1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
|
/* ========================================================================== */
/* === Partition/cholmod_nesdis ============================================= */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* CHOLMOD/Partition Module.
* Copyright (C) 2005-2006, Univ. of Florida. Author: Timothy A. Davis
* -------------------------------------------------------------------------- */
/* CHOLMOD nested dissection and graph partitioning.
*
* cholmod_bisect:
*
* Finds a set of nodes that partitions the graph into two parts.
* Compresses the graph first. Requires METIS.
*
* cholmod_nested_dissection:
*
* Nested dissection, using its own compression and connected-commponents
* algorithms, an external graph partitioner (METIS), and a constrained
* minimum degree ordering algorithm (CCOLAMD or CSYMAMD). Typically
* gives better orderings than METIS_NodeND (about 5% to 10% fewer
* nonzeros in L).
*
* cholmod_collapse_septree:
*
* Prune the separator tree returned by cholmod_nested_dissection.
*
* This file contains several routines private to this file:
*
* partition compress and partition a graph
* clear_flag clear Common->Flag, but do not modify negative entries
* find_components find the connected components of a graph
*
* Supports any xtype (pattern, real, complex, or zomplex).
*/
#ifndef NPARTITION
#include "cholmod_internal.h"
#include "cholmod_partition.h"
#include "cholmod_cholesky.h"
/* ========================================================================== */
/* === partition ============================================================ */
/* ========================================================================== */
/* Find a set of nodes that partition a graph. The graph must be symmetric
* with no diagonal entries. To compress the graph first, compress is TRUE
* and on input Hash [j] holds the hash key for node j, which must be in the
* range 0 to csize-1. The input graph (Cp, Ci) is destroyed. Cew is all 1's
* on input and output. Cnw [j] > 0 is the initial weight of node j. On
* output, Cnw [i] = 0 if node i is absorbed into j and the original weight
* Cnw [i] is added to Cnw [j]. If compress is FALSE, the graph is not
* compressed and Cnw and Hash are unmodified. The partition itself is held in
* the output array Part of size n. Part [j] is 0, 1, or 2, depending on
* whether node j is in the left part of the graph, the right part, or the
* separator, respectively. Note that the input graph need not be connected,
* and the output subgraphs (the three parts) may also be unconnected.
*
* Returns the size of the separator, in terms of the sum of the weights of
* the nodes. It is guaranteed to be between 1 and the total weight of all
* the nodes. If it is of size less than the total weight, then both the left
* and right parts are guaranteed to be non-empty (this guarantee depends on
* cholmod_metis_bisector).
*/
static SuiteSparse_long partition /* size of separator or -1 if failure */
(
/* inputs, not modified on output */
#ifndef NDEBUG
Int csize, /* upper bound on # of edges in the graph;
* csize >= MAX (n, nnz(C)) must hold. */
#endif
int compress, /* if TRUE the compress the graph first */
/* input/output */
Int Hash [ ], /* Hash [i] = hash >= 0 is the hash function for node
* i on input. On output, Hash [i] = FLIP (j) if node
* i is absorbed into j. Hash [i] >= 0 if i has not
* been absorbed. */
/* input graph, compressed graph of cn nodes on output */
cholmod_sparse *C,
/* input/output */
Int Cnw [ ], /* size n. Cnw [j] > 0 is the weight of node j on
* input. On output, if node i is absorbed into
* node j, then Cnw [i] = 0 and the original weight of
* node i is added to Cnw [j]. The sum of Cnw [0..n-1]
* is not modified. */
/* workspace */
Int Cew [ ], /* size csize, all 1's on input and output */
/* more workspace, undefined on input and output */
Int Cmap [ ], /* size n (i/i/l) */
/* output */
Int Part [ ], /* size n, Part [j] = 0, 1, or 2. */
cholmod_common *Common
)
{
Int n, hash, head, i, j, k, p, pend, ilen, ilast, pi, piend,
jlen, ok, cn, csep, pdest, nodes_pruned, nz, total_weight, jscattered ;
Int *Cp, *Ci, *Next, *Hhead ;
#ifndef NDEBUG
Int cnt, pruned ;
double work = 0, goodwork = 0 ;
#endif
/* ---------------------------------------------------------------------- */
/* quick return for small or empty graphs */
/* ---------------------------------------------------------------------- */
n = C->nrow ;
Cp = C->p ;
Ci = C->i ;
nz = Cp [n] ;
PRINT2 (("Partition start, n "ID" nz "ID"\n", n, nz)) ;
total_weight = 0 ;
for (j = 0 ; j < n ; j++)
{
ASSERT (Cnw [j] > 0) ;
total_weight += Cnw [j] ;
}
if (n <= 2)
{
/* very small graph */
for (j = 0 ; j < n ; j++)
{
Part [j] = 2 ;
}
return (total_weight) ;
}
else if (nz <= 0)
{
/* no edges, this is easy */
PRINT2 (("diagonal matrix\n")) ;
k = n/2 ;
for (j = 0 ; j < k ; j++)
{
Part [j] = 0 ;
}
for ( ; j < n ; j++)
{
Part [j] = 1 ;
}
/* ensure the separator is not empty (required by nested dissection) */
Part [n-1] = 2 ;
return (Cnw [n-1]) ;
}
#ifndef NDEBUG
ASSERT (n > 1 && nz > 0) ;
PRINT2 (("original graph:\n")) ;
for (j = 0 ; j < n ; j++)
{
PRINT2 ((""ID": ", j)) ;
for (p = Cp [j] ; p < Cp [j+1] ; p++)
{
i = Ci [p] ;
PRINT3 ((""ID" ", i)) ;
ASSERT (i >= 0 && i < n && i != j) ;
}
PRINT2 (("hash: "ID"\n", Hash [j])) ;
}
DEBUG (for (p = 0 ; p < csize ; p++) ASSERT (Cew [p] == 1)) ;
#endif
nodes_pruned = 0 ;
if (compress)
{
/* ------------------------------------------------------------------ */
/* get workspace */
/* ------------------------------------------------------------------ */
Next = Part ; /* use Part as workspace for Next [ */
Hhead = Cew ; /* use Cew as workspace for Hhead [ */
/* ------------------------------------------------------------------ */
/* create the hash buckets */
/* ------------------------------------------------------------------ */
for (j = 0 ; j < n ; j++)
{
/* get the hash key for node j */
hash = Hash [j] ;
ASSERT (hash >= 0 && hash < csize) ;
head = Hhead [hash] ;
if (head > EMPTY)
{
/* hash bucket for this hash key is empty. */
head = EMPTY ;
}
else
{
/* hash bucket for this hash key is not empty. get old head */
head = FLIP (head) ;
ASSERT (head >= 0 && head < n) ;
}
/* node j becomes the new head of the hash bucket. FLIP it so that
* we can tell the difference between an empty or non-empty hash
* bucket. */
Hhead [hash] = FLIP (j) ;
Next [j] = head ;
ASSERT (head >= EMPTY && head < n) ;
}
#ifndef NDEBUG
for (cnt = 0, k = 0 ; k < n ; k++)
{
ASSERT (Hash [k] >= 0 && Hash [k] < csize) ; /* k is alive */
hash = Hash [k] ;
ASSERT (hash >= 0 && hash < csize) ;
head = Hhead [hash] ;
ASSERT (head < EMPTY) ; /* hash bucket not empty */
j = FLIP (head) ;
ASSERT (j >= 0 && j < n) ;
if (j == k)
{
PRINT2 (("hash "ID": ", hash)) ;
for ( ; j != EMPTY ; j = Next [j])
{
PRINT3 ((" "ID"", j)) ;
ASSERT (j >= 0 && j < n) ;
ASSERT (Hash [j] == hash) ;
cnt++ ;
ASSERT (cnt <= n) ;
}
PRINT2 (("\n")) ;
}
}
ASSERT (cnt == n) ;
#endif
/* ------------------------------------------------------------------ */
/* scan the non-empty hash buckets for indistinguishable nodes */
/* ------------------------------------------------------------------ */
/* If there are no hash collisions and no compression occurs, this takes
* O(n) time. If no hash collisions, but some nodes are removed, this
* takes time O(n+e) where e is the sum of the degress of the nodes
* that are removed. Even with many hash collisions (a rare case),
* this algorithm has never been observed to perform more than nnz(A)
* useless work.
*
* Cmap is used as workspace to mark nodes of the graph, [
* for comparing the nonzero patterns of two nodes i and j.
*/
#define Cmap_MARK(i) Cmap [i] = j
#define Cmap_MARKED(i) (Cmap [i] == j)
for (i = 0 ; i < n ; i++)
{
Cmap [i] = EMPTY ;
}
for (k = 0 ; k < n ; k++)
{
hash = Hash [k] ;
ASSERT (hash >= FLIP (n-1) && hash < csize) ;
if (hash < 0)
{
/* node k has already been absorbed into some other node */
ASSERT (FLIP (Hash [k]) >= 0 && FLIP (Hash [k] < n)) ;
continue ;
}
head = Hhead [hash] ;
ASSERT (head < EMPTY || head == 1) ;
if (head == 1)
{
/* hash bucket is already empty */
continue ;
}
PRINT2 (("\n--------------------hash "ID":\n", hash)) ;
for (j = FLIP (head) ; j != EMPTY && Next[j] > EMPTY ; j = Next [j])
{
/* compare j with all nodes i following it in hash bucket */
ASSERT (j >= 0 && j < n && Hash [j] == hash) ;
p = Cp [j] ;
pend = Cp [j+1] ;
jlen = pend - p ;
jscattered = FALSE ;
DEBUG (for (i = 0 ; i < n ; i++) ASSERT (!Cmap_MARKED (i))) ;
DEBUG (pruned = FALSE) ;
ilast = j ;
for (i = Next [j] ; i != EMPTY ; i = Next [i])
{
ASSERT (i >= 0 && i < n && Hash [i] == hash && i != j) ;
pi = Cp [i] ;
piend = Cp [i+1] ;
ilen = piend - pi ;
DEBUG (work++) ;
if (ilen != jlen)
{
/* i and j have different degrees */
ilast = i ;
continue ;
}
/* scatter the pattern of node j, if not already */
if (!jscattered)
{
Cmap_MARK (j) ;
for ( ; p < pend ; p++)
{
Cmap_MARK (Ci [p]) ;
}
jscattered = TRUE ;
DEBUG (work += jlen) ;
}
for (ok = Cmap_MARKED (i) ; ok && pi < piend ; pi++)
{
ok = Cmap_MARKED (Ci [pi]) ;
DEBUG (work++) ;
}
if (ok)
{
/* found it. kill node i and merge it into j */
PRINT2 (("found "ID" absorbed into "ID"\n", i, j)) ;
Hash [i] = FLIP (j) ;
Cnw [j] += Cnw [i] ;
Cnw [i] = 0 ;
ASSERT (ilast != i && ilast >= 0 && ilast < n) ;
Next [ilast] = Next [i] ; /* delete i from bucket */
nodes_pruned++ ;
DEBUG (goodwork += (ilen+1)) ;
DEBUG (pruned = TRUE) ;
}
else
{
/* i and j are different */
ilast = i ;
}
}
DEBUG (if (pruned) goodwork += jlen) ;
}
/* empty the hash bucket, restoring Cew */
Hhead [hash] = 1 ;
}
DEBUG (if (((work - goodwork) / (double) nz) > 0.20) PRINT0 ((
"work %12g good %12g nz %12g (wasted work/nz: %6.2f )\n",
work, goodwork, (double) nz, (work - goodwork) / ((double) nz)))) ;
/* All hash buckets now empty. Cmap no longer needed as workspace. ]
* Cew no longer needed as Hhead; Cew is now restored to all ones. ]
* Part no longer needed as workspace for Next. ] */
}
/* Edge weights are all one, node weights reflect node absorption */
DEBUG (for (p = 0 ; p < csize ; p++) ASSERT (Cew [p] == 1)) ;
DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) cnt += Cnw [j]) ;
ASSERT (cnt == total_weight) ;
/* ---------------------------------------------------------------------- */
/* compress and partition the graph */
/* ---------------------------------------------------------------------- */
if (nodes_pruned == 0)
{
/* ------------------------------------------------------------------ */
/* no pruning done at all. Do not create the compressed graph */
/* ------------------------------------------------------------------ */
/* FUTURE WORK: could call CHACO, SCOTCH, ... here too */
csep = CHOLMOD(metis_bisector) (C, Cnw, Cew, Part, Common) ;
}
else if (nodes_pruned == n-1)
{
/* ------------------------------------------------------------------ */
/* only one node left. This is a dense graph */
/* ------------------------------------------------------------------ */
PRINT2 (("completely dense graph\n")) ;
csep = total_weight ;
for (j = 0 ; j < n ; j++)
{
Part [j] = 2 ;
}
}
else
{
/* ------------------------------------------------------------------ */
/* compress the graph and partition the compressed graph */
/* ------------------------------------------------------------------ */
/* ------------------------------------------------------------------ */
/* create the map from the uncompressed graph to the compressed graph */
/* ------------------------------------------------------------------ */
/* Cmap [j] = k if node j is alive and the kth node of compressed graph.
* The mapping is done monotonically (that is, k <= j) to simplify the
* uncompression later on. Cmap [j] = EMPTY if node j is dead. */
for (j = 0 ; j < n ; j++)
{
Cmap [j] = EMPTY ;
}
k = 0 ;
for (j = 0 ; j < n ; j++)
{
if (Cnw [j] > 0)
{
ASSERT (k <= j) ;
Cmap [j] = k++ ;
}
}
cn = k ; /* # of nodes in compressed graph */
PRINT2 (("compressed graph from "ID" to "ID" nodes\n", n, cn)) ;
ASSERT (cn > 1 && cn == n - nodes_pruned) ;
/* ------------------------------------------------------------------ */
/* create the compressed graph */
/* ------------------------------------------------------------------ */
k = 0 ;
pdest = 0 ;
for (j = 0 ; j < n ; j++)
{
if (Cnw [j] > 0)
{
/* node j in the full graph is node k in the compressed graph */
ASSERT (k <= j && Cmap [j] == k) ;
p = Cp [j] ;
pend = Cp [j+1] ;
Cp [k] = pdest ;
Cnw [k] = Cnw [j] ;
for ( ; p < pend ; p++)
{
/* prune dead nodes, and remap to new node numbering */
i = Ci [p] ;
ASSERT (i >= 0 && i < n && i != j) ;
i = Cmap [i] ;
ASSERT (i >= EMPTY && i < cn && i != k) ;
if (i > EMPTY)
{
ASSERT (pdest <= p) ;
Ci [pdest++] = i ;
}
}
k++ ;
}
}
Cp [cn] = pdest ;
C->nrow = cn ;
C->ncol = cn ; /* affects mem stats unless restored when C free'd */
#ifndef NDEBUG
PRINT2 (("pruned graph ("ID"/"ID") nodes, ("ID"/"ID") edges\n",
cn, n, pdest, nz)) ;
PRINT2 (("compressed graph:\n")) ;
for (cnt = 0, j = 0 ; j < cn ; j++)
{
PRINT2 ((""ID": ", j)) ;
for (p = Cp [j] ; p < Cp [j+1] ; p++)
{
i = Ci [p] ;
PRINT3 ((""ID" ", i)) ;
ASSERT (i >= 0 && i < cn && i != j) ;
}
PRINT2 (("weight: "ID"\n", Cnw [j])) ;
ASSERT (Cnw [j] > 0) ;
cnt += Cnw [j] ;
}
ASSERT (cnt == total_weight) ;
for (j = 0 ; j < n ; j++) PRINT2 (("Cmap ["ID"] = "ID"\n", j, Cmap[j]));
ASSERT (k == cn) ;
#endif
/* ------------------------------------------------------------------ */
/* find the separator of the compressed graph */
/* ------------------------------------------------------------------ */
/* FUTURE WORK: could call CHACO, SCOTCH, ... here too */
csep = CHOLMOD(metis_bisector) (C, Cnw, Cew, Part, Common) ;
if (csep < 0)
{
/* failed */
return (-1) ;
}
PRINT2 (("Part: ")) ;
DEBUG (for (j = 0 ; j < cn ; j++) PRINT2 ((""ID" ", Part [j]))) ;
PRINT2 (("\n")) ;
/* Cp and Ci no longer needed */
/* ------------------------------------------------------------------ */
/* find the separator of the uncompressed graph */
/* ------------------------------------------------------------------ */
/* expand the separator to live nodes in the uncompressed graph */
for (j = n-1 ; j >= 0 ; j--)
{
/* do this in reverse order so that Cnw can be expanded in place */
k = Cmap [j] ;
ASSERT (k >= EMPTY && k < n) ;
if (k > EMPTY)
{
/* node k in compressed graph and is node j in full graph */
ASSERT (k <= j) ;
ASSERT (Hash [j] >= EMPTY) ;
Part [j] = Part [k] ;
Cnw [j] = Cnw [k] ;
}
else
{
/* node j is a dead node */
Cnw [j] = 0 ;
DEBUG (Part [j] = EMPTY) ;
ASSERT (Hash [j] < EMPTY) ;
}
}
/* find the components for the dead nodes */
for (i = 0 ; i < n ; i++)
{
if (Hash [i] < EMPTY)
{
/* node i has been absorbed into node j */
j = FLIP (Hash [i]) ;
ASSERT (Part [i] == EMPTY && j >= 0 && j < n && Cnw [i] == 0) ;
Part [i] = Part [j] ;
}
ASSERT (Part [i] >= 0 && Part [i] <= 2) ;
}
#ifndef NDEBUG
PRINT2 (("Part: ")) ;
for (cnt = 0, j = 0 ; j < n ; j++)
{
ASSERT (Part [j] != EMPTY) ;
PRINT2 ((""ID" ", Part [j])) ;
if (Part [j] == 2) cnt += Cnw [j] ;
}
PRINT2 (("\n")) ;
PRINT2 (("csep "ID" "ID"\n", cnt, csep)) ;
ASSERT (cnt == csep) ;
for (cnt = 0, j = 0 ; j < n ; j++) cnt += Cnw [j] ;
ASSERT (cnt == total_weight) ;
#endif
}
/* ---------------------------------------------------------------------- */
/* return the separator (or -1 if error) */
/* ---------------------------------------------------------------------- */
PRINT2 (("Partition done, n "ID" csep "ID"\n", n, csep)) ;
return (csep) ;
}
/* ========================================================================== */
/* === clear_flag =========================================================== */
/* ========================================================================== */
/* A node j has been removed from the graph if Flag [j] < EMPTY.
* If Flag [j] >= EMPTY && Flag [j] < mark, then node j is alive but unmarked.
* Flag [j] == mark means that node j is alive and marked. Incrementing mark
* means that all nodes are either (still) dead, or live but unmarked.
*
* If Map is NULL, then on output, Common->mark < Common->Flag [i] for all i
* from 0 to Common->nrow. This is the same output condition as
* cholmod_clear_flag, except that this routine maintains the Flag [i] < EMPTY
* condition as well, if that condition was true on input.
*
* If Map is non-NULL, then on output, Common->mark < Common->Flag [i] for all
* i in the set Map [0..cn-1].
*
* workspace: Flag (nrow)
*/
static SuiteSparse_long clear_flag (Int *Map, Int cn, cholmod_common *Common)
{
Int nrow, i ;
Int *Flag ;
PRINT2 (("old mark %ld\n", Common->mark)) ;
Common->mark++ ;
PRINT2 (("new mark %ld\n", Common->mark)) ;
if (Common->mark <= 0)
{
nrow = Common->nrow ;
Flag = Common->Flag ;
if (Map != NULL)
{
for (i = 0 ; i < cn ; i++)
{
/* if Flag [Map [i]] < EMPTY, leave it alone */
if (Flag [Map [i]] >= EMPTY)
{
Flag [Map [i]] = EMPTY ;
}
}
/* now Flag [Map [i]] <= EMPTY for all i */
}
else
{
for (i = 0 ; i < nrow ; i++)
{
/* if Flag [i] < EMPTY, leave it alone */
if (Flag [i] >= EMPTY)
{
Flag [i] = EMPTY ;
}
}
/* now Flag [i] <= EMPTY for all i */
}
Common->mark = 0 ;
}
return (Common->mark) ;
}
/* ========================================================================== */
/* === find_components ====================================================== */
/* ========================================================================== */
/* Find all connected components of the current subgraph C. The subgraph C
* consists of the nodes of B that appear in the set Map [0..cn-1]. If Map
* is NULL, then it is assumed to be the identity mapping
* (Map [0..cn-1] = 0..cn-1).
*
* A node j does not appear in B if it has been ordered (Flag [j] < EMPTY,
* which means that j has been ordered and is "deleted" from B).
*
* If the size of a component is large, it is placed on the component stack,
* Cstack. Otherwise, its nodes are ordered and it is not placed on the Cstack.
*
* A component S is defined by a "representative node" (repnode for short)
* called the snode, which is one of the nodes in the subgraph. Likewise, the
* subgraph C is defined by its repnode, called cnode.
*
* If Part is not NULL on input, then Part [i] determines how the components
* are placed on the stack. Components containing nodes i with Part [i] == 0
* are placed first, followed by components with Part [i] == 1.
*
* The first node placed in each of the two parts is flipped when placed in
* the Cstack. This allows the components of the two parts to be found simply
* by traversing the Cstack.
*
* workspace: Flag (nrow)
*/
static void find_components
(
/* inputs, not modified on output */
cholmod_sparse *B,
Int Map [ ], /* size n, only Map [0..cn-1] used */
Int cn, /* # of nodes in C */
Int cnode, /* root node of component C, or EMPTY if C is the
* entire graph B */
Int Part [ ], /* size cn, optional */
/* input/output */
Int Bnz [ ], /* size n. Bnz [j] = # nonzeros in column j of B.
* Reduce since B is pruned of dead nodes. */
Int CParent [ ], /* CParent [i] = j if component with repnode j is
* the parent of the component with repnode i.
* CParent [i] = EMPTY if the component with
* repnode i is a root of the separator tree.
* CParent [i] is -2 if i is not a repnode. */
Int Cstack [ ], /* component stack for nested dissection */
Int *top, /* Cstack [0..top] contains root nodes of the
* the components currently in the stack */
/* workspace, undefined on input and output: */
Int Queue [ ], /* size n, for breadth-first search */
cholmod_common *Common
)
{
Int n, mark, cj, j, sj, sn, p, i, snode, pstart, pdest, pend, nd_components,
part, first, save_mark ;
Int *Bp, *Bi, *Flag ;
/* ---------------------------------------------------------------------- */
/* get workspace */
/* ---------------------------------------------------------------------- */
PRINT2 (("find components: cn %d\n", cn)) ;
Flag = Common->Flag ; /* size n */
/* force initialization of Flag [Map [0..cn-1]] */
save_mark = Common->mark ; /* save the current mark */
Common->mark = EMPTY ;
/* clear Flag; preserve Flag [Map [i]] if Flag [Map [i]] already < EMPTY */
/* this takes O(cn) time */
mark = clear_flag (Map, cn, Common) ;
Bp = B->p ;
Bi = B->i ;
n = B->nrow ;
ASSERT (cnode >= EMPTY && cnode < n) ;
ASSERT (IMPLIES (cnode >= 0, Flag [cnode] < EMPTY)) ;
/* get ordering parameters */
nd_components = Common->method [Common->current].nd_components ;
/* ---------------------------------------------------------------------- */
/* find the connected components of C via a breadth-first search */
/* ---------------------------------------------------------------------- */
part = (Part == NULL) ? 0 : 1 ;
/* examine each part (part 1 and then part 0) */
for (part = (Part == NULL) ? 0 : 1 ; part >= 0 ; part--)
{
/* first is TRUE for the first connected component in each part */
first = TRUE ;
/* find all connected components in the current part */
for (cj = 0 ; cj < cn ; cj++)
{
/* get node snode, which is node cj of C. It might already be in
* the separator of C (and thus ordered, with Flag [snode] < EMPTY)
*/
snode = (Map == NULL) ? (cj) : (Map [cj]) ;
ASSERT (snode >= 0 && snode < n) ;
if (Flag [snode] >= EMPTY && Flag [snode] < mark
&& ((Part == NULL) || Part [cj] == part))
{
/* ---------------------------------------------------------- */
/* find new connected component S */
/* ---------------------------------------------------------- */
/* node snode is the repnode of a connected component S, the
* parent of which is cnode, the repnode of C. If cnode is
* EMPTY then C is the original graph B. */
PRINT2 (("----------:::snode "ID" cnode "ID"\n", snode, cnode));
ASSERT (CParent [snode] == -2) ;
if (first || nd_components)
{
/* If this is the first node in this part, then it becomes
* the repnode of all components in this part, and all
* components in this part form a single node in the
* separator tree. If nd_components is TRUE, then all
* connected components form their own node in the
* separator tree.
*/
CParent [snode] = cnode ;
}
/* place j in the queue and mark it */
Queue [0] = snode ;
Flag [snode] = mark ;
sn = 1 ;
/* breadth-first traversal, starting at node j */
for (sj = 0 ; sj < sn ; sj++)
{
/* get node j from head of Queue and traverse its edges */
j = Queue [sj] ;
PRINT2 ((" j: "ID"\n", j)) ;
ASSERT (j >= 0 && j < n) ;
ASSERT (Flag [j] == mark) ;
pstart = Bp [j] ;
pdest = pstart ;
pend = pstart + Bnz [j] ;
for (p = pstart ; p < pend ; p++)
{
i = Bi [p] ;
if (i != j && Flag [i] >= EMPTY)
{
/* node is still in the graph */
Bi [pdest++] = i ;
if (Flag [i] < mark)
{
/* node i is in this component S, and unflagged
* (first time node i has been seen in this BFS)
* place node i in the queue and mark it */
Queue [sn++] = i ;
Flag [i] = mark ;
}
}
}
/* edges to dead nodes have been removed */
Bnz [j] = pdest - pstart ;
}
/* ---------------------------------------------------------- */
/* order S if it is small; place it on Cstack otherwise */
/* ---------------------------------------------------------- */
PRINT2 (("sn "ID"\n", sn)) ;
/* place the new component on the Cstack. Flip the node if
* is the first connected component of the current part,
* or if all components are treated as their own node in
* the separator tree. */
Cstack [++(*top)] =
(first || nd_components) ? FLIP (snode) : snode ;
first = FALSE ;
}
}
}
/* restore the flag (normally taking O(1) time except for Int overflow) */
Common->mark = save_mark++ ;
clear_flag (NULL, 0, Common) ;
DEBUG (for (i = 0 ; i < n ; i++) ASSERT (Flag [i] < Common->mark)) ;
}
/* ========================================================================== */
/* === cholmod_bisect ======================================================= */
/* ========================================================================== */
/* Finds a node bisector of A, A*A', A(:,f)*A(:,f)'.
*
* workspace: Flag (nrow),
* Iwork (nrow if symmetric, max (nrow,ncol) if unsymmetric).
* Allocates a temporary matrix B=A*A' or B=A,
* and O(nnz(A)) temporary memory space.
*/
SuiteSparse_long CHOLMOD(bisect) /* returns # of nodes in separator */
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to bisect */
Int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int compress, /* if TRUE, compress the graph first */
/* ---- output --- */
Int *Partition, /* size A->nrow. Node i is in the left graph if
* Partition [i] = 0, the right graph if 1, and in the
* separator if 2. */
/* --------------- */
cholmod_common *Common
)
{
Int *Bp, *Bi, *Hash, *Cmap, *Bnw, *Bew, *Iwork ;
cholmod_sparse *B ;
unsigned Int hash ;
Int j, n, bnz, sepsize, p, pend ;
size_t csize, s ;
int ok = TRUE ;
/* ---------------------------------------------------------------------- */
/* check inputs */
/* ---------------------------------------------------------------------- */
RETURN_IF_NULL_COMMON (EMPTY) ;
RETURN_IF_NULL (A, EMPTY) ;
RETURN_IF_NULL (Partition, EMPTY) ;
RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ;
Common->status = CHOLMOD_OK ;
/* ---------------------------------------------------------------------- */
/* quick return */
/* ---------------------------------------------------------------------- */
n = A->nrow ;
if (n == 0)
{
return (0) ;
}
/* ---------------------------------------------------------------------- */
/* allocate workspace */
/* ---------------------------------------------------------------------- */
/* s = n + MAX (n, A->ncol) */
s = CHOLMOD(add_size_t) (A->nrow, MAX (A->nrow, A->ncol), &ok) ;
if (!ok)
{
ERROR (CHOLMOD_TOO_LARGE, "problem too large") ;
return (EMPTY) ;
}
CHOLMOD(allocate_work) (n, s, 0, Common) ;
if (Common->status < CHOLMOD_OK)
{
return (EMPTY) ;
}
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ;
Iwork = Common->Iwork ;
Hash = Iwork ; /* size n, (i/l/l) */
Cmap = Iwork + n ; /* size n, (i/i/l) */
/* ---------------------------------------------------------------------- */
/* convert the matrix to adjacency list form */
/* ---------------------------------------------------------------------- */
/* The input graph to must be symmetric, with no diagonal entries
* present. The columns need not be sorted. */
/* B = A, A*A', or A(:,f)*A(:,f)', upper and lower parts present */
if (A->stype)
{
/* Add the upper/lower part to a symmetric lower/upper matrix by
* converting to unsymmetric mode */
/* workspace: Iwork (nrow) */
B = CHOLMOD(copy) (A, 0, -1, Common) ;
}
else
{
/* B = A*A' or A(:,f)*A(:,f)', no diagonal */
/* workspace: Flag (nrow), Iwork (max (nrow,ncol)) */
B = CHOLMOD(aat) (A, fset, fsize, -1, Common) ;
}
if (Common->status < CHOLMOD_OK)
{
return (EMPTY) ;
}
Bp = B->p ;
Bi = B->i ;
bnz = Bp [n] ;
ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ;
/* B does not include the diagonal, and both upper and lower parts.
* Common->anz includes the diagonal, and just the lower part of B */
Common->anz = bnz / 2 + ((double) n) ;
/* Bew should be at least size n for the hash function to work well */
/* this cannot cause overflow, because the matrix is already created */
csize = MAX (((size_t) n) + 1, (size_t) bnz) ;
/* create the graph using Flag as workspace for node weights [ */
Bnw = Common->Flag ; /* size n workspace */
/* compute hash for each node if compression requested */
if (compress)
{
for (j = 0 ; j < n ; j++)
{
hash = j ;
pend = Bp [j+1] ;
for (p = Bp [j] ; p < pend ; p++)
{
hash += Bi [p] ;
ASSERT (Bi [p] != j) ;
}
/* finalize the hash key for node j */
hash %= csize ;
Hash [j] = (Int) hash ;
ASSERT (Hash [j] >= 0 && Hash [j] < csize) ;
}
}
/* allocate edge weights */
Bew = CHOLMOD(malloc) (csize, sizeof (Int), Common) ;
if (Common->status < CHOLMOD_OK)
{
/* out of memory */
CHOLMOD(free_sparse) (&B, Common) ;
CHOLMOD(free) (csize, sizeof (Int), Bew, Common) ;
return (EMPTY) ;
}
/* graph has unit node and edge weights */
for (j = 0 ; j < n ; j++)
{
Bnw [j] = 1 ;
}
for (s = 0 ; s < csize ; s++)
{
Bew [s] = 1 ;
}
/* ---------------------------------------------------------------------- */
/* compress and partition the graph */
/* ---------------------------------------------------------------------- */
sepsize = partition (
#ifndef NDEBUG
csize,
#endif
compress, Hash, B, Bnw, Bew, Cmap, Partition, Common) ;
/* contents of Bp, Bi, Bnw, and Bew no longer needed ] */
/* If partition fails, free the workspace below and return sepsize < 0 */
/* ---------------------------------------------------------------------- */
/* free workspace */
/* ---------------------------------------------------------------------- */
B->ncol = n ; /* restore size for memory usage statistics */
CHOLMOD(free_sparse) (&B, Common) ;
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
CHOLMOD(free) (csize, sizeof (Int), Bew, Common) ;
return (sepsize) ;
}
/* ========================================================================== */
/* === cholmod_nested_dissection ============================================ */
/* ========================================================================== */
/* This method uses a node bisector, applied recursively (but using a
* non-recursive algorithm). Once the graph is partitioned, it calls a
* constrained min degree code (CAMD or CSYMAMD for A+A', and CCOLAMD for A*A')
* to order all the nodes in the graph - but obeying the constraints determined
* by the separators. This routine is similar to METIS_NodeND, except for how
* it treats the leaf nodes. METIS_NodeND orders the leaves of the separator
* tree with MMD, ignoring the rest of the matrix when ordering a single leaf.
* This routine orders the whole matrix with CSYMAMD or CCOLAMD, all at once,
* when the graph partitioning is done.
*
* This function also returns a postorderd separator tree (CParent), and a
* mapping of nodes in the graph to nodes in the separator tree (Cmember).
*
* workspace: Flag (nrow), Head (nrow+1), Iwork (4*nrow + (ncol if unsymmetric))
* Allocates a temporary matrix B=A*A' or B=A,
* and O(nnz(A)) temporary memory space.
* Allocates an additional 3*n*sizeof(Int) temporary workspace
*/
SuiteSparse_long CHOLMOD(nested_dissection)
/* returns # of components, or -1 if error */
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to order */
Int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* ---- output --- */
Int *Perm, /* size A->nrow, output permutation */
Int *CParent, /* size A->nrow. On output, CParent [c] is the parent
* of component c, or EMPTY if c is a root, and where
* c is in the range 0 to # of components minus 1 */
Int *Cmember, /* size A->nrow. Cmember [j] = c if node j of A is
* in component c */
/* --------------- */
cholmod_common *Common
)
{
double prune_dense, nd_oksep ;
Int *Bp, *Bi, *Bnz, *Cstack, *Imap, *Map, *Flag, *Head, *Next, *Bnw, *Iwork,
*Ipost, *NewParent, *Hash, *Cmap, *Cp, *Ci, *Cew, *Cnw, *Part, *Post,
*Work3n ;
unsigned Int hash ;
Int n, bnz, top, i, j, k, cnode, cdense, p, cj, cn, ci, cnz, mark, c, uncol,
sepsize, parent, ncomponents, threshold, ndense, pstart, pdest, pend,
nd_compress, nd_camd, csize, jnext, nd_small, total_weight,
nchild, child = EMPTY ;
cholmod_sparse *B, *C ;
size_t s ;
int ok = TRUE ;
DEBUG (Int cnt) ;
/* ---------------------------------------------------------------------- */
/* get inputs */
/* ---------------------------------------------------------------------- */
RETURN_IF_NULL_COMMON (EMPTY) ;
RETURN_IF_NULL (A, EMPTY) ;
RETURN_IF_NULL (Perm, EMPTY) ;
RETURN_IF_NULL (CParent, EMPTY) ;
RETURN_IF_NULL (Cmember, EMPTY) ;
RETURN_IF_XTYPE_INVALID (A, CHOLMOD_PATTERN, CHOLMOD_ZOMPLEX, EMPTY) ;
Common->status = CHOLMOD_OK ;
/* ---------------------------------------------------------------------- */
/* quick return */
/* ---------------------------------------------------------------------- */
n = A->nrow ;
if (n == 0)
{
return (1) ;
}
/* ---------------------------------------------------------------------- */
/* get inputs */
/* ---------------------------------------------------------------------- */
/* get ordering parameters */
prune_dense = Common->method [Common->current].prune_dense ;
nd_compress = Common->method [Common->current].nd_compress ;
nd_oksep = Common->method [Common->current].nd_oksep ;
nd_oksep = MAX (0, nd_oksep) ;
nd_oksep = MIN (1, nd_oksep) ;
nd_camd = Common->method [Common->current].nd_camd ;
nd_small = Common->method [Common->current].nd_small ;
nd_small = MAX (4, nd_small) ;
PRINT0 (("nd_components %d nd_small %d nd_oksep %g\n",
Common->method [Common->current].nd_components,
nd_small, nd_oksep)) ;
/* ---------------------------------------------------------------------- */
/* allocate workspace */
/* ---------------------------------------------------------------------- */
/* s = 4*n + uncol */
uncol = (A->stype == 0) ? A->ncol : 0 ;
s = CHOLMOD(mult_size_t) (n, 4, &ok) ;
s = CHOLMOD(add_size_t) (s, uncol, &ok) ;
if (!ok)
{
ERROR (CHOLMOD_TOO_LARGE, "problem too large") ;
return (EMPTY) ;
}
CHOLMOD(allocate_work) (n, s, 0, Common) ;
if (Common->status < CHOLMOD_OK)
{
return (EMPTY) ;
}
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ;
/* ---------------------------------------------------------------------- */
/* get workspace */
/* ---------------------------------------------------------------------- */
Flag = Common->Flag ; /* size n */
Head = Common->Head ; /* size n+1, all equal to -1 */
Iwork = Common->Iwork ;
Imap = Iwork ; /* size n, same as Queue in find_components */
Map = Iwork + n ; /* size n */
Bnz = Iwork + 2*((size_t) n) ; /* size n */
Hash = Iwork + 3*((size_t) n) ; /* size n */
Work3n = CHOLMOD(malloc) (n, 3*sizeof (Int), Common) ;
Part = Work3n ; /* size n */
Bnw = Part + n ; /* size n */
Cnw = Bnw + n ; /* size n */
Cstack = Perm ; /* size n, use Perm as workspace for Cstack [ */
Cmap = Cmember ; /* size n, use Cmember as workspace [ */
if (Common->status < CHOLMOD_OK)
{
return (EMPTY) ;
}
/* ---------------------------------------------------------------------- */
/* convert B to symmetric form with both upper/lower parts present */
/* ---------------------------------------------------------------------- */
/* B = A+A', A*A', or A(:,f)*A(:,f)', upper and lower parts present */
if (A->stype)
{
/* Add the upper/lower part to a symmetric lower/upper matrix by
* converting to unsymmetric mode */
/* workspace: Iwork (nrow) */
B = CHOLMOD(copy) (A, 0, -1, Common) ;
}
else
{
/* B = A*A' or A(:,f)*A(:,f)', no diagonal */
/* workspace: Flag (nrow), Iwork (max (nrow,ncol)) */
B = CHOLMOD(aat) (A, fset, fsize, -1, Common) ;
}
if (Common->status < CHOLMOD_OK)
{
CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ;
return (EMPTY) ;
}
Bp = B->p ;
Bi = B->i ;
bnz = CHOLMOD(nnz) (B, Common) ;
ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ;
csize = MAX (n, bnz) ;
ASSERT (CHOLMOD(dump_sparse) (B, "B for nd:", Common) >= 0) ;
/* ---------------------------------------------------------------------- */
/* initializations */
/* ---------------------------------------------------------------------- */
/* all nodes start out unmarked and unordered (Type 4, see below) */
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
ASSERT (Flag == Common->Flag) ;
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ;
for (j = 0 ; j < n ; j++)
{
CParent [j] = -2 ;
}
/* prune dense nodes from B */
if (IS_NAN (prune_dense) || prune_dense < 0)
{
/* only remove completely dense nodes */
threshold = n-2 ;
}
else
{
/* remove nodes with degree more than threshold */
threshold = (Int) (MAX (16, prune_dense * sqrt ((double) (n)))) ;
threshold = MIN (n, threshold) ;
}
ndense = 0 ;
cnode = EMPTY ;
cdense = EMPTY ;
for (j = 0 ; j < n ; j++)
{
Bnz [j] = Bp [j+1] - Bp [j] ;
if (Bnz [j] > threshold)
{
/* node j is dense, prune it from B */
PRINT2 (("j is dense %d\n", j)) ;
ndense++ ;
if (cnode == EMPTY)
{
/* first dense node found becomes root of this component,
* which contains all of the dense nodes found here */
cdense = j ;
cnode = j ;
CParent [cnode] = EMPTY ;
}
Flag [j] = FLIP (cnode) ;
}
}
B->packed = FALSE ;
ASSERT (B->nz == NULL) ;
if (ndense == n)
{
/* all nodes removed: Perm is identity, all nodes in component zero,
* and the separator tree has just one node. */
PRINT2 (("all nodes are dense\n")) ;
for (k = 0 ; k < n ; k++)
{
Perm [k] = k ;
Cmember [k] = 0 ;
}
CParent [0] = EMPTY ;
CHOLMOD(free_sparse) (&B, Common) ;
CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ;
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
return (1) ;
}
/* Cp and Ci are workspace to construct the subgraphs to partition */
C = CHOLMOD(allocate_sparse) (n, n, csize, FALSE, TRUE, 0, CHOLMOD_PATTERN,
Common) ;
Cew = CHOLMOD(malloc) (csize, sizeof (Int), Common) ;
if (Common->status < CHOLMOD_OK)
{
/* out of memory */
CHOLMOD(free_sparse) (&C, Common) ;
CHOLMOD(free_sparse) (&B, Common) ;
CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ;
CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ;
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
PRINT2 (("out of memory for C, etc\n")) ;
return (EMPTY) ;
}
Cp = C->p ;
Ci = C->i ;
/* create initial unit node and edge weights */
for (j = 0 ; j < n ; j++)
{
Bnw [j] = 1 ;
}
for (p = 0 ; p < csize ; p++)
{
Cew [p] = 1 ;
}
/* push the initial connnected components of B onto the Cstack */
top = EMPTY ; /* Cstack is empty */
/* workspace: Flag (nrow), Iwork (nrow); use Imap as workspace for Queue [*/
find_components (B, NULL, n, cnode, NULL,
Bnz, CParent, Cstack, &top, Imap, Common) ;
/* done using Imap as workspace for Queue ] */
/* Nodes can now be of Type 0, 1, 2, or 4 (see definition below) */
/* ---------------------------------------------------------------------- */
/* while Cstack is not empty, do: */
/* ---------------------------------------------------------------------- */
while (top >= 0)
{
/* clear the Flag array, but do not modify negative entries in Flag */
mark = clear_flag (NULL, 0, Common) ;
DEBUG (for (i = 0 ; i < n ; i++) Imap [i] = EMPTY) ;
/* ------------------------------------------------------------------ */
/* get node(s) from the top of the Cstack */
/* ------------------------------------------------------------------ */
/* i is the repnode of its (unordered) connected component. Get
* all repnodes for all connected components of a single part. If
* each connected component is to be ordered separately (nd_components
* is TRUE), then this while loop iterates just once. */
cnode = EMPTY ;
cn = 0 ;
while (cnode == EMPTY)
{
i = Cstack [top--] ;
if (i < 0)
{
/* this is the last node in this component */
i = FLIP (i) ;
cnode = i ;
}
ASSERT (i >= 0 && i < n && Flag [i] >= EMPTY) ;
/* place i in the queue and mark it */
Map [cn] = i ;
Flag [i] = mark ;
Imap [i] = cn ;
cn++ ;
}
ASSERT (cnode != EMPTY) ;
/* During ordering, there are five kinds of nodes in the graph of B,
* based on Flag [j] and CParent [j] for nodes j = 0 to n-1:
*
* Type 0: If cnode is a repnode of an unordered component, then
* CParent [cnode] is in the range EMPTY to n-1 and
* Flag [cnode] >= EMPTY. This is a "live" node.
*
* Type 1: If cnode is a repnode of an ordered separator component,
* then Flag [cnode] < EMPTY and FLAG [cnode] = FLIP (cnode).
* CParent [cnode] is in the range EMPTY to n-1. cnode is a root of
* the separator tree if CParent [cnode] == EMPTY. This node is dead.
*
* Type 2: If node j isn't a repnode, has not been absorbed via
* graph compression into another node, but is in an ordered separator
* component, then cnode = FLIP (Flag [j]) gives the repnode of the
* component that contains j and CParent [j] is -2. This node is dead.
* Note that Flag [j] < EMPTY.
*
* Type 3: If node i has been absorbed via graph compression into some
* other node j = FLIP (Flag [i]) where j is not a repnode.
* CParent [j] is -2. Node i may or may not be in an ordered
* component. This node is dead. Note that Flag [j] < EMPTY.
*
* Type 4: If node j is "live" (not in an ordered component, and not
* absorbed into any other node), then Flag [j] >= EMPTY.
*
* Only "live" nodes (of type 0 or 4) are placed in a subgraph to be
* partitioned. Node j is alive if Flag [j] >= EMPTY, and dead if
* Flag [j] < EMPTY.
*/
/* ------------------------------------------------------------------ */
/* create the subgraph for this connected component C */
/* ------------------------------------------------------------------ */
/* Do a breadth-first search of the graph starting at cnode.
* use Map [0..cn-1] for nodes in the component C [
* use Cnw and Cew for node and edge weights of the resulting subgraph [
* use Cp and Ci for the resulting subgraph [
* use Imap [i] for all nodes i in B that are in the component C [
*/
cnz = 0 ;
total_weight = 0 ;
for (cj = 0 ; cj < cn ; cj++)
{
/* get node j from the head of the queue; it is node cj of C */
j = Map [cj] ;
ASSERT (Flag [j] == mark) ;
Cp [cj] = cnz ;
Cnw [cj] = Bnw [j] ;
ASSERT (Cnw [cj] >= 0) ;
total_weight += Cnw [cj] ;
pstart = Bp [j] ;
pdest = pstart ;
pend = pstart + Bnz [j] ;
hash = cj ;
for (p = pstart ; p < pend ; p++)
{
i = Bi [p] ;
/* prune diagonal entries and dead edges from B */
if (i != j && Flag [i] >= EMPTY)
{
/* live node i is in the current component */
Bi [pdest++] = i ;
if (Flag [i] != mark)
{
/* First time node i has been seen, it is a new node
* of C. place node i in the queue and mark it */
Map [cn] = i ;
Flag [i] = mark ;
Imap [i] = cn ;
cn++ ;
}
/* place the edge (cj,ci) in the adjacency list of cj */
ci = Imap [i] ;
ASSERT (ci >= 0 && ci < cn && ci != cj && cnz < csize) ;
Ci [cnz++] = ci ;
hash += ci ;
}
}
/* edges to dead nodes have been removed */
Bnz [j] = pdest - pstart ;
/* finalize the hash key for column j */
hash %= csize ;
Hash [cj] = (Int) hash ;
ASSERT (Hash [cj] >= 0 && Hash [cj] < csize) ;
}
Cp [cn] = cnz ;
C->nrow = cn ;
C->ncol = cn ; /* affects mem stats unless restored when C free'd */
/* contents of Imap no longer needed ] */
#ifndef NDEBUG
for (cj = 0 ; cj < cn ; cj++)
{
j = Map [cj] ;
PRINT2 (("----------------------------C column cj: "ID" j: "ID"\n",
cj, j)) ;
ASSERT (j >= 0 && j < n) ;
ASSERT (Flag [j] >= EMPTY) ;
for (p = Cp [cj] ; p < Cp [cj+1] ; p++)
{
ci = Ci [p] ;
i = Map [ci] ;
PRINT3 (("ci: "ID" i: "ID"\n", ci, i)) ;
ASSERT (ci != cj && ci >= 0 && ci < cn) ;
ASSERT (i != j && i >= 0 && i < n) ;
ASSERT (Flag [i] >= EMPTY) ;
}
}
#endif
PRINT0 (("consider cn %d nd_small %d ", cn, nd_small)) ;
if (cn < nd_small) /* could be 'total_weight < nd_small' instead */
{
/* place all nodes in the separator */
PRINT0 ((" too small\n")) ;
sepsize = total_weight ;
}
else
{
/* Cp and Ci now contain the component, with cn nodes and cnz
* nonzeros. The mapping of a node cj into node j the main graph
* B is given by Map [cj] = j */
PRINT0 ((" cut\n")) ;
/* -------------------------------------------------------------- */
/* compress and partition the graph C */
/* -------------------------------------------------------------- */
/* The edge weights Cew [0..csize-1] are all 1's on input to and
* output from the partition routine. */
sepsize = partition (
#ifndef NDEBUG
csize,
#endif
nd_compress, Hash, C, Cnw, Cew,
Cmap, Part, Common) ;
/* contents of Cp and Ci no longer needed ] */
if (sepsize < 0)
{
/* failed */
C->ncol = n ; /* restore size for memory usage statistics */
CHOLMOD(free_sparse) (&C, Common) ;
CHOLMOD(free_sparse) (&B, Common) ;
CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ;
CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ;
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
return (EMPTY) ;
}
/* -------------------------------------------------------------- */
/* compress B based on how C was compressed */
/* -------------------------------------------------------------- */
for (ci = 0 ; ci < cn ; ci++)
{
if (Hash [ci] < EMPTY)
{
/* ci is dead in C, having been absorbed into cj */
cj = FLIP (Hash [ci]) ;
PRINT2 (("In C, "ID" absorbed into "ID" (wgt now "ID")\n",
ci, cj, Cnw [cj])) ;
/* i is dead in B, having been absorbed into j */
i = Map [ci] ;
j = Map [cj] ;
PRINT2 (("In B, "ID" (wgt "ID") => "ID" (wgt "ID")\n",
i, Bnw [i], j, Bnw [j], Cnw [cj])) ;
/* more than one node may be absorbed into j. This is
* accounted for in Cnw [cj]. Assign it here rather
* than += Bnw [i] */
Bnw [i] = 0 ;
Bnw [j] = Cnw [cj] ;
Flag [i] = FLIP (j) ;
}
}
DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) cnt += Bnw [j]) ;
ASSERT (cnt == n) ;
}
/* contents of Cnw [0..cn-1] no longer needed ] */
/* ------------------------------------------------------------------ */
/* order the separator, and stack the components when C is split */
/* ------------------------------------------------------------------ */
/* one more component has been found: either the separator of C,
* or all of C */
ASSERT (sepsize >= 0 && sepsize <= total_weight) ;
PRINT0 (("sepsize %d tot %d : %8.4f ", sepsize, total_weight,
((double) sepsize) / ((double) total_weight))) ;
if (sepsize == total_weight || sepsize == 0 ||
sepsize > nd_oksep * total_weight)
{
/* Order the nodes in the component. The separator is too large,
* or empty. Note that the partition routine cannot return a
* sepsize of zero, but it can return a separator consisting of the
* whole graph. The "sepsize == 0" test is kept, above, in case the
* partition routine changes. In either case, this component
* remains unsplit, and becomes a leaf of the separator tree. */
PRINT2 (("cnode %d sepsize zero or all of graph: "ID"\n",
cnode, sepsize)) ;
for (cj = 0 ; cj < cn ; cj++)
{
j = Map [cj] ;
Flag [j] = FLIP (cnode) ;
PRINT2 ((" node cj: "ID" j: "ID" ordered\n", cj, j)) ;
}
ASSERT (Flag [cnode] == FLIP (cnode)) ;
ASSERT (cnode != EMPTY && Flag [cnode] < EMPTY) ;
PRINT0 (("discarded\n")) ;
}
else
{
/* Order the nodes in the separator of C and find a new repnode
* cnode that is in the separator of C. This requires the separator
* to be non-empty. */
PRINT0 (("sepsize not tiny: "ID"\n", sepsize)) ;
parent = CParent [cnode] ;
ASSERT (parent >= EMPTY && parent < n) ;
CParent [cnode] = -2 ;
cnode = EMPTY ;
for (cj = 0 ; cj < cn ; cj++)
{
j = Map [cj] ;
if (Part [cj] == 2)
{
/* All nodes in the separator become part of a component
* whose repnode is cnode */
PRINT2 (("node cj: "ID" j: "ID" ordered\n", cj, j)) ;
if (cnode == EMPTY)
{
PRINT2(("------------new cnode: cj "ID" j "ID"\n",
cj, j)) ;
cnode = j ;
}
Flag [j] = FLIP (cnode) ;
}
else
{
PRINT2 ((" node cj: "ID" j: "ID" not ordered\n",
cj, j)) ;
}
}
ASSERT (cnode != EMPTY && Flag [cnode] < EMPTY) ;
ASSERT (CParent [cnode] == -2) ;
CParent [cnode] = parent ;
/* find the connected components when C is split, and push
* them on the Cstack. Use Imap as workspace for Queue. [ */
/* workspace: Flag (nrow) */
find_components (B, Map, cn, cnode, Part, Bnz,
CParent, Cstack, &top, Imap, Common) ;
/* done using Imap as workspace for Queue ] */
}
/* contents of Map [0..cn-1] no longer needed ] */
}
/* done using Cmember as workspace for Cmap ] */
/* done using Perm as workspace for Cstack ] */
/* ---------------------------------------------------------------------- */
/* place nodes removed via compression into their proper component */
/* ---------------------------------------------------------------------- */
/* At this point, all nodes are of Type 1, 2, or 3, as defined above. */
for (i = 0 ; i < n ; i++)
{
/* find the repnode cnode that contains node i */
j = FLIP (Flag [i]) ;
PRINT2 (("\nfind component for "ID", in: "ID"\n", i, j)) ;
ASSERT (j >= 0 && j < n) ;
DEBUG (cnt = 0) ;
while (CParent [j] == -2)
{
j = FLIP (Flag [j]) ;
PRINT2 ((" walk up to "ID" ", j)) ;
ASSERT (j >= 0 && j < n) ;
PRINT2 ((" CParent "ID"\n", CParent [j])) ;
ASSERT (cnt < n) ;
DEBUG (cnt++) ;
}
cnode = j ;
ASSERT (cnode >= 0 && cnode < n) ;
ASSERT (CParent [cnode] >= EMPTY && CParent [cnode] < n) ;
PRINT2 (("i "ID" is in component with cnode "ID"\n", i, cnode)) ;
ASSERT (Flag [cnode] == FLIP (cnode)) ;
/* Mark all nodes along the path from i to cnode as being in the
* component whos repnode is cnode. Perform path compression. */
j = FLIP (Flag [i]) ;
Flag [i] = FLIP (cnode) ;
DEBUG (cnt = 0) ;
while (CParent [j] == -2)
{
ASSERT (j >= 0 && j < n) ;
jnext = FLIP (Flag [j]) ;
PRINT2 ((" "ID" walk "ID" set cnode to "ID"\n", i, j, cnode)) ;
ASSERT (cnt < n) ;
DEBUG (cnt++) ;
Flag [j] = FLIP (cnode) ;
j = jnext ;
}
}
/* At this point, all nodes fall into Types 1 or 2, as defined above. */
#ifndef NDEBUG
for (j = 0 ; j < n ; j++)
{
PRINT2 (("j %d CParent %d ", j, CParent [j])) ;
if (CParent [j] >= EMPTY && CParent [j] < n)
{
/* case 1: j is a repnode of a component */
cnode = j ;
PRINT2 ((" a repnode\n")) ;
}
else
{
/* case 2: j is not a repnode of a component */
cnode = FLIP (Flag [j]) ;
PRINT2 ((" repnode is %d\n", cnode)) ;
ASSERT (cnode >= 0 && cnode < n) ;
ASSERT (CParent [cnode] >= EMPTY && CParent [cnode] < n) ;
}
ASSERT (Flag [cnode] == FLIP (cnode)) ;
/* case 3 no longer holds */
}
#endif
/* ---------------------------------------------------------------------- */
/* free workspace */
/* ---------------------------------------------------------------------- */
C->ncol = n ; /* restore size for memory usage statistics */
CHOLMOD(free_sparse) (&C, Common) ;
CHOLMOD(free_sparse) (&B, Common) ;
CHOLMOD(free) (csize, sizeof (Int), Cew, Common) ;
CHOLMOD(free) (3*n, sizeof (Int), Work3n, Common) ;
/* ---------------------------------------------------------------------- */
/* handle dense nodes */
/* ---------------------------------------------------------------------- */
/* The separator tree has nodes with either no children or two or more
* children - with one exception. There may exist a single root node with
* exactly one child, which holds the dense rows/columns of the matrix.
* Delete this node if it exists. */
if (ndense > 0)
{
ASSERT (CParent [cdense] == EMPTY) ; /* cdense has no parent */
/* find the children of cdense */
nchild = 0 ;
for (j = 0 ; j < n ; j++)
{
if (CParent [j] == cdense)
{
nchild++ ;
child = j ;
}
}
if (nchild == 1)
{
/* the cdense node has just one child; merge the two nodes */
PRINT1 (("root has one child\n")) ;
CParent [cdense] = -2 ; /* cdense is deleted */
CParent [child] = EMPTY ; /* child becomes a root */
for (j = 0 ; j < n ; j++)
{
if (Flag [j] == FLIP (cdense))
{
/* j is a dense node */
PRINT1 (("dense %d\n", j)) ;
Flag [j] = FLIP (child) ;
}
}
}
}
/* ---------------------------------------------------------------------- */
/* postorder the components */
/* ---------------------------------------------------------------------- */
DEBUG (for (cnt = 0, j = 0 ; j < n ; j++) if (CParent [j] != -2) cnt++) ;
/* use Cmember as workspace for Post [ */
Post = Cmember ;
/* cholmod_postorder uses Head and Iwork [0..2n]. It does not use Flag,
* which here holds the mapping of nodes to repnodes. It ignores all nodes
* for which CParent [j] < -1, so it operates just on the repnodes. */
/* workspace: Head (n), Iwork (2*n) */
ncomponents = CHOLMOD(postorder) (CParent, n, NULL, Post, Common) ;
ASSERT (cnt == ncomponents) ;
/* use Iwork [0..n-1] as workspace for Ipost ( */
Ipost = Iwork ;
DEBUG (for (j = 0 ; j < n ; j++) Ipost [j] = EMPTY) ;
/* compute inverse postorder */
for (c = 0 ; c < ncomponents ; c++)
{
cnode = Post [c] ;
ASSERT (cnode >= 0 && cnode < n) ;
Ipost [cnode] = c ;
ASSERT (Head [c] == EMPTY) ;
}
/* adjust the parent array */
/* Iwork [n..2n-1] used for NewParent [ */
NewParent = Iwork + n ;
for (c = 0 ; c < ncomponents ; c++)
{
parent = CParent [Post [c]] ;
NewParent [c] = (parent == EMPTY) ? EMPTY : (Ipost [parent]) ;
}
for (c = 0 ; c < ncomponents ; c++)
{
CParent [c] = NewParent [c] ;
}
ASSERT (CHOLMOD(dump_parent) (CParent, ncomponents, "CParent", Common)) ;
/* Iwork [n..2n-1] no longer needed for NewParent ] */
/* Cmember no longer needed for Post ] */
#ifndef NDEBUG
/* count the number of children of each node */
for (c = 0 ; c < ncomponents ; c++)
{
Cmember [c] = 0 ;
}
for (c = 0 ; c < ncomponents ; c++)
{
if (CParent [c] != EMPTY) Cmember [CParent [c]]++ ;
}
for (c = 0 ; c < ncomponents ; c++)
{
/* a node is either a leaf, or has 2 or more children */
ASSERT (Cmember [c] == 0 || Cmember [c] >= 2) ;
}
#endif
/* ---------------------------------------------------------------------- */
/* place each node in its component */
/* ---------------------------------------------------------------------- */
for (j = 0 ; j < n ; j++)
{
/* node j is in the cth component, whose repnode is cnode */
cnode = FLIP (Flag [j]) ;
PRINT2 (("j "ID" flag "ID" cnode "ID"\n",
j, Flag [j], FLIP (Flag [j]))) ;
ASSERT (cnode >= 0 && cnode < n) ;
c = Ipost [cnode] ;
ASSERT (c >= 0 && c < ncomponents) ;
Cmember [j] = c ;
}
/* Flag no longer needed for the node-to-component mapping */
/* done using Iwork [0..n-1] as workspace for Ipost ) */
/* ---------------------------------------------------------------------- */
/* clear the Flag array */
/* ---------------------------------------------------------------------- */
Common->mark = EMPTY ;
CHOLMOD_CLEAR_FLAG (Common) ;
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ;
/* ---------------------------------------------------------------------- */
/* find the permutation */
/* ---------------------------------------------------------------------- */
PRINT1 (("nd_camd: %d A->stype %d\n", nd_camd, A->stype)) ;
if (nd_camd)
{
/* ------------------------------------------------------------------ */
/* apply camd, csymamd, or ccolamd using the Cmember constraints */
/* ------------------------------------------------------------------ */
if (A->stype != 0)
{
/* ordering A+A', so fset and fsize are ignored.
* Add the upper/lower part to a symmetric lower/upper matrix by
* converting to unsymmetric mode
* workspace: Iwork (nrow) */
B = CHOLMOD(copy) (A, 0, -1, Common) ;
if (Common->status < CHOLMOD_OK)
{
PRINT0 (("make symmetric failed\n")) ;
return (EMPTY) ;
}
ASSERT ((Int) (B->nrow) == n && (Int) (B->ncol) == n) ;
PRINT2 (("nested dissection (2)\n")) ;
B->stype = -1 ;
if (nd_camd == 2)
{
/* workspace: Head (nrow+1), Iwork (nrow) if symmetric-upper */
ok = CHOLMOD(csymamd) (B, Cmember, Perm, Common) ;
}
else
{
/* workspace: Head (nrow), Iwork (4*nrow) */
ok = CHOLMOD(camd) (B, NULL, 0, Cmember, Perm, Common) ;
}
CHOLMOD(free_sparse) (&B, Common) ;
if (!ok)
{
/* failed */
PRINT0 (("camd/csymamd failed\n")) ;
return (EMPTY) ;
}
}
else
{
/* ordering A*A' or A(:,f)*A(:,f)' */
/* workspace: Iwork (nrow if no fset; MAX(nrow,ncol) if fset) */
if (!CHOLMOD(ccolamd) (A, fset, fsize, Cmember, Perm, Common))
{
/* ccolamd failed */
PRINT2 (("ccolamd failed\n")) ;
return (EMPTY) ;
}
}
}
else
{
/* ------------------------------------------------------------------ */
/* natural ordering of each component */
/* ------------------------------------------------------------------ */
/* use Iwork [0..n-1] for Next [ */
Next = Iwork ;
/* ------------------------------------------------------------------ */
/* place the nodes in link lists, one list per component */
/* ------------------------------------------------------------------ */
/* do so in reverse order, to preserve original ordering */
for (j = n-1 ; j >= 0 ; j--)
{
/* node j is in the cth component */
c = Cmember [j] ;
ASSERT (c >= 0 && c < ncomponents) ;
/* place node j in link list for component c */
Next [j] = Head [c] ;
Head [c] = j ;
}
/* ------------------------------------------------------------------ */
/* order each node in each component */
/* ------------------------------------------------------------------ */
k = 0 ;
for (c = 0 ; c < ncomponents ; c++)
{
for (j = Head [c] ; j != EMPTY ; j = Next [j])
{
Perm [k++] = j ;
}
Head [c] = EMPTY ;
}
ASSERT (k == n) ;
/* done using Iwork [0..n-1] for Next ] */
}
/* ---------------------------------------------------------------------- */
/* clear workspace and return number of components */
/* ---------------------------------------------------------------------- */
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ;
return (ncomponents) ;
}
/* ========================================================================== */
/* === cholmod_collapse_septree ============================================= */
/* ========================================================================== */
/* cholmod_nested_dissection returns the separator tree that was used in the
* constrained minimum degree algorithm. Parameter settings (nd_small,
* nd_oksep, etc) that give a good fill-reducing ordering may give too fine of
* a separator tree for other uses (parallelism, multi-level LPDASA, etc). This
* function takes as input the separator tree computed by
* cholmod_nested_dissection, and collapses selected subtrees into single
* nodes. A subtree is collapsed if its root node (the separator) is large
* compared to the total number of nodes in the subtree, or if the subtree is
* small. Note that the separator tree may actually be a forest.
*
* nd_oksep and nd_small act just like the ordering parameters in Common.
* Returns the new number of nodes in the separator tree.
*/
SuiteSparse_long CHOLMOD(collapse_septree)
(
/* ---- input ---- */
size_t n, /* # of nodes in the graph */
size_t ncomponents, /* # of nodes in the separator tree (must be <= n) */
double nd_oksep, /* collapse if #sep >= nd_oksep * #nodes in subtree */
size_t nd_small, /* collapse if #nodes in subtree < nd_small */
/* ---- in/out --- */
Int *CParent, /* size ncomponents; from cholmod_nested_dissection */
Int *Cmember, /* size n; from cholmod_nested_dissection */
/* --------------- */
cholmod_common *Common
)
{
Int *First, *Count, *Csubtree, *W, *Map ;
Int c, j, k, nc, sepsize, total_weight, parent, nc_new, first ;
int collapse = FALSE, ok = TRUE ;
size_t s ;
/* ---------------------------------------------------------------------- */
/* get inputs */
/* ---------------------------------------------------------------------- */
RETURN_IF_NULL_COMMON (EMPTY) ;
RETURN_IF_NULL (CParent, EMPTY) ;
RETURN_IF_NULL (Cmember, EMPTY) ;
if (n < ncomponents)
{
ERROR (CHOLMOD_INVALID, "invalid separator tree") ;
return (EMPTY) ;
}
Common->status = CHOLMOD_OK ;
nc = ncomponents ;
if (n <= 1 || ncomponents <= 1)
{
/* no change; tree is one node already */
return (nc) ;
}
nd_oksep = MAX (0, nd_oksep) ;
nd_oksep = MIN (1, nd_oksep) ;
nd_small = MAX (4, nd_small) ;
/* ---------------------------------------------------------------------- */
/* allocate workspace */
/* ---------------------------------------------------------------------- */
/* s = 3*ncomponents */
s = CHOLMOD(mult_size_t) (ncomponents, 3, &ok) ;
if (!ok)
{
ERROR (CHOLMOD_TOO_LARGE, "problem too large") ;
return (EMPTY) ;
}
CHOLMOD(allocate_work) (0, s, 0, Common) ;
if (Common->status < CHOLMOD_OK)
{
return (EMPTY) ;
}
W = Common->Iwork ;
Count = W ; W += ncomponents ; /* size ncomponents */
Csubtree = W ; W += ncomponents ; /* size ncomponents */
First = W ; W += ncomponents ; /* size ncomponents */
/* ---------------------------------------------------------------------- */
/* find the first descendant of each node of the separator tree */
/* ---------------------------------------------------------------------- */
for (c = 0 ; c < nc ; c++)
{
First [c] = EMPTY ;
}
for (k = 0 ; k < nc ; k++)
{
for (c = k ; c != EMPTY && First [c] == -1 ; c = CParent [c])
{
ASSERT (c >= 0 && c < nc) ;
First [c] = k ;
}
}
/* ---------------------------------------------------------------------- */
/* find the number of nodes of the graph in each node of the tree */
/* ---------------------------------------------------------------------- */
for (c = 0 ; c < nc ; c++)
{
Count [c] = 0 ;
}
for (j = 0 ; j < (Int) n ; j++)
{
ASSERT (Cmember [j] >= 0 && Cmember [j] < nc) ;
Count [Cmember [j]]++ ;
}
/* ---------------------------------------------------------------------- */
/* find the number of nodes in each subtree */
/* ---------------------------------------------------------------------- */
for (c = 0 ; c < nc ; c++)
{
/* each subtree includes its root */
Csubtree [c] = Count [c] ;
PRINT1 ((ID" size "ID" parent "ID" first "ID"\n",
c, Count [c], CParent [c], First [c])) ;
}
for (c = 0 ; c < nc ; c++)
{
/* add the subtree of the child, c, into the count of its parent */
parent = CParent [c] ;
ASSERT (parent >= EMPTY && parent < nc) ;
if (parent != EMPTY)
{
Csubtree [parent] += Csubtree [c] ;
}
}
#ifndef NDEBUG
/* the sum of the roots should be n */
j = 0 ;
for (c = 0 ; c < nc ; c++) if (CParent [c] == EMPTY) j += Csubtree [c] ;
ASSERT (j == (Int) n) ;
#endif
/* ---------------------------------------------------------------------- */
/* find subtrees to collapse */
/* ---------------------------------------------------------------------- */
/* consider all nodes in reverse post-order */
for (c = nc-1 ; c >= 0 ; c--)
{
/* consider the subtree rooted at node c */
sepsize = Count [c] ;
total_weight = Csubtree [c] ;
PRINT1 (("Node "ID" sepsize "ID" subtree "ID" ratio %g\n", c, sepsize,
total_weight, ((double) sepsize)/((double) total_weight))) ;
first = First [c] ;
if (first < c && /* c must not be a leaf */
(sepsize > nd_oksep * total_weight || total_weight < (int) nd_small))
{
/* this separator is too large, or the subtree is too small.
* collapse the tree, by converting the entire subtree rooted at
* c into a single node. The subtree consists of all nodes from
* First[c] to the root c. Flag all nodes from First[c] to c-1
* as dead.
*/
collapse = TRUE ;
for (k = first ; k < c ; k++)
{
CParent [k] = -2 ;
PRINT1 ((" collapse node "ID"\n", k)) ;
}
/* continue at the next node, first-1 */
c = first ;
}
}
PRINT1 (("collapse: %d\n", collapse)) ;
/* ---------------------------------------------------------------------- */
/* compress the tree */
/* ---------------------------------------------------------------------- */
Map = Count ; /* Count no longer needed */
nc_new = nc ;
if (collapse)
{
nc_new = 0 ;
for (c = 0 ; c < nc ; c++)
{
Map [c] = nc_new ;
if (CParent [c] >= EMPTY)
{
/* node c is alive, and becomes node Map[c] in the new tree.
* Increment nc_new for the next node c. */
nc_new++ ;
}
}
PRINT1 (("Collapse the tree from "ID" to "ID" nodes\n", nc, nc_new)) ;
ASSERT (nc_new > 0) ;
for (c = 0 ; c < nc ; c++)
{
parent = CParent [c] ;
if (parent >= EMPTY)
{
/* node c is alive */
CParent [Map [c]] = (parent == EMPTY) ? EMPTY : Map [parent] ;
}
}
for (j = 0 ; j < (Int) n ; j++)
{
PRINT1 (("j "ID" Cmember[j] "ID" Map[Cmember[j]] "ID"\n",
j, Cmember [j], Map [Cmember [j]])) ;
Cmember [j] = Map [Cmember [j]] ;
}
}
/* ---------------------------------------------------------------------- */
/* return new size of separator tree */
/* ---------------------------------------------------------------------- */
return (nc_new) ;
}
#endif
|