File: cholmod_demo.m

package info (click to toggle)
suitesparse 1%3A5.12.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 176,720 kB
  • sloc: ansic: 1,193,914; cpp: 31,704; makefile: 6,638; fortran: 1,927; java: 1,826; csh: 765; ruby: 725; sh: 529; python: 333; perl: 225; sed: 164; awk: 35
file content (176 lines) | stat: -rw-r--r-- 3,903 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function cholmod_demo
%CHOLMOD_DEMO a demo for CHOLMOD
%
% Tests CHOLMOD with various randomly-generated matrices, and the west0479
% matrix distributed with MATLAB.  Random matrices are not good test cases,
% but they are easily generated.  It also compares CHOLMOD and MATLAB on the
% sparse matrix problem used in the MATLAB BENCH command.
%
% See CHOLMOD/MATLAB/Test/cholmod_test.m for a lengthy test using matrices from
% the UF sparse matrix collection.
%
% Example:
%   cholmod_demo
%
% See also BENCH

%   Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

help cholmod_demo

rand ('state', 0) ;
randn ('state', 0) ;

load west0479
A = west0479 ;
n = size (A,1) ;
A = A*A'+100*speye (n) ;
try_matrix (A) ;
clear A

n = 2000 ;
A = sprandn (n, n, 0.002) ;
A = A+A'+100*speye (n) ;
try_matrix (A) ;
clear A

for n = [100 2000]
    A = rand (n) ;
    A = A*A' + 10 * eye (n) ;
    try_matrix (A) ;
    clear A
end

fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nWith the matrix used in the MATLAB 7.2 "bench" program.\n') ;

n = 300 ;
A = delsq (numgrid ('L', n)) ;
b = sum (A)' ;

tic ;
x = A\b ;
t1 = toc ;
e1 = norm (A*x-b) ;

tic ;
x = cholmod2 (A,b) ; 
t2 = toc ;
e2 = norm (A*x-b) ;

fprintf ('MATLAB  x=A\\b      time: %8.4f  resid: %8.0e\n', t1, e1) ;
fprintf ('CHOLMOD x=A\\b      time: %8.4f  resid: %8.0e\n', t2, e2) ;
fprintf ('CHOLMOD speedup: %8.2f\n', t1/t2) ;

fprintf ('\ncholmod_demo finished: all tests passed\n') ;
fprintf ('\nFor more accurate timings, run this test again.\n') ;






function try_matrix (A)
    % try_matrix: try a matrix with CHOLMOD

n = size (A,1) ;
S = sparse (A) ;

fprintf ('\n--------------------------------------------------------------\n') ;
if (issparse (A))
    fprintf ('cholmod_demo: sparse matrix, n %d nnz %d\n', n, nnz (A)) ;
else
    fprintf ('cholmod_demo: dense matrix, n %d\n', n) ;
end

X = rand (n,1) ;
C = sparse (X) ;
try
    % use built-in AMD
    p = amd (S) ;
catch
    try
        % use AMD from SuiteSparse (../../AMD)
        p = amd2 (S) ;
    catch
        % use SYMAMD
        p = symamd (S) ;
    end
end
S = S (p,p) ;

lnz = symbfact2 (S) ;
fl = sum (lnz.^2) ;

tic
L = lchol (S) ;		    %#ok
t1 = toc ;
fprintf ('CHOLMOD lchol(sparse(A))       time: %6.2f    mflop %8.1f\n', ...
    t1, 1e-6 * fl / t1) ;

tic
LD = ldlchol (S) ;		%#ok
t2 = toc ;
fprintf ('CHOLMOD ldlchol(sparse(A))     time: %6.2f    mflop %8.1f\n', ...
    t2, 1e-6 * fl / t2) ;

tic
LD2 = ldlupdate (LD,C) ;
t3 = toc ;
fprintf ('CHOLMOD ldlupdate(sparse(A),C) time: %6.2f (rank-1, C dense)\n', t3) ;

[L,D] = ldlsplit (LD2) ;
% L = full (L) ;
err = norm ((S+C*C') - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;

k = max (1,fix(n/2))  ;
tic
LD3 = ldlrowmod (LD, k) ;
t4 = toc ;
fprintf ('CHOLMOD ldlrowmod(LD,k)        time: %6.2f\n', t4) ;

[L,D] = ldlsplit (LD3) ;
S2 = S ;
I = speye (n) ;
S2 (k,:) = I (k,:) ;
S2 (:,k) = I (:,k) ;
err = norm (S2 - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;

LD4 = ldlchol (S2) ;
[L,D] = ldlsplit (LD4) ;
% L = full (L) ;
err = norm (S2 - L*D*L', 1) / norm (S,1) ;
fprintf ('err: %g\n', err) ;

tic
R = chol (S) ;		    %#ok
s1 = toc ;
fprintf ('MATLAB  chol(sparse(A))        time: %6.2f    mflop %8.1f\n', ...
    s1, 1e-6 * fl / s1) ;

E = full (A) ;
tic
R = chol (E) ;
s2 = toc ;
fprintf ('MATLAB  chol(full(A))          time: %6.2f    mflop %8.1f\n', ...
    s2, 1e-6 * fl / s2) ;

Z = full (R) ;
tic
Z = cholupdate (Z,X) ;
s3 = toc ;
fprintf ('MATLAB  cholupdate(full(A),C)  time: %6.2f (rank-1)\n', s3) ;

err = norm ((E+X*X') - Z'*Z, 1) / norm (E,1) ;
fprintf ('err: %g\n', err) ;

fprintf ('CHOLMOD lchol(sparse(A)) speedup over chol(sparse(A)): %6.1f\n', ...
    s1 / t1) ;

fprintf ('CHOLMOD sparse update speedup vs MATLAB DENSE update:  %6.1f\n', ...
    s3 / t3) ;

clear E S L R LD X C D Z
clear err s1 s2 s3 t1 t2 t3 n