1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
function cholmod_demo
%CHOLMOD_DEMO a demo for CHOLMOD
%
% Tests CHOLMOD with various randomly-generated matrices, and the west0479
% matrix distributed with MATLAB. Random matrices are not good test cases,
% but they are easily generated. It also compares CHOLMOD and MATLAB on the
% sparse matrix problem used in the MATLAB BENCH command.
%
% See CHOLMOD/MATLAB/Test/cholmod_test.m for a lengthy test using matrices from
% the UF sparse matrix collection.
%
% Example:
% cholmod_demo
%
% See also BENCH
% Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com
help cholmod_demo
rand ('state', 0) ;
randn ('state', 0) ;
load west0479
A = west0479 ;
n = size (A,1) ;
A = A*A'+100*speye (n) ;
try_matrix (A) ;
clear A
n = 2000 ;
A = sprandn (n, n, 0.002) ;
A = A+A'+100*speye (n) ;
try_matrix (A) ;
clear A
for n = [100 2000]
A = rand (n) ;
A = A*A' + 10 * eye (n) ;
try_matrix (A) ;
clear A
end
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nWith the matrix used in the MATLAB 7.2 "bench" program.\n') ;
n = 300 ;
A = delsq (numgrid ('L', n)) ;
b = sum (A)' ;
tic ;
x = A\b ;
t1 = toc ;
e1 = norm (A*x-b) ;
tic ;
x = cholmod2 (A,b) ;
t2 = toc ;
e2 = norm (A*x-b) ;
fprintf ('MATLAB x=A\\b time: %8.4f resid: %8.0e\n', t1, e1) ;
fprintf ('CHOLMOD x=A\\b time: %8.4f resid: %8.0e\n', t2, e2) ;
fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ;
fprintf ('\ncholmod_demo finished: all tests passed\n') ;
fprintf ('\nFor more accurate timings, run this test again.\n') ;
function try_matrix (A)
% try_matrix: try a matrix with CHOLMOD
n = size (A,1) ;
S = sparse (A) ;
fprintf ('\n--------------------------------------------------------------\n') ;
if (issparse (A))
fprintf ('cholmod_demo: sparse matrix, n %d nnz %d\n', n, nnz (A)) ;
else
fprintf ('cholmod_demo: dense matrix, n %d\n', n) ;
end
X = rand (n,1) ;
C = sparse (X) ;
try
% use built-in AMD
p = amd (S) ;
catch
try
% use AMD from SuiteSparse (../../AMD)
p = amd2 (S) ;
catch
% use SYMAMD
p = symamd (S) ;
end
end
S = S (p,p) ;
lnz = symbfact2 (S) ;
fl = sum (lnz.^2) ;
tic
L = lchol (S) ; %#ok
t1 = toc ;
fprintf ('CHOLMOD lchol(sparse(A)) time: %6.2f mflop %8.1f\n', ...
t1, 1e-6 * fl / t1) ;
tic
LD = ldlchol (S) ; %#ok
t2 = toc ;
fprintf ('CHOLMOD ldlchol(sparse(A)) time: %6.2f mflop %8.1f\n', ...
t2, 1e-6 * fl / t2) ;
tic
LD2 = ldlupdate (LD,C) ;
t3 = toc ;
fprintf ('CHOLMOD ldlupdate(sparse(A),C) time: %6.2f (rank-1, C dense)\n', t3) ;
[L,D] = ldlsplit (LD2) ;
% L = full (L) ;
err = norm ((S+C*C') - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
k = max (1,fix(n/2)) ;
tic
LD3 = ldlrowmod (LD, k) ;
t4 = toc ;
fprintf ('CHOLMOD ldlrowmod(LD,k) time: %6.2f\n', t4) ;
[L,D] = ldlsplit (LD3) ;
S2 = S ;
I = speye (n) ;
S2 (k,:) = I (k,:) ;
S2 (:,k) = I (:,k) ;
err = norm (S2 - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
LD4 = ldlchol (S2) ;
[L,D] = ldlsplit (LD4) ;
% L = full (L) ;
err = norm (S2 - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;
tic
R = chol (S) ; %#ok
s1 = toc ;
fprintf ('MATLAB chol(sparse(A)) time: %6.2f mflop %8.1f\n', ...
s1, 1e-6 * fl / s1) ;
E = full (A) ;
tic
R = chol (E) ;
s2 = toc ;
fprintf ('MATLAB chol(full(A)) time: %6.2f mflop %8.1f\n', ...
s2, 1e-6 * fl / s2) ;
Z = full (R) ;
tic
Z = cholupdate (Z,X) ;
s3 = toc ;
fprintf ('MATLAB cholupdate(full(A),C) time: %6.2f (rank-1)\n', s3) ;
err = norm ((E+X*X') - Z'*Z, 1) / norm (E,1) ;
fprintf ('err: %g\n', err) ;
fprintf ('CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): %6.1f\n', ...
s1 / t1) ;
fprintf ('CHOLMOD sparse update speedup vs MATLAB DENSE update: %6.1f\n', ...
s3 / t3) ;
clear E S L R LD X C D Z
clear err s1 s2 s3 t1 t2 t3 n
|