1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
/* ========================================================================== */
/* === Demo/cholmod_l_demo ================================================== */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* CHOLMOD/Demo Module. Copyright (C) 2005-2013, Timothy A. Davis
* -------------------------------------------------------------------------- */
/* Read in a matrix from a file, and use CHOLMOD to solve Ax=b if A is
* symmetric, or (AA'+beta*I)x=b otherwise. The file format is a simple
* triplet format, compatible with most files in the Matrix Market format.
* See cholmod_read.c for more details. The readhb.f program reads a
* Harwell/Boeing matrix (excluding element-types) and converts it into the
* form needed by this program. reade.f reads a matrix in Harwell/Boeing
* finite-element form.
*
* Usage:
* cholmod_l_demo matrixfile
* cholmod_l_demo < matrixfile
*
* The matrix is assumed to be positive definite (a supernodal LL' or simplicial
* LDL' factorization is used).
*
* Requires the Core, Cholesky, MatrixOps, and Check Modules.
* Optionally uses the Partition and Supernodal Modules.
* Does not use the Modify Module.
*
* See cholmod_simple.c for a simpler demo program.
*
* SuiteSparse_long is normally defined as long, except for WIN64.
*/
#include "cholmod_demo.h"
#define NTRIALS 100
/* ff is a global variable so that it can be closed by my_handler */
FILE *ff ;
/* halt if an error occurs */
static void my_handler (int status, const char *file, int line,
const char *message)
{
printf ("cholmod error: file: %s line: %d status: %d: %s\n",
file, line, status, message) ;
if (status < 0)
{
if (ff != NULL) fclose (ff) ;
exit (0) ;
}
}
int main (int argc, char **argv)
{
double resid [4], t, ta, tf, ts [3], tot, bnorm, xnorm, anorm, rnorm, fl,
anz, axbnorm, rnorm2, resid2, rcond ;
FILE *f ;
cholmod_sparse *A ;
cholmod_dense *X = NULL, *B, *W, *R = NULL ;
double one [2], zero [2], minusone [2], beta [2], xlnz ;
cholmod_common Common, *cm ;
cholmod_factor *L ;
double *Bx, *Rx, *Xx, *Bz, *Xz, *Rz ;
SuiteSparse_long i, n, isize, xsize, ordering, xtype, s, ss, lnz ;
int trial, method, L_is_super ;
int ver [3] ;
int prefer_zomplex, nmethods ;
ts[0] = 0.;
ts[1] = 0.;
ts[2] = 0.;
/* ---------------------------------------------------------------------- */
/* get the file containing the input matrix */
/* ---------------------------------------------------------------------- */
ff = NULL ;
prefer_zomplex = 0 ;
if (argc > 1)
{
if ((f = fopen (argv [1], "r")) == NULL)
{
my_handler (CHOLMOD_INVALID, __FILE__, __LINE__,
"unable to open file") ;
}
ff = f ;
prefer_zomplex = (argc > 2) ;
}
else
{
f = stdin ;
}
/* ---------------------------------------------------------------------- */
/* start CHOLMOD and set parameters */
/* ---------------------------------------------------------------------- */
cm = &Common ;
cholmod_l_start (cm) ;
CHOLMOD_FUNCTION_DEFAULTS ; /* just for testing (not required) */
/* cm->useGPU = 1; */
cm->prefer_zomplex = prefer_zomplex ;
/* use default parameter settings, except for the error handler. This
* demo program terminates if an error occurs (out of memory, not positive
* definite, ...). It makes the demo program simpler (no need to check
* CHOLMOD error conditions). This non-default parameter setting has no
* effect on performance. */
cm->error_handler = my_handler ;
/* Note that CHOLMOD will do a supernodal LL' or a simplicial LDL' by
* default, automatically selecting the latter if flop/nnz(L) < 40. */
/* ---------------------------------------------------------------------- */
/* create basic scalars */
/* ---------------------------------------------------------------------- */
zero [0] = 0 ;
zero [1] = 0 ;
one [0] = 1 ;
one [1] = 0 ;
minusone [0] = -1 ;
minusone [1] = 0 ;
beta [0] = 1e-6 ;
beta [1] = 0 ;
/* ---------------------------------------------------------------------- */
/* read in a matrix */
/* ---------------------------------------------------------------------- */
printf ("\n---------------------------------- cholmod_l_demo:\n") ;
cholmod_l_version (ver) ;
printf ("cholmod version %d.%d.%d\n", ver [0], ver [1], ver [2]) ;
SuiteSparse_version (ver) ;
printf ("SuiteSparse version %d.%d.%d\n", ver [0], ver [1], ver [2]) ;
A = cholmod_l_read_sparse (f, cm) ;
if (ff != NULL)
{
fclose (ff) ;
ff = NULL ;
}
anorm = 1 ;
#ifndef NMATRIXOPS
anorm = cholmod_l_norm_sparse (A, 0, cm) ;
printf ("norm (A,inf) = %g\n", anorm) ;
printf ("norm (A,1) = %g\n", cholmod_l_norm_sparse (A, 1, cm)) ;
#endif
if (prefer_zomplex && A->xtype == CHOLMOD_COMPLEX)
{
/* Convert to zomplex, just for testing. In a zomplex matrix,
the real and imaginary parts are in separate arrays. MATLAB
uses zomplex matrix exclusively. */
double *Ax = A->x ;
SuiteSparse_long nz = cholmod_l_nnz (A, cm) ;
printf ("nz: %ld\n", nz) ;
double *Ax2 = cholmod_l_malloc (nz, sizeof (double), cm) ;
double *Az2 = cholmod_l_malloc (nz, sizeof (double), cm) ;
for (i = 0 ; i < nz ; i++)
{
Ax2 [i] = Ax [2*i ] ;
Az2 [i] = Ax [2*i+1] ;
}
cholmod_l_free (A->nzmax, 2*sizeof(double), Ax, cm) ;
A->x = Ax2 ;
A->z = Az2 ;
A->xtype = CHOLMOD_ZOMPLEX ;
/* cm->print = 5 ; */
}
xtype = A->xtype ;
cholmod_l_print_sparse (A, "A", cm) ;
#if 0
if ( 0 ) {
// scale diagonal
printf ("\n\n SCALING DIAGONAL \n\n");
// create diagonal
printf ("%ld,%ld,%d\n", A->nrow, A->ncol, A->xtype );
cholmod_sparse *D = cholmod_l_speye (A->nrow, A->ncol, A->xtype, cm );
printf ("sparse done \n");
cholmod_l_print_sparse (D, "D", cm);
D->stype = 1;
cholmod_l_print_sparse (D, "D", cm);
double alpha[2];
double beta[2];
alpha[0] = 1.0;
alpha[1] = 1.0;
beta[0] = 1.0e9; // 9 works, 467doesn't
beta[1] = 1.0e0;
cholmod_sparse *C = cholmod_l_add (A, D, alpha, beta, 1, 0, cm );
cholmod_l_print_sparse (C, "C", cm);
A = C;
}
#endif
if (A->nrow > A->ncol)
{
/* Transpose A so that A'A+beta*I will be factorized instead */
cholmod_sparse *C = cholmod_l_transpose (A, 2, cm) ;
cholmod_l_free_sparse (&A, cm) ;
A = C ;
printf ("transposing input matrix\n") ;
}
/* ---------------------------------------------------------------------- */
/* create an arbitrary right-hand-side */
/* ---------------------------------------------------------------------- */
n = A->nrow ;
B = cholmod_l_zeros (n, 1, xtype, cm) ;
Bx = B->x ;
Bz = B->z ;
#if GHS
{
/* b = A*ones(n,1), used by Gould, Hu, and Scott in their experiments */
cholmod_dense *X0 ;
X0 = cholmod_l_ones (A->ncol, 1, xtype, cm) ;
cholmod_l_sdmult (A, 0, one, zero, X0, B, cm) ;
cholmod_l_free_dense (&X0, cm) ;
}
#else
if (xtype == CHOLMOD_REAL)
{
/* real case */
for (i = 0 ; i < n ; i++)
{
double x = n ;
Bx [i] = 1 + i / x ;
}
}
else if (xtype == CHOLMOD_COMPLEX)
{
/* complex case */
for (i = 0 ; i < n ; i++)
{
double x = n ;
Bx [2*i ] = 1 + i / x ; /* real part of B(i) */
Bx [2*i+1] = (x/2 - i) / (3*x) ; /* imag part of B(i) */
}
}
else /* (xtype == CHOLMOD_ZOMPLEX) */
{
/* zomplex case */
for (i = 0 ; i < n ; i++)
{
double x = n ;
Bx [i] = 1 + i / x ; /* real part of B(i) */
Bz [i] = (x/2 - i) / (3*x) ; /* imag part of B(i) */
}
}
#endif
cholmod_l_print_dense (B, "B", cm) ;
bnorm = 1 ;
#ifndef NMATRIXOPS
bnorm = cholmod_l_norm_dense (B, 0, cm) ; /* max norm */
printf ("bnorm %g\n", bnorm) ;
#endif
/* ---------------------------------------------------------------------- */
/* analyze and factorize */
/* ---------------------------------------------------------------------- */
t = CPUTIME ;
L = cholmod_l_analyze (A, cm) ;
ta = CPUTIME - t ;
ta = MAX (ta, 0) ;
printf ("Analyze: flop %g lnz %g\n", cm->fl, cm->lnz) ;
if (A->stype == 0)
{
printf ("Factorizing A*A'+beta*I\n") ;
t = CPUTIME ;
cholmod_l_factorize_p (A, beta, NULL, 0, L, cm) ;
tf = CPUTIME - t ;
tf = MAX (tf, 0) ;
}
else
{
printf ("Factorizing A\n") ;
t = CPUTIME ;
cholmod_l_factorize (A, L, cm) ;
tf = CPUTIME - t ;
tf = MAX (tf, 0) ;
}
cholmod_l_print_factor (L, "L", cm) ;
/* determine the # of integers's and reals's in L. See cholmod_free */
if (L->is_super)
{
s = L->nsuper + 1 ;
xsize = L->xsize ;
ss = L->ssize ;
isize =
n /* L->Perm */
+ n /* L->ColCount, nz in each column of 'pure' L */
+ s /* L->pi, column pointers for L->s */
+ s /* L->px, column pointers for L->x */
+ s /* L->super, starting column index of each supernode */
+ ss ; /* L->s, the pattern of the supernodes */
}
else
{
/* this space can increase if you change parameters to their non-
* default values (cm->final_pack, for example). */
lnz = L->nzmax ;
xsize = lnz ;
isize =
n /* L->Perm */
+ n /* L->ColCount, nz in each column of 'pure' L */
+ n+1 /* L->p, column pointers */
+ lnz /* L->i, integer row indices */
+ n /* L->nz, nz in each column of L */
+ n+2 /* L->next, link list */
+ n+2 ; /* L->prev, link list */
}
/* solve with Bset will change L from simplicial to supernodal */
rcond = cholmod_l_rcond (L, cm) ;
L_is_super = L->is_super ;
/* ---------------------------------------------------------------------- */
/* solve */
/* ---------------------------------------------------------------------- */
if (n >= 1000)
{
nmethods = 1 ;
}
else if (xtype == CHOLMOD_ZOMPLEX)
{
nmethods = 2 ;
}
else
{
nmethods = 3 ;
}
printf ("nmethods: %d\n", nmethods) ;
for (method = 0 ; method <= nmethods ; method++)
{
double x = n ;
resid [method] = -1 ; /* not yet computed */
if (method == 0)
{
/* basic solve, just once */
t = CPUTIME ;
X = cholmod_l_solve (CHOLMOD_A, L, B, cm) ;
ts [0] = CPUTIME - t ;
ts [0] = MAX (ts [0], 0) ;
}
else if (method == 1)
{
/* basic solve, many times, but keep the last one */
t = CPUTIME ;
for (trial = 0 ; trial < NTRIALS ; trial++)
{
cholmod_l_free_dense (&X, cm) ;
Bx [0] = 1 + trial / x ; /* tweak B each iteration */
X = cholmod_l_solve (CHOLMOD_A, L, B, cm) ;
}
ts [1] = CPUTIME - t ;
ts [1] = MAX (ts [1], 0) / NTRIALS ;
}
else if (method == 2)
{
/* solve with reused workspace */
cholmod_dense *Ywork = NULL, *Ework = NULL ;
cholmod_l_free_dense (&X, cm) ;
t = CPUTIME ;
for (trial = 0 ; trial < NTRIALS ; trial++)
{
Bx [0] = 1 + trial / x ; /* tweak B each iteration */
cholmod_l_solve2 (CHOLMOD_A, L, B, NULL, &X, NULL,
&Ywork, &Ework, cm) ;
}
cholmod_l_free_dense (&Ywork, cm) ;
cholmod_l_free_dense (&Ework, cm) ;
ts [2] = CPUTIME - t ;
ts [2] = MAX (ts [2], 0) / NTRIALS ;
}
else
{
/* solve with reused workspace and sparse Bset */
cholmod_dense *Ywork = NULL, *Ework = NULL ;
cholmod_dense *X2 = NULL, *B2 = NULL ;
cholmod_sparse *Bset, *Xset = NULL ;
SuiteSparse_long *Bsetp, *Bseti, *Xsetp, *Xseti, xlen, j, k, *Lnz ;
double *X1x, *X2x, *B2x, err ;
FILE *timelog = fopen ("timelog.m", "w") ;
if (timelog) fprintf (timelog, "results = [\n") ;
B2 = cholmod_l_zeros (n, 1, xtype, cm) ;
B2x = B2->x ;
Bset = cholmod_l_allocate_sparse (n, 1, 1, FALSE, TRUE, 0,
CHOLMOD_PATTERN, cm) ;
Bsetp = Bset->p ;
Bseti = Bset->i ;
Bsetp [0] = 0 ; /* nnz(B) is 1 (it can be anything) */
Bsetp [1] = 1 ;
resid [3] = 0 ;
for (i = 0 ; i < MIN (100,n) ; i++)
{
/* B (i) is nonzero, all other entries are ignored
(implied to be zero) */
Bseti [0] = i ;
if (xtype == CHOLMOD_REAL)
{
B2x [i] = 3.1 * i + 0.9 ;
}
else /* (xtype == CHOLMOD_COMPLEX) */
{
B2x [2*i ] = i + 0.042 ;
B2x [2*i+1] = i - 92.7 ;
}
/* first get the entire solution, to compare against */
cholmod_l_solve2 (CHOLMOD_A, L, B2, NULL, &X, NULL,
&Ywork, &Ework, cm) ;
/* now get the sparse solutions; this will change L from
supernodal to simplicial */
if (i == 0)
{
/* first solve can be slower because it has to allocate
space for X2, Xset, etc, and change L.
So don't time it */
cholmod_l_solve2 (CHOLMOD_A, L, B2, Bset, &X2, &Xset,
&Ywork, &Ework, cm) ;
}
t = CPUTIME ;
for (trial = 0 ; trial < NTRIALS ; trial++)
{
/* solve Ax=b but only to get x(i).
b is all zero except for b(i).
This takes O(xlen) time */
cholmod_l_solve2 (CHOLMOD_A, L, B2, Bset, &X2, &Xset,
&Ywork, &Ework, cm) ;
}
t = CPUTIME - t ;
t = MAX (t, 0) / NTRIALS ;
/* check the solution and log the time */
Xsetp = Xset->p ;
Xseti = Xset->i ;
xlen = Xsetp [1] ;
X1x = X->x ;
X2x = X2->x ;
Lnz = L->nz ;
if (xtype == CHOLMOD_REAL)
{
fl = 2 * xlen ;
for (k = 0 ; k < xlen ; k++)
{
j = Xseti [k] ;
fl += 4 * Lnz [j] ;
err = X1x [j] - X2x [j] ;
err = ABS (err) ;
resid [3] = MAX (resid [3], err) ;
}
}
else /* (xtype == CHOLMOD_COMPLEX) */
{
fl = 16 * xlen ;
for (k = 0 ; k < xlen ; k++)
{
j = Xseti [k] ;
fl += 16 * Lnz [j] ;
err = X1x [2*j ] - X2x [2*j ] ;
err = ABS (err) ;
resid [3] = MAX (resid [3], err) ;
err = X1x [2*j+1] - X2x [2*j+1] ;
err = ABS (err) ;
resid [3] = MAX (resid [3], err) ;
}
}
if (timelog) fprintf (timelog, "%g %g %g %g\n",
(double) i, (double) xlen, fl, t);
/* clear B for the next test */
if (xtype == CHOLMOD_REAL)
{
B2x [i] = 0 ;
}
else /* (xtype == CHOLMOD_COMPLEX) */
{
B2x [2*i ] = 0 ;
B2x [2*i+1] = 0 ;
}
}
if (timelog)
{
fprintf (timelog, "] ; resid = %g ;\n", resid [3]) ;
fprintf (timelog, "lnz = %g ;\n", cm->lnz) ;
fprintf (timelog, "t = %g ; %% dense solve time\n", ts [2]) ;
fclose (timelog) ;
}
#ifndef NMATRIXOPS
resid [3] = resid [3] / cholmod_l_norm_dense (X, 1, cm) ;
#endif
cholmod_l_free_dense (&Ywork, cm) ;
cholmod_l_free_dense (&Ework, cm) ;
cholmod_l_free_dense (&X2, cm) ;
cholmod_l_free_dense (&B2, cm) ;
cholmod_l_free_sparse (&Xset, cm) ;
cholmod_l_free_sparse (&Bset, cm) ;
}
/* ------------------------------------------------------------------ */
/* compute the residual */
/* ------------------------------------------------------------------ */
if (method < 3)
{
#ifndef NMATRIXOPS
if (A->stype == 0)
{
/* (AA'+beta*I)x=b is the linear system that was solved */
/* W = A'*X */
W = cholmod_l_allocate_dense (A->ncol, 1, A->ncol, xtype, cm) ;
cholmod_l_sdmult (A, 2, one, zero, X, W, cm) ;
/* R = B - beta*X */
cholmod_l_free_dense (&R, cm) ;
R = cholmod_l_zeros (n, 1, xtype, cm) ;
Rx = R->x ;
Rz = R->z ;
Xx = X->x ;
Xz = X->z ;
if (xtype == CHOLMOD_REAL)
{
for (i = 0 ; i < n ; i++)
{
Rx [i] = Bx [i] - beta [0] * Xx [i] ;
}
}
else if (xtype == CHOLMOD_COMPLEX)
{
/* complex case */
for (i = 0 ; i < n ; i++)
{
Rx [2*i ] = Bx [2*i ] - beta [0] * Xx [2*i ] ;
Rx [2*i+1] = Bx [2*i+1] - beta [1] * Xx [2*i+1] ;
}
}
else /* (xtype == CHOLMOD_ZOMPLEX) */
{
/* zomplex case */
for (i = 0 ; i < n ; i++)
{
Rx [i] = Bx [i] - beta [0] * Xx [i] ;
Rz [i] = Bz [i] - beta [1] * Xz [i] ;
}
}
/* R = A*W - R */
cholmod_l_sdmult (A, 0, one, minusone, W, R, cm) ;
cholmod_l_free_dense (&W, cm) ;
}
else
{
/* Ax=b was factorized and solved, R = B-A*X */
cholmod_l_free_dense (&R, cm) ;
R = cholmod_l_copy_dense (B, cm) ;
cholmod_l_sdmult (A, 0, minusone, one, X, R, cm) ;
}
rnorm = cholmod_l_norm_dense (R, 0, cm) ; /* max abs. entry */
xnorm = cholmod_l_norm_dense (X, 0, cm) ; /* max abs. entry */
axbnorm = (anorm * xnorm + bnorm + ((n == 0) ? 1 : 0)) ;
resid [method] = rnorm / axbnorm ;
#else
printf ("residual not computed (requires CHOLMOD/MatrixOps)\n") ;
#endif
}
}
tot = ta + tf + ts [0] ;
/* ---------------------------------------------------------------------- */
/* iterative refinement (real symmetric case only) */
/* ---------------------------------------------------------------------- */
resid2 = -1 ;
#ifndef NMATRIXOPS
if (A->stype != 0 && A->xtype == CHOLMOD_REAL)
{
cholmod_dense *R2 ;
/* R2 = A\(B-A*X) */
R2 = cholmod_l_solve (CHOLMOD_A, L, R, cm) ;
/* compute X = X + A\(B-A*X) */
Xx = X->x ;
Rx = R2->x ;
for (i = 0 ; i < n ; i++)
{
Xx [i] = Xx [i] + Rx [i] ;
}
cholmod_l_free_dense (&R2, cm) ;
cholmod_l_free_dense (&R, cm) ;
/* compute the new residual, R = B-A*X */
cholmod_l_free_dense (&R, cm) ;
R = cholmod_l_copy_dense (B, cm) ;
cholmod_l_sdmult (A, 0, minusone, one, X, R, cm) ;
rnorm2 = cholmod_l_norm_dense (R, 0, cm) ;
resid2 = rnorm2 / axbnorm ;
}
#endif
cholmod_l_free_dense (&R, cm) ;
/* ---------------------------------------------------------------------- */
/* print results */
/* ---------------------------------------------------------------------- */
anz = cm->anz ;
for (i = 0 ; i < CHOLMOD_MAXMETHODS ; i++)
/* for (i = 4 ; i < 3 ; i++) */
{
fl = cm->method [i].fl ;
xlnz = cm->method [i].lnz ;
cm->method [i].fl = -1 ;
cm->method [i].lnz = -1 ;
ordering = cm->method [i].ordering ;
if (fl >= 0)
{
printf ("Ordering: ") ;
if (ordering == CHOLMOD_POSTORDERED) printf ("postordered ") ;
if (ordering == CHOLMOD_NATURAL) printf ("natural ") ;
if (ordering == CHOLMOD_GIVEN) printf ("user ") ;
if (ordering == CHOLMOD_AMD) printf ("AMD ") ;
if (ordering == CHOLMOD_METIS) printf ("METIS ") ;
if (ordering == CHOLMOD_NESDIS) printf ("NESDIS ") ;
if (xlnz > 0)
{
printf ("fl/lnz %10.1f", fl / xlnz) ;
}
if (anz > 0)
{
printf (" lnz/anz %10.1f", xlnz / anz) ;
}
printf ("\n") ;
}
}
printf ("ints in L: %15.0f, doubles in L: %15.0f\n",
(double) isize, (double) xsize) ;
printf ("factor flops %g nnz(L) %15.0f (w/no amalgamation)\n",
cm->fl, cm->lnz) ;
if (A->stype == 0)
{
printf ("nnz(A): %15.0f\n", cm->anz) ;
}
else
{
printf ("nnz(A*A'): %15.0f\n", cm->anz) ;
}
if (cm->lnz > 0)
{
printf ("flops / nnz(L): %8.1f\n", cm->fl / cm->lnz) ;
}
if (anz > 0)
{
printf ("nnz(L) / nnz(A): %8.1f\n", cm->lnz / cm->anz) ;
}
printf ("analyze cputime: %12.4f\n", ta) ;
printf ("factor cputime: %12.4f mflop: %8.1f\n", tf,
(tf == 0) ? 0 : (1e-6*cm->fl / tf)) ;
printf ("solve cputime: %12.4f mflop: %8.1f\n", ts [0],
(ts [0] == 0) ? 0 : (1e-6*4*cm->lnz / ts [0])) ;
printf ("overall cputime: %12.4f mflop: %8.1f\n",
tot, (tot == 0) ? 0 : (1e-6 * (cm->fl + 4 * cm->lnz) / tot)) ;
printf ("solve cputime: %12.4f mflop: %8.1f (%d trials)\n", ts [1],
(ts [1] == 0) ? 0 : (1e-6*4*cm->lnz / ts [1]), NTRIALS) ;
printf ("solve2 cputime: %12.4f mflop: %8.1f (%d trials)\n", ts [2],
(ts [2] == 0) ? 0 : (1e-6*4*cm->lnz / ts [2]), NTRIALS) ;
printf ("peak memory usage: %12.0f (MB)\n",
(double) (cm->memory_usage) / 1048576.) ;
printf ("residual (|Ax-b|/(|A||x|+|b|)): ") ;
for (method = 0 ; method <= nmethods ; method++)
{
printf ("%8.2e ", resid [method]) ;
}
printf ("\n") ;
if (resid2 >= 0)
{
printf ("residual %8.1e (|Ax-b|/(|A||x|+|b|))"
" after iterative refinement\n", resid2) ;
}
printf ("rcond %8.1e\n\n", rcond) ;
if (L_is_super)
{
cholmod_l_gpu_stats (cm) ;
}
cholmod_l_free_factor (&L, cm) ;
cholmod_l_free_dense (&X, cm) ;
/* ---------------------------------------------------------------------- */
/* free matrices and finish CHOLMOD */
/* ---------------------------------------------------------------------- */
cholmod_l_free_sparse (&A, cm) ;
cholmod_l_free_dense (&B, cm) ;
cholmod_l_finish (cm) ;
return (0) ;
}
|