| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 
 | //------------------------------------------------------------------------------
// GB_AxB_dot: C<M>=A'*B using dot products
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Parallel matrix-matrix multiply, A'*B, with optional mask M.  This
// method is used by GrB_mxm, GrB_vxm, and GrB_mxv.  For both of the latter two
// methods, B on input will be an nrows-by-1 column vxector.
// This function, and the matrices C, M, A, and B are all CSR/CSC agnostic.
// For this discussion, suppose they are CSC, with vlen = # of rows, and vdim =
// # of columns.
// C=A'*B, C<M>=A'*B or C<!M>=A'*B is being computed.  A has not been
// transposed yet (and will not be).  A and B must have the same vector length,
// vlen (as if both A and B are CSC matrices with the same number of rows, for
// example).  GB_AxB_dot2 and GB_AxB_dot3 operate on A' without forming it.
// GB_AxB_dot2 computes C=A'*B and C<!M>=A'*B, and it takes Omega(m*n) time,
// if C is m-by-n.  It is thus only suitable for cases when A and B are large,
// and C is small.  GB_AxB_dot3 computes C<M>=A'*B, and it only needs to
// examine entries in M, taking Omega(nnz(M)) time.  It can thus be used for
// very large matrices C.  GB_AxB_dot4 computes C+=A'*B when C is dense.
// The output matrix C has not been allocated.  It is an uninitialzed static
// header on input.  The mask M is optional.
// If the result is computed in-place, then the C parameter is ignored, and the
// result is computed in C_in instead.  This case requires the accum operator
// to match the monoid of the semiring.
// The semiring defines C=A*B.  flipxy modifies how the semiring multiply
// operator is applied.  If false, then fmult(aik,bkj) is computed.  If true,
// then the operands are swapped, and fmult(bkj,aij) is done instead.
// Context: the GB_Context containing the # of threads to use, a string of the
// user-callable function that is calling this function (GrB_mxm, GrB_mxv, or
// GxB_vxm) and detailed error reports.
#include "GB_mxm.h"
#define GB_FREE_ALL ;
GrB_Info GB_AxB_dot                 // dot product (multiple methods)
(
    GrB_Matrix C,                   // output matrix, static header
    GrB_Matrix C_in,                // input/output matrix, if done in-place
    GrB_Matrix M,                   // optional mask matrix
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, mask was applied
    bool *done_in_place,            // if true, C_in was computed in-place
    GB_Context Context
)
{
    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------
    GrB_Info info ;
    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
    ASSERT_MATRIX_OK_OR_NULL (M, "M for dot A'*B", GB0) ;
    ASSERT (!GB_PENDING (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT_MATRIX_OK (A, "A for dot A'*B", GB0) ;
    GB_MATRIX_WAIT (A) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT_MATRIX_OK (B, "B for dot A'*B", GB0) ;
    GB_MATRIX_WAIT (B) ;
    ASSERT (!GB_PENDING (B)) ;
    ASSERT (!GB_JUMBLED (B)) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT_SEMIRING_OK (semiring, "semiring for dot A'*B", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (C_in, "C_in for dot A'*B", GB0) ;
    //--------------------------------------------------------------------------
    // determine if C is iso
    //--------------------------------------------------------------------------
    GrB_Type ztype = semiring->add->op->ztype ;
    size_t zsize = ztype->size ;
    GB_void cscalar [GB_VLA(zsize)] ;
    bool C_iso = GB_iso_AxB (cscalar, A, B, A->vlen, semiring, flipxy, false) ;
    if (C_iso)
    {
        // revise the method if A and B are both iso and full
        if (A->iso && GB_as_if_full (A) && B->iso && GB_as_if_full (B))
        {
            //------------------------------------------------------------------
            // C is iso and full; do not apply the mask
            //------------------------------------------------------------------
            GBURBLE ("(iso full dot) ") ;
            (*done_in_place) = false ;
            (*mask_applied) = false ;
            // set C->iso = true    OK
            info = GB_new_bix (&C, // existing header
                ztype, A->vdim, B->vdim, GB_Ap_null, true, GxB_FULL, false,
                GB_HYPER_SWITCH_DEFAULT, -1, 1, true, true, Context) ;
            if (info == GrB_SUCCESS)
            { 
                C->magic = GB_MAGIC ;
                memcpy (C->x, cscalar, zsize) ;
            }
            return (info) ;
        }
    }
    const char *iso_kind = (C_iso) ? "iso " : "" ;
    //--------------------------------------------------------------------------
    // in-place C+=A'*B.  mask is not present (and not applied)
    //--------------------------------------------------------------------------
    if (GB_AxB_dot4_control (C_iso, C_in, M, Mask_comp, accum, semiring))
    { 
        // C_in must be as-if-full on input.  M must be NULL and not
        // complemented.  the C iso case is not handled (where C is iso on
        // output), but C_in might be iso on input.
        (*mask_applied) = false ;    // no mask to apply
        info = GB_AxB_dot4 (C_in, A, B, semiring, flipxy, done_in_place,
            Context) ;
        if (info != GrB_NO_VALUE)
        { 
            // return if dot4 has handled this case, otherwise fall through
            // to dot2 or dot3 below.
            return (info) ;
        }
    }
    //--------------------------------------------------------------------------
    // check the empty case
    //--------------------------------------------------------------------------
    if (A->vlen == 0)
    { 
        // no work to do; C is an empty matrix, normally hypersparse
        GBURBLE ("(empty dot) ") ;
        if (C_in != NULL) return (GrB_SUCCESS) ;
        return (GB_new (&C, // auto sparsity, existing header
            ztype, A->vdim, B->vdim, GB_Ap_calloc, true, GxB_AUTO_SPARSITY,
            GB_Global_hyper_switch_get ( ), 1, Context)) ;
    }
    //--------------------------------------------------------------------------
    // C<M>=A'*B: general case
    //--------------------------------------------------------------------------
    if (GB_AxB_dot3_control (M, Mask_comp))
    { 
        // use dot3 if M is present and not complemented, and either sparse or
        // hypersparse
        GBURBLE ("(%sdot3) ", iso_kind) ;
        (*mask_applied) = true ;    // mask is always applied
        (*done_in_place) = false ;
        #if defined ( GBCUDA )
        if (!C_iso &&   // FIXME for CUDA, remove and create C iso on output
            GB_AxB_dot3_cuda_branch (M, Mask_struct, A, B, semiring,
            flipxy, Context))
        {
            // FIXME for CUDA: can M be jumbled for the CUDA kernel?
            GB_MATRIX_WAIT (M) ;    // make sure it's not jumbled
            if (GB_AxB_dot3_control (M, Mask_comp)
                && !GB_IS_HYPERSPARSE (M)   // FIXME for CUDA, remove this
            )
            {
                return (GB_AxB_dot3_cuda (C, M, Mask_struct, A, B, semiring,
                    flipxy, Context)) ;
            }
        }
        else
        #endif
        { 
            // use the CPU
            return (GB_AxB_dot3 (C, C_iso, cscalar, M, Mask_struct, A, B,
                semiring, flipxy, Context)) ;
        }
    }
    //--------------------------------------------------------------------------
    // general case: C<M>=A'*B, C<!M>=A'B*, or C=A'*B, not in-place
    //--------------------------------------------------------------------------
    GBURBLE ("(%sdot2) ", iso_kind) ;
    (*mask_applied) = (M != NULL) ; // mask applied if present
    (*done_in_place) = false ;      // TODO: allow dot2 to work in-place
    return (GB_AxB_dot2 (C, C_iso, cscalar, M, Mask_comp, Mask_struct,
        false, A, B, semiring, flipxy, Context)) ;
}
 |