1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
function test10
%TEST10 test GrB_apply
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
fprintf ('\ntest10: GrB_apply tests\n') ;
[~, unary_ops, ~, types, ~, ~] = GB_spec_opsall ;
types = types.all ;
unary_ops = unary_ops.all ;
rng ('default') ;
m = 8 ;
n = 4 ;
dt = struct ('inp0', 'tran') ;
dr = struct ('outp', 'replace') ;
for k1 = 1:length(types)
atype = types {k1} ;
fprintf ('\n%s: ', atype) ;
Mask = GB_random_mask (m, n, 0.5, true, false) ;
Cin = GB_spec_random (m, n, 0.3, 100, atype) ;
Cmask = spones (GB_mex_cast (full (Cin.matrix), Cin.class)) ;
% for most operators
A = GB_spec_random (m, n, 0.3, 100, atype) ;
B = GB_spec_random (n, m, 0.3, 100, atype) ;
A_matrix = A.matrix ;
B_matrix = B.matrix ;
% for pow, sqrt, log, log10, log2, gammaln (domain is [0,inf])
A_pos_matrix = abs (A.matrix) ;
B_pos_matrix = abs (B.matrix) ;
% for asin, acos, atanh (domain is [-1,1])
A_1_matrix = A_matrix ;
B_1_matrix = B_matrix ;
A_1_matrix (abs (A_matrix) > 1) = 1 ;
B_1_matrix (abs (B_matrix) > 1) = 1 ;
% for acosh, asech (domain is [1, inf])
A_1inf_matrix = A_matrix ;
B_1inf_matrix = B_matrix ;
A_1inf_matrix (A_matrix < 1 & A_matrix ~= 0) = 1 ;
B_1inf_matrix (B_matrix < 1 & B_matrix ~= 0) = 1 ;
% for log1p (domain is [-1, inf])
A_n1inf_matrix = A_matrix ;
B_n1inf_matrix = B_matrix ;
A_n1inf_matrix (A_matrix < -1) = 1 ;
B_n1inf_matrix (B_matrix < -1) = 1 ;
% for tanh: domain is [-inf,inf], but rounding to
% integers fails when x is outside this range
A_5_matrix = A_matrix ;
B_5_matrix = B_matrix ;
A_5_matrix (abs (A_matrix) > 5) = 5 ;
B_5_matrix (abs (B_matrix) > 5) = 5 ;
% for gamma: domain is [-inf,inf], but not defined for negative
% integers, and rounding to integers fails when x is outside this range
A_pos5_matrix = A_matrix ;
B_pos5_matrix = B_matrix ;
A_pos5_matrix (A_matrix <= 0.1 & A_matrix ~= 0) = 0.1 ;
B_pos5_matrix (B_matrix <= 0.1 & B_matrix ~= 0) = 0.1 ;
A_pos5_matrix (A_matrix > 5) = 5 ;
B_pos5_matrix (B_matrix > 5) = 5 ;
% do longer tests for a few types
longer_tests = isequal (atype, 'double') || isequal (atype, 'int64') ;
if (longer_tests)
hrange = [0 1] ;
crange = [0 1] ;
else
hrange = 0 ;
crange = 1 ;
end
for k2 = 1:length(unary_ops)
op.opname = unary_ops {k2} ;
if (longer_tests)
fprintf ('\n') ;
end
fprintf (' %s', op.opname) ;
for k3 = 1:length(types)
op.optype = types {k3} ;
if (ispc && test_contains (op.opname, 'asin') && test_contains (op.optype, 'complex'))
% casin and casinf are broken on Windows
fprintf (' (skipped)') ;
continue ;
end
try
[opname optype ztype xtype ytype] = GB_spec_operator (op) ;
catch
continue
end
fprintf ('.') ;
A.matrix = A_matrix ;
B.matrix = B_matrix ;
switch (opname)
% domain is ok, but limit it to avoid integer typecast
% failures from O(eps) errors, or overflow to inf
case { 'tanh', 'exp', 'sin', 'cos', 'tan', ...
'sinh', 'cosh', 'asin', 'acos', 'acosh', 'asinh', ...
'atanh', 'exp2', 'expm1', 'carg', 'atan' }
A.matrix = A_5_matrix ;
B.matrix = B_5_matrix ;
case { 'tgamma' }
A.matrix = A_pos5_matrix ;
B.matrix = B_pos5_matrix ;
otherwise
% no change
end
if (~test_contains (optype, 'complex'))
% for real operators, avoiding complex results
switch (opname)
case { 'pow', 'sqrt', 'log', 'log10', 'log2', ...
'gammaln', 'lgamma' }
A.matrix = A_pos_matrix ;
B.matrix = B_pos_matrix ;
case { 'asin', 'acos', 'atanh' }
A.matrix = A_1_matrix ;
B.matrix = B_1_matrix ;
case { 'acosh', 'asech' }
A.matrix = A_1inf_matrix ;
B.matrix = B_1inf_matrix ;
case 'log1p'
A.matrix = A_n1inf_matrix ;
B.matrix = B_n1inf_matrix ;
case { 'tanh', 'exp' }
% domain is ok, but limit it to avoid integer typecast
% failures from O(eps) errors
A.matrix = A_5_matrix ;
B.matrix = B_5_matrix ;
otherwise
% no change
end
end
% op
tol = 0 ;
if (test_contains (optype, 'single') || test_contains (atype, 'single'))
tol = 1e-5 ;
elseif (test_contains (optype, 'double') || test_contains (atype, 'double'))
tol = 1e-12 ;
end
for A_sparsity = [hrange 2]
if (A_sparsity == 0)
A_is_hyper = 0 ;
A_is_bitmap = 0 ;
A_sparsity_control = 2 ; % sparse
elseif (A_sparsity == 1)
A_is_hyper = 1 ;
A_is_bitmap = 0 ;
A_sparsity_control = 1 ; % hypersparse
else
A_is_hyper = 0 ;
A_is_bitmap = 1 ;
A_sparsity_control = 4 ; % bitmap
end
for A_is_csc = crange
if (longer_tests)
fprintf ('.') ;
end
for C_is_hyper = hrange
for C_is_csc = crange
for M_is_hyper = hrange
for M_is_csc = crange
A.is_csc = A_is_csc ; A.is_hyper = A_is_hyper ;
Cin.is_csc = C_is_csc ; Cin.is_hyper = C_is_hyper ;
B.is_csc = A_is_csc ; B.is_hyper = A_is_hyper ;
Mask.is_csc = M_is_csc ; Mask.is_hyper = M_is_hyper ;
A.sparsity = A_sparsity_control ;
B.sparsity = A_sparsity_control ;
% no mask
C1 = GB_spec_apply (Cin, [], [], op, A, []) ;
C2 = GB_mex_apply (Cin, [], [], op, A, []) ;
test10_compare (op, C1, C2, tol) ;
% with mask
C1 = GB_spec_apply (Cin, Mask, [], op, A, []) ;
C2 = GB_mex_apply (Cin, Mask, [], op, A, []) ;
test10_compare (op, C1, C2, tol) ;
% with C == mask, and outp = replace
C1 = GB_spec_apply (Cin, Cmask, [], op, A, dr) ;
C2 = GB_mex_apply_maskalias (Cin, [], op, A, dr) ;
test10_compare (op, C1, C2, tol) ;
% no mask, transpose
C1 = GB_spec_apply (Cin, [], [], op, B, dt) ;
C2 = GB_mex_apply (Cin, [], [], op, B, dt) ;
test10_compare (op, C1, C2, tol) ;
% with mask, transpose
C1 = GB_spec_apply (Cin, Mask, [], op, B, dt) ;
C2 = GB_mex_apply (Cin, Mask, [], op, B, dt) ;
test10_compare (op, C1, C2, tol) ;
switch (opname)
% the results from these operators must be check before summing
% their results with the accum operator, so skip the rest of
% the tests.
case { 'acos', 'asin', 'atan' 'acosh', 'asinh', 'atanh' }
continue ;
end
% no mask, with accum
C1 = GB_spec_apply (Cin, [], 'plus', op, A, []) ;
C2 = GB_mex_apply (Cin, [], 'plus', op, A, []) ;
test10_compare (op, C1, C2, tol) ;
% with mask and accum
C1 = GB_spec_apply (Cin, Mask, 'plus', op, A, []) ;
C2 = GB_mex_apply (Cin, Mask, 'plus', op, A, []) ;
test10_compare (op, C1, C2, tol) ;
% with C == mask and accum, and outp = replace
C1 = GB_spec_apply (Cin, Cmask, 'plus', op, A, dr) ;
C2 = GB_mex_apply_maskalias (Cin, 'plus', op, A, dr) ;
test10_compare (op, C1, C2, tol) ;
% no mask, with accum, transpose
C1 = GB_spec_apply (Cin, [], 'plus', op, B, dt) ;
C2 = GB_mex_apply (Cin, [], 'plus', op, B, dt) ;
test10_compare (op, C1, C2, tol) ;
% with mask and accum, transpose
C1 = GB_spec_apply (Cin, Mask, 'plus', op, B, dt) ;
C2 = GB_mex_apply (Cin, Mask, 'plus', op, B, dt) ;
test10_compare (op, C1, C2, tol) ;
end
end
end
end
end
end
end
end
fprintf ('\n') ;
end
fprintf ('\ntest10: all tests passed\n') ;
|