1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
function test23(fulltest)
%TEST23 test GrB_*_build
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
[~, ~, ~, types, ~, ~] = GB_spec_opsall ;
types = types.all ;
if (nargin < 1)
% do a short test, by default
fulltest = 0 ;
end
ops = {
'first', 0, % z = x
'second', 0, % z = y
'pair', 1, % z = 1
'oneb', 1, % z = 1 (same as pair)
'any', 1, % z = pick x or y
'min', 1, % z = min(x,y)
'max', 1, % z = max(x,y)
'plus', 1, % z = x + y
'times', 1, % z = x * y
'iseq', 1, % z = x == y
'or', 1, % z = x || y
'and', 1, % z = x && y
'xor' 1, % z = x != y
} ;
if (fulltest)
fprintf ('\n==== exhaustive test for GrB_Matrix_build and GrB_Vector_build:\n');
problems = [
10, 8, 40, -5, 100
100, 200, 1000, -99, 200
50, 50, 500, -2, 3
] ;
else
fprintf ('\n==== quick test for GrB_Matrix_build and GrB_Vector_build:\n');
problems = [
10, 8, 40, -5, 100
] ;
end
% try several problems
for k0 = 1:size (problems,1) ;
% create nnz triplets for a matrix of size nrows-by-nrows
nrows = problems (k0,1) ;
ncols = problems (k0,2) ;
nnz = problems (k0,3) ;
y1 = problems (k0,4) ;
y2 = problems (k0,5) ;
rng ('default') ;
I = irand (0, nrows-1, nnz, 1) ;
J = irand (0, ncols-1, nnz, 1) ;
Y = y2 * rand (nnz, 1) + y1 ;
fprintf ('\nnrows: %d ncols %d nnz %d ymin %g ymax %g\n', ...
nrows, ncols, nnz, min (Y), max (Y)) ;
% try every operator
for k1 = 1:size (ops,1)
op.opname = ops {k1,1} ;
is_associative = ops {k1,2} ;
op_is_any = isequal (op.opname, 'any') ;
fprintf ('\n%-14s ', op.opname) ;
% try every operator type
for k2 = 1:length (types)
op.optype = types {k2} ;
z = GB_mex_cast (1, op.optype) ;
opint = isinteger (z) || islogical (z) ;
try
GB_spec_operator (op) ;
catch
continue
end
% the non-boolean logical operators are not associative
if (isequal (op.opname, 'or') || ...
isequal (op.opname, 'and') || ...
isequal (op.opname, 'iseq') || ...
isequal (op.opname, 'xor'))
if (~isequal (op.optype, 'logical'))
is_associative = false ;
end
end
if (test_contains (op.optype, 'single'))
epsilon = 1e-5 ;
elseif (test_contains (op.optype, 'double'))
epsilon = 1e-12 ;
else
epsilon = 0 ;
end
if (fulltest)
k3list = 1:length(types) ;
else
k3list = unique ([k2 randperm(11,2)]) ;
end
% try every type for X
for k3 = k3list % 1:length (types)
xtype = types {k3} ;
X = GB_mex_cast (Y, xtype) ;
fprintf ('.') ;
if (fulltest)
k4list = 1:length(types) ;
else
k4list = unique ([k3 randperm(11,2)]) ;
end
% try every type for the result
for k4 = k4list % 1:length (types)
ctype = types {k4} ;
% build the matrix in the natural order
% fprintf ('\n-------------------------------op: %s ', ...
% op.opname) ;
% fprintf ('optype: %s ', op.optype) ;
% fprintf ('xtype: %s ', xtype) ;
for A_is_csc = 0:1
A = GB_mex_Matrix_build (I, J, X, nrows, ncols, op, ...
ctype, A_is_csc) ;
% A is sparse but may have explicit zeros
if (~GB_spok (A.matrix*1))
fprintf ('test failure: invalid sparse matrix\n') ;
assert (false) ;
end
A.matrix = full (double (A.matrix)) ;
if (~op_is_any)
S = GB_spec_build (I, J, X, nrows, ncols, op, 'natural', ctype) ;
if (~isequalwithequalnans (A.matrix, double (S.matrix))) ;
fprintf ('test failure: does not match spec\n') ;
assert (false) ;
end
assert (isequal (S.class, A.class)) ;
end
% build in random order, for associative operators.
if (is_associative)
[S2 p] = GB_spec_build (I, J, X, nrows, ncols, ...
op, 'random', ctype) ;
if (op_is_any)
% 'any' reduction
elseif (opint)
% integers are perfectly associative
if (~isequal (A.matrix, double (S2.matrix)))
fprintf ('fail: int non-associative\n') ;
assert (false) ;
end
else
% floating point is approximately associative
tol = norm (double (S2.matrix)) * epsilon ;
ok = isequal (isnan (A.matrix), isnan (S2.matrix)) ;
A.matrix (isnan (A.matrix)) = 0 ;
S2.matrix (isnan (S2.matrix)) = 0 ;
ok = ok & (norm (double (A.matrix - double (S2.matrix))) < tol) ;
if (~ok)
fprintf ('fail: float non-associative\n') ;
assert (false) ;
end
end
end
end
% build a vector in the natural order (discard J)
% fprintf ('\n-------------------------------op: %s ', op) ;
% fprintf ('optype: %s ', optype) ;
% fprintf ('xtype: %s\n', xtype) ;
A = GB_mex_Vector_build (I, X, nrows, op, ctype) ;
% A is sparse but may have explicit zeros
if (~GB_spok (A.matrix*1))
fprintf ('test failure: invalid sparse matrix\n') ;
assert (false) ;
end
if (~op_is_any)
A.matrix = full (double (A.matrix)) ;
S = GB_spec_build (I, [ ], X, nrows, 1, op, 'natural', ctype) ;
if (~isequalwithequalnans (A.matrix, double (S.matrix))) ;
fprintf ('test failure: does not match spec\n') ;
assert (false) ;
end
end
end
end
end
end
end
fprintf ('\ntest23: all tests passed\n') ;
|