1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
function C = GB_spec_mxm (C, Mask, accum, semiring, A, B, descriptor)
%GB_SPEC_MXM a mimic of GrB_mxm
%
% Usage:
% C = GB_spec_mxm (C, Mask, accum, semiring, A, B, descriptor)
%
% Computes C<Mask> = accum(C,T), in GraphBLAS notation, where T =A*B, A'*B,
% A*B' or A'*B'. The matrix C is returned as a struct with C.matrix being the
% values of the matrix, C.pattern the 'nonzero' pattern, and C.class the type
% of the matrix. A and B can be plain matrices on input, or they can be
% structs like C. See GB_spec_matrix.m for more details. See
% GB_spec_transpose.m for a description of the input parameters, except for
% semiring; see GB_spec_semiring for a description of the semiring.
%
% The semiring defines the multiply and add operators and the additive
% identity. The matrix multiplication T = A*B is then defined as:
%
% [m s] = size (A) ;
% [s n] = size (B) ;
% ztype, xtype, ytype: the types of the multiply operator
% T = identity (m,n,ztype) ; where identity is defined by semiring.add
% for j = 1:n
% for i = 1:m
% for k = 1:s
% if (A (i,k) and B (k,j) are 'nonzero'
% aik = cast (A(i,k), xtype)
% bkj = cast (B(k,j), ytype)
% T (i,j) = add (T (i,j), multiply (aik, bkj))
% end
% end
% end
% end
%
% Where A(i,j) 'nonzero' means that the entry is in the data structure for the
% sparse matrix A. If it is not there, it is implied to be equal to the
% addititive identity. The identity value does not appear in the sparse
% GraphBLAS matrix; it is the value of entries not present in the data
% structure. The GB_spec_*.m functions operate on dense matrices,
% however, so these entries must be explicitly set to the additive identity.
%
% This gives a matrix T which is then accumulated into the result via
% C<Mask> = accum (C,T). See GrB_accum_mask for a description of this
% last step.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
%-------------------------------------------------------------------------------
% get inputs
%-------------------------------------------------------------------------------
if (nargout > 1 || nargin ~= 7)
error ('usage: C = GB_spec_mxm (C, Mask, accum, semiring, A, B, descriptor)') ;
end
% Convert inputs to dense matrices with explicit patterns and types,
% and with where X(~X.pattern)==identity for all matrices A, B, and C.
[multiply add identity ztype xtype ytype] = GB_spec_semiring (semiring) ;
if (isempty (identity))
identity = 0 ;
end
C = GB_spec_matrix (C, identity) ;
A = GB_spec_matrix (A, identity) ;
B = GB_spec_matrix (B, identity) ;
[C_replace Mask_comp Atrans Btrans Mask_struct] = ...
GB_spec_descriptor (descriptor) ;
Mask = GB_spec_getmask (Mask, Mask_struct) ;
%-------------------------------------------------------------------------------
% do the work via a clean *.m interpretation of the entire GraphBLAS spec
%-------------------------------------------------------------------------------
% apply the descriptor to A
if (Atrans)
A.matrix = A.matrix.' ;
A.pattern = A.pattern' ;
end
% apply the descriptor to B
if (Btrans)
B.matrix = B.matrix.' ;
B.pattern = B.pattern' ;
end
% T = A*B
[m s] = size (A.matrix) ;
[s n] = size (B.matrix) ;
T.matrix = GB_spec_zeros ([m n], ztype) ;
T.pattern = zeros (m, n, 'logical') ;
T.matrix (:,:) = identity ;
T.class = ztype ;
A_matrix = GB_mex_cast (A.matrix, xtype) ;
B_matrix = GB_mex_cast (B.matrix, ytype) ;
op_is_positional = GB_spec_is_positional (multiply) ;
multop = multiply.opname ;
for j = 1:n
for i = 1:m
for k = 1:s
% T (i,j) += A (i,k) * B (k,j), using the semiring
if (A.pattern (i,k) && B.pattern (k,j))
if (op_is_positional)
z = GB_spec_binop_positional (multop, i, k, k, j) ;
else
z = GB_spec_op (multiply, A_matrix (i,k), B_matrix (k,j)) ;
end
T.matrix (i,j) = GB_spec_op (add, T.matrix (i,j), z) ;
T.pattern (i,j) = true ;
end
end
end
end
% C<Mask> = accum (C,T): apply the accum, then Mask, and return the result
C = GB_spec_accum_mask (C, Mask, accum, T, C_replace, Mask_comp, identity) ;
|