
%-------------------------------------------------------------------------------
% compute the submatrix in Z, using accum
%-------------------------------------------------------------------------------
% initialize Z = C
Z.matrix = C.matrix ;
Z.pattern = C.pattern ;
Z.class = C.class ;
% extract the C(I,J) submatrix
S.matrix = C.matrix (I,J) ;
S.pattern = C.pattern (I,J) ;
S.class = C.class ;
% apply the accum operator, ZIJ = accum (S, A)
ZIJ = GB_spec_accum (accum, S, A) ;
% assign the submatrix into Z
Z.matrix (I,J) = ZIJ.matrix ;
Z.pattern (I,J) = ZIJ.pattern ;
%-------------------------------------------------------------------------------
% apply the Mask and C_replace
%-------------------------------------------------------------------------------
% C<Mask> = Z: apply the Mask and C_replace, and return the result
C = GB_spec_mask (C, Mask, Z, C_replace, Mask_comp, 0) ;
|