1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
function C = GB_spec_transpose (C, Mask, accum, A, descriptor)
%GB_SPEC_TRANSPOSE a mimic of GrB_transpose
%
% Usage:
% C = GB_spec_transpose (C, Mask, accum, A, descriptor)
%
% Computes C<Mask> = accum(C,A') or accum(C,A) depending on the descriptor.
% This function and all GB_spec_* functions are not mean to be fast. They
% are meant to represent the GraphBLAS spec, for testing and illustration.
%
% The input matrices A, Mask, and C can be plain built-in matrices, sparse or
% dense, where the class of the matrix is the same as the GraphBLAS type.
% built-in sparse matrices can only handle 'logical', 'double', or 'double
% compex' types, however. To model this, the input matrices can also be
% structs. A.matrix is the matrix itself, and A.class is a string that the
% matrix is supposed to represent ('logical', 'int8', ... 'single', 'double').
%
% accum can be a string with the name a valid binary operator (see
% GB_spec_operator.m), or it can be a struct where accum.name is the name of
% the operator and accum.class is the class. If accum is empty, no accumulator
% is used and C on input is ignored.
%
% Mask is a sparse or dense matrix, or an empty matrix ([ ]). See
% GB_spec_mask.m for a description.
%
% descriptor is a optional struct. Defaults are used if empty or not present.
% descriptor.outp = 'replace' (clear C first) or 'default' (use C as-is)
% descriptor.inp0 = 'tran' (do C=A) or 'default' (do C=A')
% descriptor.mask =
% 'default': use Mask
% 'complement': use ~Mask
% 'structural': use spones(Mask)
% 'structural complement': use ~spones(Mask)
%
% GB_spec_transpose implements the entire specification of GrB_transpose, with
% a few exceptions.
%
% (1) Internally it only works on dense matrices, since built-in methods
% support logical and double sparse matrices only. As a result, the
% GB_spec_* mimics will be slow on large problems.
%
% (2) built-in methods do not allow explicit zeros in their sparse matrices. As
% a result, the structural pattern of an input matrix A, sparse or dense, is
% assumed to be GB_spones_mex(A).
%
% (3) Operations cannot be done purely in built-in methods because of the
% differences in typecasting rules for integers.
%
% (4) Finally, this method assumes that the domains of x, y, and z for the
% operator z=op(x,y) are all the same: optype. This is true for all built-in
% operators, but in GraphBLAS users can define their own operators with x, y
% and z being all different domains. That feature is not modeled by this
% method.
%
% Returns a struct with a dense matrix C.matrix with class C.class.
%
% Use an empty value ([ ] or '') to obtain the default value for optional
% parameters.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
%-------------------------------------------------------------------------------
% get inputs
%-------------------------------------------------------------------------------
if (nargout > 1 || nargin ~= 5)
error ('usage: C = GB_spec_transpose (C, Mask, accum, A, descriptor)') ;
end
C = GB_spec_matrix (C) ;
A = GB_spec_matrix (A) ;
[C_replace Mask_comp Atrans Btrans Mask_struct] = ...
GB_spec_descriptor (descriptor) ;
Mask = GB_spec_getmask (Mask, Mask_struct) ;
%-------------------------------------------------------------------------------
% do the work via a clean *.m interpretation of the entire GraphBLAS spec
%-------------------------------------------------------------------------------
% apply the descriptor to A
if (Atrans)
A.matrix = A.matrix.' ;
A.pattern = A.pattern' ;
end
% do the work
% Yes, this is be a double-transpose if Atrans is true, which of course should
% not be done in practice. This just mimics the spec line-for-line.
T.matrix = A.matrix' ;
T.pattern = A.pattern' ;
T.class = A.class ;
% C<Mask> = accum (C,T): apply the accum, then Mask, and return the result
C = GB_spec_accum_mask (C, Mask, accum, T, C_replace, Mask_comp, 0) ;
|