1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
|
/* ========================================================================== */
/* === Supernodal/t_cholmod_super_numeric =================================== */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* CHOLMOD/Supernodal Module. Copyright (C) 2005-2012, Timothy A. Davis
* http://www.suitesparse.com
* -------------------------------------------------------------------------- */
/* Template routine for cholmod_super_numeric. All xtypes supported, except
* that a zomplex A and F result in a complex L (there is no supernodal
* zomplex L).
*/
/* ========================================================================== */
/* === complex arithmetic =================================================== */
/* ========================================================================== */
#include "cholmod_template.h"
#undef L_ENTRY
#undef L_CLEAR
#undef L_ASSIGN
#undef L_MULTADD
#undef L_ASSEMBLE
#undef L_ASSEMBLESUB
#ifdef REAL
/* -------------------------------------------------------------------------- */
/* A, F, and L are all real */
/* -------------------------------------------------------------------------- */
#define L_ENTRY 1
#define L_CLEAR(Lx,p) Lx [p] = 0
#define L_ASSIGN(Lx,q, Ax,Az,p) Lx [q] = Ax [p]
#define L_MULTADD(Lx,q, Ax,Az,p, f) Lx [q] += Ax [p] * f [0]
#define L_ASSEMBLE(Lx,q,b) Lx [q] += b [0]
#define L_ASSEMBLESUB(Lx,q,C,p) Lx [q] -= C [p]
#else
/* -------------------------------------------------------------------------- */
/* A and F are complex or zomplex, L and C are complex */
/* -------------------------------------------------------------------------- */
#define L_ENTRY 2
#define L_CLEAR(Lx,p) Lx [2*(p)] = 0 ; Lx [2*(p)+1] = 0
#define L_ASSEMBLE(Lx,q,b) Lx [2*(q)] += b [0] ;
#define L_ASSEMBLESUB(Lx,q,C,p) \
Lx [2*(q) ] -= C [2*(p) ] ; \
Lx [2*(q)+1] -= C [2*(p)+1] ;
#ifdef COMPLEX
/* -------------------------------------------------------------------------- */
/* A, F, L, and C are all complex */
/* -------------------------------------------------------------------------- */
#define L_ASSIGN(Lx,q, Ax,Az,p) \
Lx [2*(q) ] = Ax [2*(p) ] ; \
Lx [2*(q)+1] = Ax [2*(p)+1]
#define L_MULTADD(Lx,q, Ax,Az,p, f) \
Lx [2*(q) ] += Ax [2*(p) ] * f [0] - Ax [2*(p)+1] * f [1] ; \
Lx [2*(q)+1] += Ax [2*(p)+1] * f [0] + Ax [2*(p) ] * f [1]
#else
/* -------------------------------------------------------------------------- */
/* A and F are zomplex, L and C is complex */
/* -------------------------------------------------------------------------- */
#define L_ASSIGN(Lx,q, Ax,Az,p) \
Lx [2*(q) ] = Ax [p] ; \
Lx [2*(q)+1] = Az [p] ;
#define L_MULTADD(Lx,q, Ax,Az,p, f) \
Lx [2*(q) ] += Ax [p] * f [0] - Az [p] * f [1] ; \
Lx [2*(q)+1] += Az [p] * f [0] + Ax [p] * f [1]
#endif
#endif
/* ========================================================================== */
/* === t_cholmod_super_numeric ============================================== */
/* ========================================================================== */
/* This function returns FALSE only if integer overflow occurs in the BLAS.
* It returns TRUE otherwise whether or not the matrix is positive definite. */
static int TEMPLATE (cholmod_super_numeric)
(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* F = A' or A(:,f)' */
double beta [2], /* beta*I is added to diagonal of matrix to factorize */
/* ---- in/out --- */
cholmod_factor *L, /* factorization */
/* -- workspace -- */
cholmod_dense *Cwork, /* size (L->maxcsize)-by-1 */
/* --------------- */
cholmod_common *Common
)
{
double one [2], zero [2], tstart ;
double *Lx, *Ax, *Fx, *Az, *Fz, *C ;
Int *Super, *Head, *Ls, *Lpi, *Lpx, *Map, *SuperMap, *RelativeMap, *Next,
*Lpos, *Fp, *Fi, *Fnz, *Ap, *Ai, *Anz, *Iwork, *Next_save, *Lpos_save,
*Previous;
Int nsuper, n, j, i, k, s, p, pend, k1, k2, nscol, psi, psx, psend, nsrow,
pj, d, kd1, kd2, info, ndcol, ndrow, pdi, pdx, pdend, pdi1, pdi2, pdx1,
ndrow1, ndrow2, px, dancestor, sparent, dnext, nsrow2, ndrow3, pk, pf,
pfend, stype, Apacked, Fpacked, q, imap, repeat_supernode, nscol2, ss,
tail, nscol_new = 0;
/* ---------------------------------------------------------------------- */
/* declarations for the GPU */
/* ---------------------------------------------------------------------- */
/* these variables are not used if the GPU module is not installed */
#ifdef GPU_BLAS
Int ndescendants, mapCreatedOnGpu, supernodeUsedGPU,
idescendant, dlarge, dsmall, skips ;
int iHostBuff, iDevBuff, useGPU, GPUavailable ;
cholmod_gpu_pointers *gpu_p, gpu_pointer_struct ;
gpu_p = &gpu_pointer_struct ;
#endif
/* ---------------------------------------------------------------------- */
/* guard against integer overflow in the BLAS */
/* ---------------------------------------------------------------------- */
/* If integer overflow occurs in the BLAS, Common->status is set to
* CHOLMOD_TOO_LARGE, and the contents of Lx are undefined. */
Common->blas_ok = TRUE ;
/* ---------------------------------------------------------------------- */
/* get inputs */
/* ---------------------------------------------------------------------- */
nsuper = L->nsuper ;
n = L->n ;
C = Cwork->x ; /* workspace of size L->maxcsize */
one [0] = 1.0 ; /* ALPHA for *syrk, *herk, *gemm, and *trsm */
one [1] = 0. ;
zero [0] = 0. ; /* BETA for *syrk, *herk, and *gemm */
zero [1] = 0. ;
/* Iwork must be of size 2n + 5*nsuper, allocated in the caller,
* cholmod_super_numeric. The memory cannot be allocated here because the
* cholmod_super_numeric initializes SuperMap, and cholmod_allocate_work
* does not preserve existing workspace if the space needs to be increase
* in size. */
/* allocate integer workspace */
Iwork = Common->Iwork ;
SuperMap = Iwork ; /* size n (i/i/l) */
RelativeMap = Iwork + n ; /* size n (i/i/l) */
Next = Iwork + 2*((size_t) n) ; /* size nsuper*/
Lpos = Iwork + 2*((size_t) n) + nsuper ; /* size nsuper*/
Next_save = Iwork + 2*((size_t) n) + 2*((size_t) nsuper) ;/* size nsuper*/
Lpos_save = Iwork + 2*((size_t) n) + 3*((size_t) nsuper) ;/* size nsuper*/
Previous = Iwork + 2*((size_t) n) + 4*((size_t) nsuper) ;/* size nsuper*/
Map = Common->Flag ; /* size n, use Flag as workspace for Map array */
Head = Common->Head ; /* size n+1, only Head [0..nsuper-1] used */
Ls = L->s ;
Lpi = L->pi ;
Lpx = L->px ;
Super = L->super ;
Lx = L->x ;
#ifdef GPU_BLAS
/* local copy of useGPU */
if ( (Common->useGPU == 1) && L->useGPU)
{
/* Initialize the GPU. If not found, don't use it. */
useGPU = TEMPLATE2 (CHOLMOD (gpu_init))
(C, L, Common, nsuper, n, Lpi[nsuper]-Lpi[0], gpu_p) ;
}
else
{
useGPU = 0;
}
/* fprintf (stderr, "local useGPU %d\n", useGPU) ; */
#endif
#ifndef NTIMER
/* clear GPU / CPU statistics */
Common->CHOLMOD_CPU_GEMM_CALLS = 0 ;
Common->CHOLMOD_CPU_SYRK_CALLS = 0 ;
Common->CHOLMOD_CPU_TRSM_CALLS = 0 ;
Common->CHOLMOD_CPU_POTRF_CALLS = 0 ;
Common->CHOLMOD_GPU_GEMM_CALLS = 0 ;
Common->CHOLMOD_GPU_SYRK_CALLS = 0 ;
Common->CHOLMOD_GPU_TRSM_CALLS = 0 ;
Common->CHOLMOD_GPU_POTRF_CALLS = 0 ;
Common->CHOLMOD_CPU_GEMM_TIME = 0 ;
Common->CHOLMOD_CPU_SYRK_TIME = 0 ;
Common->CHOLMOD_CPU_TRSM_TIME = 0 ;
Common->CHOLMOD_CPU_POTRF_TIME = 0 ;
Common->CHOLMOD_GPU_GEMM_TIME = 0 ;
Common->CHOLMOD_GPU_SYRK_TIME = 0 ;
Common->CHOLMOD_GPU_TRSM_TIME = 0 ;
Common->CHOLMOD_GPU_POTRF_TIME = 0 ;
Common->CHOLMOD_ASSEMBLE_TIME = 0 ;
Common->CHOLMOD_ASSEMBLE_TIME2 = 0 ;
#endif
stype = A->stype ;
if (stype != 0)
{
/* F not accessed */
Fp = NULL ;
Fi = NULL ;
Fx = NULL ;
Fz = NULL ;
Fnz = NULL ;
Fpacked = TRUE ;
}
else
{
Fp = F->p ;
Fi = F->i ;
Fx = F->x ;
Fz = F->z ;
Fnz = F->nz ;
Fpacked = F->packed ;
}
Ap = A->p ;
Ai = A->i ;
Ax = A->x ;
Az = A->z ;
Anz = A->nz ;
Apacked = A->packed ;
/* clear the Map so that changes in the pattern of A can be detected */
#pragma omp parallel for num_threads(CHOLMOD_OMP_NUM_THREADS) \
if ( n > 128 ) schedule (static)
for (i = 0 ; i < n ; i++)
{
Map [i] = EMPTY ;
}
/* If the matrix is not positive definite, the supernode s containing the
* first zero or negative diagonal entry of L is repeated (but factorized
* only up to just before the problematic diagonal entry). The purpose is
* to provide MATLAB with [R,p]=chol(A); columns 1 to p-1 of L=R' are
* required, where L(p,p) is the problematic diagonal entry. The
* repeat_supernode flag tells us whether this is the repeated supernode.
* Once supernode s is repeated, the factorization is terminated. */
repeat_supernode = FALSE ;
#ifdef GPU_BLAS
if ( useGPU )
{
/* Case of GPU, zero all supernodes at one time for better performance*/
TEMPLATE2 (CHOLMOD (gpu_clear_memory))(Lx, L->xsize,
CHOLMOD_OMP_NUM_THREADS);
}
#endif
/* ---------------------------------------------------------------------- */
/* supernodal numerical factorization */
/* ---------------------------------------------------------------------- */
for (s = 0 ; s < nsuper ; s++)
{
/* ------------------------------------------------------------------ */
/* get the size of supernode s */
/* ------------------------------------------------------------------ */
k1 = Super [s] ; /* s contains columns k1 to k2-1 of L */
k2 = Super [s+1] ;
nscol = k2 - k1 ; /* # of columns in all of s */
psi = Lpi [s] ; /* pointer to first row of s in Ls */
psx = Lpx [s] ; /* pointer to first row of s in Lx */
psend = Lpi [s+1] ; /* pointer just past last row of s in Ls */
nsrow = psend - psi ; /* # of rows in all of s */
PRINT1 (("====================================================\n"
"S "ID" k1 "ID" k2 "ID" nsrow "ID" nscol "ID" psi "ID" psend "
""ID" psx "ID"\n", s, k1, k2, nsrow, nscol, psi, psend, psx)) ;
/* ------------------------------------------------------------------ */
/* zero the supernode s */
/* ------------------------------------------------------------------ */
ASSERT ((size_t) (psx + nsrow*nscol) <= L->xsize) ;
pend = psx + nsrow * nscol ; /* s is nsrow-by-nscol */
#ifdef GPU_BLAS
if ( !useGPU )
#endif
{
/* Case of no GPU, zero individual supernodes */
#pragma omp parallel for num_threads(CHOLMOD_OMP_NUM_THREADS) \
schedule (static) if ( pend - psx > 1024 )
for (p = psx ; p < pend ; p++) {
L_CLEAR (Lx,p);
}
}
/* ------------------------------------------------------------------ */
/* construct the scattered Map for supernode s */
/* ------------------------------------------------------------------ */
/* If row i is the kth row in s, then Map [i] = k. Similarly, if
* column j is the kth column in s, then Map [j] = k. */
#pragma omp parallel for num_threads(CHOLMOD_OMP_NUM_THREADS) \
if ( nsrow > 128 )
for (k = 0 ; k < nsrow ; k++)
{
PRINT1 ((" "ID" map "ID"\n", Ls [psi+k], k)) ;
Map [Ls [psi + k]] = k ;
}
/* ------------------------------------------------------------------ */
/* when using GPU, reorder supernodes by levels.*/
/* (all supernodes in a level are independent) */
/* ------------------------------------------------------------------ */
#ifdef GPU_BLAS
if ( useGPU )
{
TEMPLATE2 (CHOLMOD (gpu_reorder_descendants))
( Common, Super, &s, Lpi, Lpos, Head, Next, Previous,
&ndescendants, &tail, &mapCreatedOnGpu, gpu_p ) ;
}
#endif
/* ------------------------------------------------------------------ */
/* copy matrix into supernode s (lower triangular part only) */
/* ------------------------------------------------------------------ */
pk = psx ;
#pragma omp parallel for private ( p, pend, pfend, pf, i, j, imap, q ) \
num_threads(CHOLMOD_OMP_NUM_THREADS) if ( k2-k1 > 64 )
for (k = k1 ; k < k2 ; k++)
{
if (stype != 0)
{
/* copy the kth column of A into the supernode */
p = Ap [k] ;
pend = (Apacked) ? (Ap [k+1]) : (p + Anz [k]) ;
for ( ; p < pend ; p++)
{
/* row i of L is located in row Map [i] of s */
i = Ai [p] ;
if (i >= k)
{
/* This test is here simply to avoid a segfault. If
* the test is false, the numeric factorization of A
* is undefined. It does not detect all invalid
* entries, only some of them (when debugging is
* enabled, and Map is cleared after each step, then
* all entries not in the pattern of L are detected). */
imap = Map [i] ;
if (imap >= 0 && imap < nsrow)
{
/* Lx [Map [i] + pk] = Ax [p] ; */
L_ASSIGN (Lx,(imap+(psx+(k-k1)*nsrow)), Ax,Az,p) ;
}
}
}
}
else
{
double fjk[2];
/* copy the kth column of A*F into the supernode */
pf = Fp [k] ;
pfend = (Fpacked) ? (Fp [k+1]) : (p + Fnz [k]) ;
for ( ; pf < pfend ; pf++)
{
j = Fi [pf] ;
/* fjk = Fx [pf] ; */
L_ASSIGN (fjk,0, Fx,Fz,pf) ;
p = Ap [j] ;
pend = (Apacked) ? (Ap [j+1]) : (p + Anz [j]) ;
for ( ; p < pend ; p++)
{
i = Ai [p] ;
if (i >= k)
{
/* See the discussion of imap above. */
imap = Map [i] ;
if (imap >= 0 && imap < nsrow)
{
/* Lx [Map [i] + pk] += Ax [p] * fjk ; */
L_MULTADD (Lx,(imap+(psx+(k-k1)*nsrow)),
Ax,Az,p, fjk) ;
}
}
}
}
}
}
/* add beta to the diagonal of the supernode, if nonzero */
if (beta [0] != 0.0)
{
/* note that only the real part of beta is used */
pk = psx ;
for (k = k1 ; k < k2 ; k++)
{
/* Lx [pk] += beta [0] ; */
L_ASSEMBLE (Lx,pk, beta) ;
pk += nsrow + 1 ; /* advance to the next diagonal entry */
}
}
PRINT1 (("Supernode with just A: repeat: "ID"\n", repeat_supernode)) ;
DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY,
Common)) ;
PRINT1 (("\n\n")) ;
/* ------------------------------------------------------------------ */
/* save/restore the list of supernodes */
/* ------------------------------------------------------------------ */
if (!repeat_supernode)
{
/* Save the list of pending descendants in case s is not positive
* definite. Also save Lpos for each descendant d, so that we can
* find which part of d is used to update s. */
for (d = Head [s] ; d != EMPTY ; d = Next [d])
{
Lpos_save [d] = Lpos [d] ;
Next_save [d] = Next [d] ;
}
}
else
{
for (d = Head [s] ; d != EMPTY ; d = Next [d])
{
Lpos [d] = Lpos_save [d] ;
Next [d] = Next_save [d] ;
}
}
/* ------------------------------------------------------------------ */
/* update supernode s with each pending descendant d */
/* ------------------------------------------------------------------ */
#ifndef NDEBUG
for (d = Head [s] ; d != EMPTY ; d = Next [d])
{
PRINT1 (("\nWill update "ID" with Child: "ID"\n", s, d)) ;
DEBUG (CHOLMOD(dump_super) (d, Super, Lpi, Ls, Lpx, Lx, L_ENTRY,
Common)) ;
}
PRINT1 (("\nNow factorizing supernode "ID":\n", s)) ;
#endif
#ifdef GPU_BLAS
/* initialize the buffer counter */
if ( useGPU ) {
Common->ibuffer = 0;
supernodeUsedGPU = 0;
idescendant = 0;
d = Head[s];
dnext = d;
dlarge = Next[d];
dsmall = tail;
GPUavailable = 1;
skips = 0;
}
else
{
dnext = Head[s];
}
#else
/* GPU module not installed */
dnext = Head[s];
#endif
while
#ifdef GPU_BLAS
( (!useGPU && (dnext != EMPTY))
|| (useGPU && (idescendant < ndescendants)))
#else
( dnext != EMPTY )
#endif
{
#ifdef GPU_BLAS
if ( useGPU ) {
/* Conditionally select the next descendant supernode to
* assemble.
* + first, select the largest descendant
* + subsequently, if gpu host buffers are available, select
* the largest remaining descendant for assembly on the GPU
* + otherwise select the smallest remaining descendant for
* assembly on the CPU
*
* The objective is to keep the GPU busy assembling the largest
* descendants, and simultaneously keep the CPU busy assembling
* the smallest descendants.
*
* As this is called for every descendent supernode, moving
* this code to t_cholmod_gpu incurs substantial overhead -
* ~20 GF/s on audikw_1 - so it is being left here.
*/
iHostBuff =
(Common->ibuffer) % CHOLMOD_HOST_SUPERNODE_BUFFERS;
cudaError_t cuErr;
if ( idescendant > 0 ) {
if ( GPUavailable == -1 || skips > 0) {
d = dsmall;
dsmall = Previous[dsmall];
skips--;
}
else {
cuErr = cudaEventQuery
( Common->updateCBuffersFree[iHostBuff] );
if ( cuErr == cudaSuccess ) {
/* buffers are available, so assemble a large
* descendant (anticipating that this will be
* assembled on the GPU) */
d = dlarge;
dlarge = Next[dlarge];
GPUavailable = 1;
skips = 0;
}
else {
/* buffers are not available, so the GPU is busy,
* so assemble a small descendant (anticipating
* that it will be assembled on the host) */
d = dsmall;
dsmall = Previous[dsmall];
GPUavailable = 0;
/* if the GPUs are busy, then do this many
* supernodes on the CPU before querying GPUs
* again. */
skips = CHOLMOD_GPU_SKIP;
}
}
}
idescendant++;
}
else
{
d = dnext;
}
#else
/* GPU module not installed at compile time */
d = dnext ;
#endif
/* -------------------------------------------------------------- */
/* get the size of supernode d */
/* -------------------------------------------------------------- */
kd1 = Super [d] ; /* d contains cols kd1 to kd2-1 of L */
kd2 = Super [d+1] ;
ndcol = kd2 - kd1 ; /* # of columns in all of d */
pdi = Lpi [d] ; /* pointer to first row of d in Ls */
pdx = Lpx [d] ; /* pointer to first row of d in Lx */
pdend = Lpi [d+1] ; /* pointer just past last row of d in Ls */
ndrow = pdend - pdi ; /* # rows in all of d */
PRINT1 (("Child: ")) ;
DEBUG (CHOLMOD(dump_super) (d, Super, Lpi, Ls, Lpx, Lx, L_ENTRY,
Common)) ;
/* -------------------------------------------------------------- */
/* find the range of rows of d that affect rows k1 to k2-1 of s */
/* -------------------------------------------------------------- */
p = Lpos [d] ; /* offset of 1st row of d affecting s */
pdi1 = pdi + p ; /* ptr to 1st row of d affecting s in Ls */
pdx1 = pdx + p ; /* ptr to 1st row of d affecting s in Lx */
/* there must be at least one row remaining in d to update s */
ASSERT (pdi1 < pdend) ;
PRINT1 (("Lpos[d] "ID" pdi1 "ID" Ls[pdi1] "ID"\n",
Lpos[d], pdi1, Ls [pdi1])) ;
ASSERT (Ls [pdi1] >= k1 && Ls [pdi1] < k2) ;
for (pdi2 = pdi1 ; pdi2 < pdend && Ls [pdi2] < k2 ; pdi2++) ;
ndrow1 = pdi2 - pdi1 ; /* # rows in first part of d */
ndrow2 = pdend - pdi1 ; /* # rows in remaining d */
/* rows Ls [pdi1 ... pdi2-1] are in the range k1 to k2-1. Since d
* affects s, this set cannot be empty. */
ASSERT (pdi1 < pdi2 && pdi2 <= pdend) ;
PRINT1 (("ndrow1 "ID" ndrow2 "ID"\n", ndrow1, ndrow2)) ;
DEBUG (for (p = pdi1 ; p < pdi2 ; p++)
PRINT1 (("Ls["ID"] "ID"\n", p, Ls[p]))) ;
/* -------------------------------------------------------------- */
/* construct the update matrix C for this supernode d */
/* -------------------------------------------------------------- */
/* C = L (k1:n-1, kd1:kd2-1) * L (k1:k2-1, kd1:kd2-1)', except
* that k1:n-1 refers to all of the rows in L, but many of the
* rows are all zero. Supernode d holds columns kd1 to kd2-1 of L.
* Nonzero rows in the range k1:k2-1 are in the list
* Ls [pdi1 ... pdi2-1], of size ndrow1. Nonzero rows in the range
* k2:n-1 are in the list Ls [pdi2 ... pdend], of size ndrow2. Let
* L1 = L (Ls [pdi1 ... pdi2-1], kd1:kd2-1), and let
* L2 = L (Ls [pdi2 ... pdend], kd1:kd2-1). C is ndrow2-by-ndrow1.
* Let C1 be the first ndrow1 rows of C and let C2 be the last
* ndrow2-ndrow1 rows of C. Only the lower triangular part of C1
* needs to be computed since C1 is symmetric.
*/
/* maxcsize is the largest size of C for all pairs (d,s) */
ASSERT (ndrow2 * ndrow1 <= ((Int) L->maxcsize)) ;
/* compute leading ndrow1-by-ndrow1 lower triangular block of C,
* C1 = L1*L1' */
ndrow3 = ndrow2 - ndrow1 ; /* number of rows of C2 */
ASSERT (ndrow3 >= 0) ;
#ifdef GPU_BLAS
if ( useGPU ) {
/* set up GPU to assemble new supernode */
if ( GPUavailable == 1) {
if ( ndrow2 * L_ENTRY >= CHOLMOD_ND_ROW_LIMIT &&
ndcol * L_ENTRY >= CHOLMOD_ND_COL_LIMIT ) {
if ( ! mapCreatedOnGpu ) {
TEMPLATE2 ( CHOLMOD (gpu_initialize_supernode))
( Common, nscol, nsrow, psi, gpu_p );
mapCreatedOnGpu = 1;
}
}
else {
/* we've reached the limit of GPU-eligible descendants
* flag to stop stop performing cudaEventQueries */
GPUavailable = -1;
}
}
}
#endif
#ifdef GPU_BLAS
if ( !useGPU
|| GPUavailable!=1
|| !TEMPLATE2 (CHOLMOD (gpu_updateC)) (ndrow1, ndrow2, ndrow,
ndcol, nsrow, pdx1, pdi1, Lx, C, Common, gpu_p))
#endif
{
/* GPU not installed, or not used */
#ifndef NTIMER
Common->CHOLMOD_CPU_SYRK_CALLS++ ;
tstart = SuiteSparse_time () ;
#endif
#ifdef REAL
BLAS_dsyrk ("L", "N",
ndrow1, ndcol, /* N, K: L1 is ndrow1-by-ndcol*/
one, /* ALPHA: 1 */
Lx + L_ENTRY*pdx1, ndrow, /* A, LDA: L1, ndrow */
zero, /* BETA: 0 */
C, ndrow2) ; /* C, LDC: C1 */
#else
BLAS_zherk ("L", "N",
ndrow1, ndcol, /* N, K: L1 is ndrow1-by-ndcol*/
one, /* ALPHA: 1 */
Lx + L_ENTRY*pdx1, ndrow, /* A, LDA: L1, ndrow */
zero, /* BETA: 0 */
C, ndrow2) ; /* C, LDC: C1 */
#endif
#ifndef NTIMER
Common->CHOLMOD_CPU_SYRK_TIME += SuiteSparse_time () - tstart ;
#endif
/* compute remaining (ndrow2-ndrow1)-by-ndrow1 block of C,
* C2 = L2*L1' */
if (ndrow3 > 0)
{
#ifndef NTIMER
Common->CHOLMOD_CPU_GEMM_CALLS++ ;
tstart = SuiteSparse_time () ;
#endif
#ifdef REAL
BLAS_dgemm ("N", "C",
ndrow3, ndrow1, ndcol, /* M, N, K */
one, /* ALPHA: 1 */
Lx + L_ENTRY*(pdx1 + ndrow1), /* A, LDA: L2 */
ndrow, /* ndrow */
Lx + L_ENTRY*pdx1, /* B, LDB: L1 */
ndrow, /* ndrow */
zero, /* BETA: 0 */
C + L_ENTRY*ndrow1, /* C, LDC: C2 */
ndrow2) ;
#else
BLAS_zgemm ("N", "C",
ndrow3, ndrow1, ndcol, /* M, N, K */
one, /* ALPHA: 1 */
Lx + L_ENTRY*(pdx1 + ndrow1), /* A, LDA: L2 */
ndrow, /* ndrow */
Lx + L_ENTRY*pdx1, /* B, LDB: L1, ndrow */
ndrow,
zero, /* BETA: 0 */
C + L_ENTRY*ndrow1, /* C, LDC: C2 */
ndrow2) ;
#endif
#ifndef NTIMER
Common->CHOLMOD_CPU_GEMM_TIME +=
SuiteSparse_time () - tstart ;
#endif
}
/* ---------------------------------------------------------- */
/* construct relative map to assemble d into s */
/* ---------------------------------------------------------- */
DEBUG (CHOLMOD(dump_real) ("C", C, ndrow2, ndrow1, TRUE,
L_ENTRY, Common)) ;
#pragma omp parallel for num_threads(CHOLMOD_OMP_NUM_THREADS) \
if ( ndrow2 > 64 )
for (i = 0 ; i < ndrow2 ; i++)
{
RelativeMap [i] = Map [Ls [pdi1 + i]] ;
ASSERT (RelativeMap [i] >= 0 && RelativeMap [i] < nsrow) ;
}
/* ---------------------------------------------------------- */
/* assemble C into supernode s using the relative map */
/* ---------------------------------------------------------- */
#pragma omp parallel for private ( j, i, px, q ) \
num_threads(CHOLMOD_OMP_NUM_THREADS) if (ndrow1 > 64 )
for (j = 0 ; j < ndrow1 ; j++) /* cols k1:k2-1 */
{
ASSERT (RelativeMap [j] == Map [Ls [pdi1 + j]]) ;
ASSERT (RelativeMap [j] >= 0 && RelativeMap [j] < nscol) ;
px = psx + RelativeMap [j] * nsrow ;
for (i = j ; i < ndrow2 ; i++) /* rows k1:n-1 */
{
ASSERT (RelativeMap [i] == Map [Ls [pdi1 + i]]) ;
ASSERT (RelativeMap [i] >= j && RelativeMap[i] < nsrow);
/* Lx [px + RelativeMap [i]] -= C [i + pj] ; */
q = px + RelativeMap [i] ;
L_ASSEMBLESUB (Lx,q, C, i+ndrow2*j) ;
}
}
}
#ifdef GPU_BLAS
else
{
supernodeUsedGPU = 1; /* GPU was used for this supernode*/
Common->ibuffer++; /* gpu_updateC is asynchronous, so use
* the next host buffer for the next
* supernode */
Common->ibuffer = Common->ibuffer%
(CHOLMOD_HOST_SUPERNODE_BUFFERS*CHOLMOD_DEVICE_STREAMS);
}
#endif
/* -------------------------------------------------------------- */
/* prepare this supernode d for its next ancestor */
/* -------------------------------------------------------------- */
dnext = Next [d] ;
if (!repeat_supernode)
{
/* If node s is being repeated, Head [dancestor] has already
* been cleared (set to EMPTY). It must remain EMPTY. The
* dancestor will not be factorized since the factorization
* terminates at node s. */
Lpos [d] = pdi2 - pdi ;
if (Lpos [d] < ndrow)
{
dancestor = SuperMap [Ls [pdi2]] ;
ASSERT (dancestor > s && dancestor < nsuper) ;
/* place d in the link list of its next ancestor */
Next [d] = Head [dancestor] ;
Head [dancestor] = d ;
}
}
} /* end of descendant supernode loop */
#ifdef GPU_BLAS
if ( useGPU ) {
iHostBuff = (Common->ibuffer)%CHOLMOD_HOST_SUPERNODE_BUFFERS;
iDevBuff = (Common->ibuffer)%CHOLMOD_DEVICE_STREAMS;
/* combine updates assembled on the GPU with updates
* assembled on the CPU */
TEMPLATE2 ( CHOLMOD (gpu_final_assembly ))
( Common, Lx, psx, nscol, nsrow, supernodeUsedGPU,
&iHostBuff, &iDevBuff, gpu_p );
}
#endif
PRINT1 (("\nSupernode with contributions A: repeat: "ID"\n",
repeat_supernode)) ;
DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY,
Common)) ;
PRINT1 (("\n\n")) ;
/* ------------------------------------------------------------------ */
/* factorize diagonal block of supernode s in LL' */
/* ------------------------------------------------------------------ */
/* The current supernode s is ready to factorize. It has been updated
* by all descendant supernodes. Let S = the current supernode, which
* holds rows k1:n-1 and columns k1:k2-1 of the updated matrix. It
* splits into two parts: the square diagonal block S1, and the
* rectangular part S2. Here, S1 is factorized into L1*L1' and
* overwritten by L1.
*
* If supernode s is being repeated, only factorize it up to but not
* including the column containing the problematic entry.
*/
nscol2 = (repeat_supernode) ? (nscol_new) : (nscol) ;
#ifdef GPU_BLAS
if ( !useGPU
|| !supernodeUsedGPU
|| !TEMPLATE2 (CHOLMOD (gpu_lower_potrf))(nscol2, nsrow, psx, Lx,
&info, Common, gpu_p))
#endif
{
/* Note that the GPU will not be used for the triangular solve */
#ifdef GPU_BLAS
supernodeUsedGPU = 0;
#endif
#ifndef NTIMER
Common->CHOLMOD_CPU_POTRF_CALLS++ ;
tstart = SuiteSparse_time () ;
#endif
#ifdef REAL
LAPACK_dpotrf ("L",
nscol2, /* N: nscol2 */
Lx + L_ENTRY*psx, nsrow, /* A, LDA: S1, nsrow */
info) ; /* INFO */
#else
LAPACK_zpotrf ("L",
nscol2, /* N: nscol2 */
Lx + L_ENTRY*psx, nsrow, /* A, LDA: S1, nsrow */
info) ; /* INFO */
#endif
#ifndef NTIMER
Common->CHOLMOD_CPU_POTRF_TIME += SuiteSparse_time ()- tstart ;
#endif
}
/* ------------------------------------------------------------------ */
/* check if the matrix is not positive definite */
/* ------------------------------------------------------------------ */
if (repeat_supernode)
{
/* the leading part has been refactorized; it must have succeeded */
info = 0 ;
/* zero out the rest of this supernode */
p = psx + nsrow * nscol_new ;
pend = psx + nsrow * nscol ; /* s is nsrow-by-nscol */
for ( ; p < pend ; p++)
{
/* Lx [p] = 0 ; */
L_CLEAR (Lx,p) ;
}
}
/* info is set to one in LAPACK_*potrf if blas_ok is FALSE. It is
* set to zero in dpotrf/zpotrf if the factorization was successful. */
if (CHECK_BLAS_INT && !Common->blas_ok)
{
ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ;
}
if (info != 0)
{
/* Matrix is not positive definite. dpotrf/zpotrf do NOT report an
* error if the diagonal of L has NaN's, only if it has a zero. */
if (Common->status == CHOLMOD_OK)
{
ERROR (CHOLMOD_NOT_POSDEF, "matrix not positive definite") ;
}
/* L->minor is the column of L that contains a zero or negative
* diagonal term. */
L->minor = k1 + info - 1 ;
/* clear the link lists of all subsequent supernodes */
for (ss = s+1 ; ss < nsuper ; ss++)
{
Head [ss] = EMPTY ;
}
/* zero this supernode, and all remaining supernodes */
pend = L->xsize ;
for (p = psx ; p < pend ; p++)
{
/* Lx [p] = 0. ; */
L_CLEAR (Lx,p) ;
}
/* If L is indefinite, it still contains useful information.
* Supernodes 0 to s-1 are valid, similar to MATLAB [R,p]=chol(A),
* where the 1-based p is identical to the 0-based L->minor. Since
* L->minor is in the current supernode s, it and any columns to the
* left of it in supernode s are also all zero. This differs from
* [R,p]=chol(A), which contains nonzero rows 1 to p-1. Fix this
* by setting repeat_supernode to TRUE, and repeating supernode s.
*
* If Common->quick_return_if_not_posdef is true, then the entire
* supernode s is not factorized; it is left as all zero.
*/
if (info == 1 || Common->quick_return_if_not_posdef)
{
/* If the first column of supernode s contains a zero or
* negative diagonal entry, then it is already properly set to
* zero. Also, info will be 1 if integer overflow occured in
* the BLAS. */
Head [s] = EMPTY ;
#ifdef GPU_BLAS
if ( useGPU ) {
CHOLMOD (gpu_end) (Common) ;
}
#endif
return (Common->status >= CHOLMOD_OK) ;
}
else
{
/* Repeat supernode s, but only factorize it up to but not
* including the column containing the problematic diagonal
* entry. */
repeat_supernode = TRUE ;
s-- ;
nscol_new = info - 1 ;
continue ;
}
}
/* ------------------------------------------------------------------ */
/* compute the subdiagonal block and prepare supernode for its parent */
/* ------------------------------------------------------------------ */
nsrow2 = nsrow - nscol2 ;
if (nsrow2 > 0)
{
/* The current supernode is columns k1 to k2-1 of L. Let L1 be the
* diagonal block (factorized by dpotrf/zpotrf above; rows/cols
* k1:k2-1), and L2 be rows k2:n-1 and columns k1:k2-1 of L. The
* triangular system to solve is L2*L1' = S2, where S2 is
* overwritten with L2. More precisely, L2 = S2 / L1' in MATLAB
* notation.
*/
#ifdef GPU_BLAS
if ( !useGPU
|| !supernodeUsedGPU
|| !TEMPLATE2 (CHOLMOD(gpu_triangular_solve))
(nsrow2, nscol2, nsrow, psx, Lx, Common, gpu_p))
#endif
{
#ifndef NTIMER
Common->CHOLMOD_CPU_TRSM_CALLS++ ;
tstart = SuiteSparse_time () ;
#endif
#ifdef REAL
BLAS_dtrsm ("R", "L", "C", "N",
nsrow2, nscol2, /* M, N */
one, /* ALPHA: 1 */
Lx + L_ENTRY*psx, nsrow, /* A, LDA: L1, nsrow */
Lx + L_ENTRY*(psx + nscol2), /* B, LDB, L2, nsrow */
nsrow) ;
#else
BLAS_ztrsm ("R", "L", "C", "N",
nsrow2, nscol2, /* M, N */
one, /* ALPHA: 1 */
Lx + L_ENTRY*psx, nsrow, /* A, LDA: L1, nsrow */
Lx + L_ENTRY*(psx + nscol2), /* B, LDB, L2, nsrow */
nsrow) ;
#endif
#ifndef NTIMER
Common->CHOLMOD_CPU_TRSM_TIME += SuiteSparse_time () - tstart ;
#endif
}
if (CHECK_BLAS_INT && !Common->blas_ok)
{
ERROR (CHOLMOD_TOO_LARGE, "problem too large for the BLAS") ;
}
if (!repeat_supernode)
{
/* Lpos [s] is offset of first row of s affecting its parent */
Lpos [s] = nscol ;
sparent = SuperMap [Ls [psi + nscol]] ;
ASSERT (sparent != EMPTY) ;
ASSERT (Ls [psi + nscol] >= Super [sparent]) ;
ASSERT (Ls [psi + nscol] < Super [sparent+1]) ;
ASSERT (SuperMap [Ls [psi + nscol]] == sparent) ;
ASSERT (sparent > s && sparent < nsuper) ;
/* place s in link list of its parent */
Next [s] = Head [sparent] ;
Head [sparent] = s ;
}
}
else
{
#ifdef GPU_BLAS
TEMPLATE2 ( CHOLMOD (gpu_copy_supernode) )
( Common, Lx, psx, nscol, nscol2, nsrow,
supernodeUsedGPU, iHostBuff, gpu_p);
#endif
}
Head [s] = EMPTY ; /* link list for supernode s no longer needed */
/* clear the Map (debugging only, to detect changes in pattern of A) */
DEBUG (for (k = 0 ; k < nsrow ; k++) Map [Ls [psi + k]] = EMPTY) ;
DEBUG (CHOLMOD(dump_super) (s, Super, Lpi, Ls, Lpx, Lx, L_ENTRY,
Common)) ;
if (repeat_supernode)
{
/* matrix is not positive definite; finished clean-up for supernode
* containing negative diagonal */
#ifdef GPU_BLAS
if ( useGPU )
{
CHOLMOD (gpu_end) (Common) ;
}
#endif
return (Common->status >= CHOLMOD_OK) ;
}
}
/* success; matrix is positive definite */
L->minor = n ;
#ifdef GPU_BLAS
if ( useGPU )
{
CHOLMOD (gpu_end) (Common) ;
}
#endif
return (Common->status >= CHOLMOD_OK) ;
}
#undef PATTERN
#undef REAL
#undef COMPLEX
#undef ZOMPLEX
|