| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 
 | //------------------------------------------------------------------------------
// GB_emult_02: C = A.*B where A is sparse/hyper and B is bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = A.*B where A is sparse/hyper and B is bitmap/full constructs C with
// the same sparsity structure as A.  This method can also be called with
// the two input matrices swapped, with flipxy true, to handle the case
// where A is bitmap/full and B is sparse/hyper.
// When no mask is present, or the mask is applied later, this method handles
// the following cases:
        //      ------------------------------------------
        //      C       =           A       .*      B
        //      ------------------------------------------
        //      sparse  .           sparse          bitmap
        //      sparse  .           sparse          full  
        //      sparse  .           bitmap          sparse
        //      sparse  .           full            sparse
// If M is sparse/hyper and complemented, it is not passed here:
        //      ------------------------------------------
        //      C       <!M>=       A       .*      B
        //      ------------------------------------------
        //      sparse  sparse      sparse          bitmap  (mask later)
        //      sparse  sparse      sparse          full    (mask later)
        //      sparse  sparse      bitmap          sparse  (mask later)
        //      sparse  sparse      full            sparse  (mask later)
// If M is present, it is bitmap/full:
        //      ------------------------------------------
        //      C      <M> =        A       .*      B
        //      ------------------------------------------
        //      sparse  bitmap      sparse          bitmap
        //      sparse  bitmap      sparse          full  
        //      sparse  bitmap      bitmap          sparse
        //      sparse  bitmap      full            sparse
        //      ------------------------------------------
        //      C      <M> =        A       .*      B
        //      ------------------------------------------
        //      sparse  full        sparse          bitmap
        //      sparse  full        sparse          full  
        //      sparse  full        bitmap          sparse
        //      sparse  full        full            sparse
        //      ------------------------------------------
        //      C      <!M> =        A       .*      B
        //      ------------------------------------------
        //      sparse  bitmap      sparse          bitmap
        //      sparse  bitmap      sparse          full  
        //      sparse  bitmap      bitmap          sparse
        //      sparse  bitmap      full            sparse
        //      ------------------------------------------
        //      C      <!M> =        A       .*      B
        //      ------------------------------------------
        //      sparse  full        sparse          bitmap
        //      sparse  full        sparse          full  
        //      sparse  full        bitmap          sparse
        //      sparse  full        full            sparse
#include "GB_ewise.h"
#include "GB_emult.h"
#include "GB_binop.h"
#include "GB_unused.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif
#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_WERK_POP (Work, int64_t) ;           \
    GB_WERK_POP (A_ek_slicing, int64_t) ;   \
}
#define GB_FREE_ALL                         \
{                                           \
    GB_FREE_WORKSPACE ;                     \
    GB_phbix_free (C) ;                   \
}
GrB_Info GB_emult_02        // C=A.*B when A is sparse/hyper, B bitmap/full
(
    GrB_Matrix C,           // output matrix, static header
    const GrB_Type ctype,   // type of output matrix C
    const bool C_is_csc,    // format of output matrix C
    const GrB_Matrix M,     // optional mask, unused if NULL
    const bool Mask_struct, // if true, use the only structure of M
    const bool Mask_comp,   // if true, use !M
    const GrB_Matrix A,     // input A matrix (sparse/hyper)
    const GrB_Matrix B,     // input B matrix (bitmap/full)
    GrB_BinaryOp op,        // op to perform C = op (A,B)
    bool flipxy,            // if true use fmult(y,x) else fmult(x,y)
    GB_Context Context
)
{
    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------
    GrB_Info info ;
    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
    ASSERT_MATRIX_OK_OR_NULL (M, "M for emult_02", GB0) ;
    ASSERT_MATRIX_OK (A, "A for emult_02", GB0) ;
    ASSERT_MATRIX_OK (B, "B for emult_02", GB0) ;
    ASSERT_BINARYOP_OK (op, "op for emult_02", GB0) ;
    ASSERT_TYPE_OK (ctype, "ctype for emult_02", GB0) ;
    ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
    ASSERT (M == NULL || GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
    int C_sparsity = GB_sparsity (A) ;
    if (M == NULL)
    { 
        GBURBLE ("emult_02:(%s=%s.*%s)",
            GB_sparsity_char (C_sparsity),
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B)) ;
    }
    else
    { 
        GBURBLE ("emult_02:(%s<%s%s%s>=%s.*%s) ",
            GB_sparsity_char (C_sparsity),
            Mask_comp ? "!" : "",
            GB_sparsity_char_matrix (M),
            Mask_struct ? ",struct" : "",
            GB_sparsity_char_matrix (A),
            GB_sparsity_char_matrix (B)) ;
    }
    //--------------------------------------------------------------------------
    // revise the operator to handle flipxy
    //--------------------------------------------------------------------------
    // Replace the ANY operator with SECOND.  ANY and SECOND give the same
    // result if flipxy is false.  However, SECOND is changed to FIRST if
    // flipxy is true.  This ensures that the results do not depend on the
    // sparsity structures of A and B.
    if (op->opcode == GB_ANY_binop_code)
    {
        switch (op->xtype->code)
        {
            case GB_BOOL_code   : op = GrB_SECOND_BOOL   ; break ;
            case GB_INT8_code   : op = GrB_SECOND_INT8   ; break ;
            case GB_INT16_code  : op = GrB_SECOND_INT16  ; break ;
            case GB_INT32_code  : op = GrB_SECOND_INT32  ; break ;
            case GB_INT64_code  : op = GrB_SECOND_INT64  ; break ;
            case GB_UINT8_code  : op = GrB_SECOND_UINT8  ; break ;
            case GB_UINT16_code : op = GrB_SECOND_UINT16 ; break ;
            case GB_UINT32_code : op = GrB_SECOND_UINT32 ; break ;
            case GB_UINT64_code : op = GrB_SECOND_UINT64 ; break ;
            case GB_FP32_code   : op = GrB_SECOND_FP32   ; break ;
            case GB_FP64_code   : op = GrB_SECOND_FP64   ; break ;
            case GB_FC32_code   : op = GxB_SECOND_FC32   ; break ;
            case GB_FC64_code   : op = GxB_SECOND_FC64   ; break ;
            default: ;
        }
    }
    if (flipxy)
    {
        bool handled ;
        op = GB_flip_op (op, &handled) ;
        if (handled) flipxy = false ;
    }
    ASSERT_BINARYOP_OK (op, "final op for emult_02", GB0) ;
    //--------------------------------------------------------------------------
    // declare workspace
    //--------------------------------------------------------------------------
    GB_WERK_DECLARE (Work, int64_t) ;
    int64_t *restrict Wfirst    = NULL ;
    int64_t *restrict Wlast     = NULL ;
    int64_t *restrict Cp_kfirst = NULL ;
    GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
    //--------------------------------------------------------------------------
    // get M, A, and B
    //--------------------------------------------------------------------------
    const int8_t  *restrict Mb = (M == NULL) ? NULL : M->b ;
    const GB_void *restrict Mx = (M == NULL || Mask_struct) ? NULL :
        (const GB_void *) M->x ;
    const size_t msize = (M == NULL) ? 0 : M->type->size ;
    const int64_t *restrict Ap = A->p ;
    const int64_t *restrict Ah = A->h ;
    const int64_t *restrict Ai = A->i ;
    const int64_t vlen = A->vlen ;
    const int64_t vdim = A->vdim ;
    const int64_t nvec = A->nvec ;
    const int64_t anz = GB_nnz (A) ;
    const int8_t *restrict Bb = B->b ;
    const bool B_is_bitmap = GB_IS_BITMAP (B) ;
    //--------------------------------------------------------------------------
    // check if C is iso and compute its iso value if it is
    //--------------------------------------------------------------------------
    const size_t csize = ctype->size ;
    GB_void cscalar [GB_VLA(csize)] ;
    bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;
    //--------------------------------------------------------------------------
    // allocate C->p and C->h
    //--------------------------------------------------------------------------
    GB_OK (GB_new (&C, // sparse or hyper (same as A), existing header
        ctype, vlen, vdim, GB_Ap_calloc, C_is_csc,
        C_sparsity, A->hyper_switch, nvec, Context)) ;
    int64_t *restrict Cp = C->p ;
    //--------------------------------------------------------------------------
    // slice the input matrix A
    //--------------------------------------------------------------------------
    int A_nthreads, A_ntasks ;
    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    GB_SLICE_MATRIX (A, 8, chunk) ;
    //--------------------------------------------------------------------------
    // count entries in C
    //--------------------------------------------------------------------------
    C->nvec_nonempty = A->nvec_nonempty ;
    C->nvec = nvec ;
    const bool C_has_pattern_of_A = !B_is_bitmap && (M == NULL) ;
    if (!C_has_pattern_of_A)
    {
        //----------------------------------------------------------------------
        // allocate workspace
        //----------------------------------------------------------------------
        GB_WERK_PUSH (Work, 3*A_ntasks, int64_t) ;
        if (Work == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
        Wfirst    = Work ;
        Wlast     = Work + A_ntasks ;
        Cp_kfirst = Work + A_ntasks * 2 ;
        //----------------------------------------------------------------------
        // count entries in C
        //----------------------------------------------------------------------
        // This phase is very similar to GB_select_phase1 (GB_ENTRY_SELECTOR).
        if (M == NULL)
        {
            //------------------------------------------------------------------
            // Method2(a): C = A.*B where A is sparse/hyper and B is bitmap
            //------------------------------------------------------------------
            ASSERT (B_is_bitmap) ;
            int tid ;
            #pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
            for (tid = 0 ; tid < A_ntasks ; tid++)
            {
                int64_t kfirst = kfirst_Aslice [tid] ;
                int64_t klast  = klast_Aslice  [tid] ;
                Wfirst [tid] = 0 ;
                Wlast  [tid] = 0 ;
                for (int64_t k = kfirst ; k <= klast ; k++)
                {
                    // count the entries in C(:,j)
                    int64_t j = GBH (Ah, k) ;
                    int64_t pB_start = j * vlen ;
                    int64_t pA, pA_end ;
                    GB_get_pA (&pA, &pA_end, tid, k,
                        kfirst, klast, pstart_Aslice, Ap, vlen) ;
                    int64_t cjnz = 0 ;
                    for ( ; pA < pA_end ; pA++)
                    { 
                        cjnz += Bb [pB_start + Ai [pA]] ;
                    }
                    if (k == kfirst)
                    { 
                        Wfirst [tid] = cjnz ;
                    }
                    else if (k == klast)
                    { 
                        Wlast [tid] = cjnz ;
                    }
                    else
                    { 
                        Cp [k] = cjnz ; 
                    }
                }
            }
        }
        else
        {
            //------------------------------------------------------------------
            // Method2(c): C<#M> = A.*B; M, B bitmap/full, A is sparse/hyper
            //------------------------------------------------------------------
            ASSERT (M != NULL) ;
            int tid ;
            #pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
            for (tid = 0 ; tid < A_ntasks ; tid++)
            {
                int64_t kfirst = kfirst_Aslice [tid] ;
                int64_t klast  = klast_Aslice  [tid] ;
                Wfirst [tid] = 0 ;
                Wlast  [tid] = 0 ;
                for (int64_t k = kfirst ; k <= klast ; k++)
                {
                    // count the entries in C(:,j)
                    int64_t j = GBH (Ah, k) ;
                    int64_t pB_start = j * vlen ;
                    int64_t pA, pA_end ;
                    GB_get_pA (&pA, &pA_end, tid, k,
                        kfirst, klast, pstart_Aslice, Ap, vlen) ;
                    int64_t cjnz = 0 ;
                    for ( ; pA < pA_end ; pA++)
                    { 
                        int64_t i = Ai [pA] ;
                        int64_t pB = pB_start + i ;
                        bool mij = GBB (Mb, pB) && GB_mcast (Mx, pB, msize) ;
                        mij = mij ^ Mask_comp ;
                        cjnz += (mij && GBB (Bb, pB)) ;
                    }
                    if (k == kfirst)
                    { 
                        Wfirst [tid] = cjnz ;
                    }
                    else if (k == klast)
                    { 
                        Wlast [tid] = cjnz ;
                    }
                    else
                    { 
                        Cp [k] = cjnz ; 
                    }
                }
            }
        }
        //----------------------------------------------------------------------
        // finalize Cp, cumulative sum of Cp and compute Cp_kfirst
        //----------------------------------------------------------------------
        GB_ek_slice_merge1 (Cp, Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
        GB_ek_slice_merge2 (&(C->nvec_nonempty), Cp_kfirst, Cp, nvec,
            Wfirst, Wlast, A_ek_slicing, A_ntasks, A_nthreads, Context) ;
    }
    //--------------------------------------------------------------------------
    // allocate C->i and C->x
    //--------------------------------------------------------------------------
    int64_t cnz = (C_has_pattern_of_A) ? anz : Cp [nvec] ;
    // set C->iso = C_iso   OK
    GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, C_iso, Context)) ;
    //--------------------------------------------------------------------------
    // copy pattern into C
    //--------------------------------------------------------------------------
    // TODO: could make these components of C shallow instead of memcpy
    if (GB_IS_HYPERSPARSE (A))
    { 
        // copy A->h into C->h
        GB_memcpy (C->h, Ah, nvec * sizeof (int64_t), A_nthreads) ;
    }
    if (C_has_pattern_of_A)
    { 
        // Method2(b): B is full and no mask present, so the pattern of C is
        // the same as the pattern of A
        GB_memcpy (Cp, Ap, (nvec+1) * sizeof (int64_t), A_nthreads) ;
        GB_memcpy (C->i, Ai, cnz * sizeof (int64_t), A_nthreads) ;
    }
    C->jumbled = A->jumbled ;
    C->magic = GB_MAGIC ;
    //--------------------------------------------------------------------------
    // get the opcode
    //--------------------------------------------------------------------------
    // if flipxy was true on input and the op is positional, FIRST, SECOND, or
    // PAIR, the op has already been flipped, so these tests do not have to
    // consider that case.
    GB_Opcode opcode = op->opcode ;
    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
    bool op_is_first  = (opcode == GB_FIRST_binop_code) ;
    bool op_is_second = (opcode == GB_SECOND_binop_code) ;
    bool op_is_pair   = (opcode == GB_PAIR_binop_code) ;
    GB_Type_code ccode = ctype->code ;
    //--------------------------------------------------------------------------
    // check if the values of A and/or B are ignored
    //--------------------------------------------------------------------------
    // With C = ewisemult (A,B), only the intersection of A and B is used.
    // If op is SECOND or PAIR, the values of A are never accessed.
    // If op is FIRST  or PAIR, the values of B are never accessed.
    // If op is PAIR, the values of A and B are never accessed.
    // Contrast with ewiseadd.
    // A is passed as x, and B as y, in z = op(x,y)
    bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
    bool B_is_pattern = op_is_first  || op_is_pair || op_is_positional ;
    //--------------------------------------------------------------------------
    // using a built-in binary operator (except for positional operators)
    //--------------------------------------------------------------------------
    #define GB_PHASE_2_OF_2
    bool done = false ;
    if (C_iso)
    { 
        //----------------------------------------------------------------------
        // C is iso
        //----------------------------------------------------------------------
        // Cx [0] = cscalar = op (A,B)
        GB_BURBLE_MATRIX (C, "(iso emult) ") ;
        memcpy (C->x, cscalar, csize) ;
        // pattern of C = set intersection of pattern of A and B
        // flipxy is ignored since the operator is not applied
        #define GB_ISO_EMULT
        #include "GB_emult_02_template.c"
        done = true ;
    }
    else
    {
        #ifndef GBCUDA_DEV
            //------------------------------------------------------------------
            // define the worker for the switch factory
            //------------------------------------------------------------------
            #define GB_AemultB_02(mult,xname) GB (_AemultB_02_ ## mult ## xname)
            #define GB_BINOP_WORKER(mult,xname)                         \
            {                                                           \
                info = GB_AemultB_02(mult,xname) (C,                    \
                    M, Mask_struct, Mask_comp, A, B, flipxy,            \
                    Cp_kfirst, A_ek_slicing, A_ntasks, A_nthreads) ;    \
                done = (info != GrB_NO_VALUE) ;                         \
            }                                                           \
            break ;
            //------------------------------------------------------------------
            // launch the switch factory
            //------------------------------------------------------------------
            GB_Type_code xcode, ycode, zcode ;
            if (!op_is_positional &&
                GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
                op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
            { 
                #define GB_NO_PAIR
                #include "GB_binop_factory.c"
            }
        #endif
    }
    //--------------------------------------------------------------------------
    // generic worker
    //--------------------------------------------------------------------------
    if (!done)
    { 
        GB_BURBLE_MATRIX (C, "(generic emult_02: %s) ", op->name) ;
        int ewise_method = flipxy ? GB_EMULT_METHOD3 : GB_EMULT_METHOD2 ;
        GB_ewise_generic (C, op, NULL, 0, 0,
            NULL, NULL, NULL, C_sparsity, ewise_method, Cp_kfirst,
            NULL, 0, 0, A_ek_slicing, A_ntasks, A_nthreads, NULL, 0, 0,
            M, Mask_struct, Mask_comp, A, B, Context) ;
    }
    //--------------------------------------------------------------------------
    // remove empty vectors from C, if hypersparse
    //--------------------------------------------------------------------------
    GB_OK (GB_hypermatrix_prune (C, Context)) ;
    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------
    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C output for emult_02", GB0) ;
    return (GrB_SUCCESS) ;
}
 |