| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 
 | //------------------------------------------------------------------------------
// GB_ijproperties: check I and determine its properties
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// check a list of indices I and determine its properties
#include "GB_ij.h"
// FUTURE:: if limit=0, print a different message.  see also setEl, extractEl.
#define GB_ICHECK(i,limit)                                                  \
{                                                                           \
    if ((i) < 0 || (i) >= (limit))                                          \
    {                                                                       \
        GB_ERROR (GrB_INDEX_OUT_OF_BOUNDS,                                  \
        "index " GBd " out of bounds, must be < " GBd , (i), (limit)) ;     \
    }                                                                       \
}
GrB_Info GB_ijproperties        // check I and determine its properties
(
    // input:
    const GrB_Index *I,         // list of indices, or special
    const int64_t ni,           // length I, or special
    const int64_t nI,           // actual length from GB_ijlength
    const int64_t limit,        // I must be in the range 0 to limit-1
    // input/output:
    int *Ikind,                 // kind of I, from GB_ijlength
    int64_t Icolon [3],         // begin:inc:end from GB_ijlength
    // output:
    bool *I_is_unsorted,        // true if I is out of order
    bool *I_has_dupl,           // true if I has a duplicate entry (undefined
                                // if I is unsorted)
    bool *I_is_contig,          // true if I is a contiguous list, imin:imax
    int64_t *imin_result,       // min (I)
    int64_t *imax_result,       // max (I)
    GB_Context Context
)
{
    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------
    // inputs:
    // I: a list of indices if Ikind is GB_LIST
    // limit: the matrix dimension (# of rows or # of columns)
    // ni: only used if Ikind is GB_LIST: the length of the array I
    // nI: the length of the list I, either actual or implicit
    // input/output:  these can be modified
    // Ikind: GB_ALL, GB_RANGE, GB_STRIDE (both +/- inc), or GB_LIST
    // Icolon: begin:inc:end for all but GB_LIST
    // outputs:
    // I_is_unsorted: true if Ikind == GB_LIST and not in ascending order
    // I_is_contig: true if I has the form I = begin:end
    // imin, imax: min (I) and max (I), but only including actual indices
    //      in the sequence.  The end value of I=begin:inc:end may not be
    //      reached.  For example if I=1:2:10 then max(I)=9, not 10.
    ASSERT (I != NULL) ;
    ASSERT (limit >= 0) ;
    ASSERT (limit <= GB_NMAX) ;
    int64_t imin, imax ;
    //--------------------------------------------------------------------------
    // scan I
    //--------------------------------------------------------------------------
    // scan the list of indices: check if OK, determine if they are
    // unsorted, or contiguous, their min and max index, and actual length
    bool I_unsorted = false ;
    bool I_has_duplicates = false ;
    bool I_contig = true ;
    if ((*Ikind) == GB_ALL)
    { 
        //----------------------------------------------------------------------
        // I = 0:limit-1
        //----------------------------------------------------------------------
        imin = 0 ;
        imax = limit-1 ;
        ASSERT (Icolon [GxB_BEGIN] == imin) ;
        ASSERT (Icolon [GxB_INC  ] == 1) ;
        ASSERT (Icolon [GxB_END  ] == imax) ;
    }
    else if ((*Ikind) == GB_RANGE)
    {
        //----------------------------------------------------------------------
        // I = imin:imax
        //----------------------------------------------------------------------
        imin = Icolon [GxB_BEGIN] ;
        ASSERT (Icolon [GxB_INC] == 1) ;
        imax = Icolon [GxB_END  ] ;
        if (imin > imax)
        { 
            // imin > imax: list is empty
            imin = limit ;
            imax = -1 ;
        }
        else
        { 
            // check the limits
            GB_ICHECK (imin, limit) ;
            GB_ICHECK (imax, limit) ;
        }
    }
    else if ((*Ikind) == GB_STRIDE)
    {
        //----------------------------------------------------------------------
        // I = imin:iinc:imax
        //----------------------------------------------------------------------
        // int64_t ibegin = Icolon [GxB_BEGIN] ;
        int64_t iinc   = Icolon [GxB_INC  ] ;
        // int64_t iend   = Icolon [GxB_END  ] ;
        // if iinc == 1 on input, the kind has been changed to GB_RANGE
        ASSERT (iinc != 1) ;
        if (iinc == 0)
        { 
            // stride is zero: list is empty, contiguous, and sorted
            imin = limit ;
            imax = -1 ;
        }
        else if (iinc > 0)
        { 
            // stride is positive, get the first and last indices
            imin = GB_ijlist (I, 0,    GB_STRIDE, Icolon) ;
            imax = GB_ijlist (I, nI-1, GB_STRIDE, Icolon) ;
        }
        else
        { 
            // stride is negative, get the first and last indices
            imin = GB_ijlist (I, nI-1, GB_STRIDE, Icolon) ;
            imax = GB_ijlist (I, 0,    GB_STRIDE, Icolon) ;
        }
        if (imin > imax)
        { 
            // list is empty: so it is contiguous and sorted
            imin = limit ;
            imax = -1 ;
            // change this to an empty GB_RANGE
            (*Ikind) = GB_RANGE ;
            Icolon [GxB_BEGIN] = imin ;
            Icolon [GxB_INC  ] = 1 ;
            Icolon [GxB_END  ] = imax ;
        }
        else
        { 
            // list is contiguous if the stride is 1, not contiguous otherwise
            I_contig = false ;
            // check the limits
            GB_ICHECK (imin, limit) ;
            GB_ICHECK (imax, limit) ;
        }
    }
    else // (*Ikind) == GB_LIST
    {
        //----------------------------------------------------------------------
        // determine the number of threads to use
        //----------------------------------------------------------------------
        GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
        int nthreads = GB_nthreads (ni, chunk, nthreads_max) ;
        int ntasks = (nthreads == 1) ? 1 : (8 * nthreads) ;
        ntasks = GB_IMIN (ntasks, ni) ;
        ntasks = GB_IMAX (ntasks, 0) ;
        //----------------------------------------------------------------------
        // I is an array of indices
        //----------------------------------------------------------------------
        // scan I to find imin and imax, and validate the list. Also determine
        // if it is sorted or not, and contiguous or not.
        imin = limit ;
        imax = -1 ;
        // allocate workspace for imin and imax
        GB_WERK_DECLARE (Work_imin, int64_t) ;
        GB_WERK_DECLARE (Work_imax, int64_t) ;
        GB_WERK_PUSH (Work_imin, ntasks, int64_t) ;
        GB_WERK_PUSH (Work_imax, ntasks, int64_t) ;
        if (Work_imin == NULL || Work_imax == NULL)
        { 
            // out of memory
            GB_WERK_POP (Work_imax, int64_t) ;
            GB_WERK_POP (Work_imin, int64_t) ;
            return (GrB_OUT_OF_MEMORY) ;
        }
        int tid ;
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
            reduction(||:I_unsorted) reduction(&&:I_contig) \
            reduction(||:I_has_duplicates)
        for (tid = 0 ; tid < ntasks ; tid++)
        {
            int64_t my_imin = limit ;
            int64_t my_imax = -1 ;
            int64_t istart, iend ;
            GB_PARTITION (istart, iend, ni, tid, ntasks) ;
            int64_t ilast = (istart == 0) ? -1 : I [istart-1] ;
            for (int64_t inew = istart ; inew < iend ; inew++)
            {
                int64_t i = I [inew] ;
                if (inew > 0)
                {
                    if (i < ilast)
                    { 
                        // The list I of row indices is out of order, and
                        // C=A(I,J) will need to use qsort to sort each column.
                        // If C=A(I,J)' is computed, however, this flag will be
                        // set back to false, since qsort is not needed if the
                        // result is transposed.
                        I_unsorted = true ;
                    }
                    else if (i == ilast)
                    { 
                        // I has at least one duplicate entry.  If I is
                        // unsorted, then it is not known if I has duplicates
                        // or not.  But if I is sorted, but with duplicates,
                        // then this flag will be true.
                        I_has_duplicates = true ;
                    }
                    if (i != ilast + 1)
                    { 
                        I_contig = false ;
                    }
                }
                my_imin = GB_IMIN (my_imin, i) ;
                my_imax = GB_IMAX (my_imax, i) ;
                ilast = i ;
            }
            Work_imin [tid] = my_imin ;
            Work_imax [tid] = my_imax ;
        }
        // wrapup
        for (tid = 0 ; tid < ntasks ; tid++)
        { 
            imin = GB_IMIN (imin, Work_imin [tid]) ;
            imax = GB_IMAX (imax, Work_imax [tid]) ;
        }
        // free workspace
        GB_WERK_POP (Work_imax, int64_t) ;
        GB_WERK_POP (Work_imin, int64_t) ;
        #ifdef GB_DEBUG
        {
            // check result with one thread
            bool I_unsorted2 = false ;
            bool I_has_dupl2 = false ;
            bool I_contig2 = true ;
            int64_t imin2 = limit ;
            int64_t imax2 = -1 ;
            int64_t ilast = -1 ;
            for (int64_t inew = 0 ; inew < ni ; inew++)
            {
                int64_t i = I [inew] ;
                if (inew > 0)
                {
                    if (i < ilast) I_unsorted2 = true ;
                    else if (i == ilast) I_has_dupl2 = true ;
                    if (i != ilast + 1) I_contig2 = false ;
                }
                imin2 = GB_IMIN (imin2, i) ;
                imax2 = GB_IMAX (imax2, i) ;
                ilast = i ;
            }
            ASSERT (I_unsorted == I_unsorted2) ;
            ASSERT (I_has_duplicates == I_has_dupl2) ;
            ASSERT (I_contig   == I_contig2) ;
            ASSERT (imin       == imin2) ;
            ASSERT (imax       == imax2) ;
        }
        #endif
        if (ni > 0)
        { 
            // check the limits
            GB_ICHECK (imin, limit) ;
            GB_ICHECK (imax, limit) ;
        }
        if (ni == 1)
        { 
            // a single entry does not need to be sorted
            ASSERT (I [0] == imin) ;
            ASSERT (I [0] == imax) ;
            ASSERT (I_unsorted == false) ;
            ASSERT (I_contig   == true) ;
        }
        if (ni == 0)
        {
            // the list is empty
            ASSERT (imin == limit && imax == -1) ;
        }
        //----------------------------------------------------------------------
        // change I if it is an explicit contiguous list of stride 1
        //----------------------------------------------------------------------
        if (I_contig)
        {
            // I is a contigous list of stride 1, imin:imax.
            // change Ikind to GB_ALL if 0:limit-1, or GB_RANGE otherwise
            if (imin == 0 && imax == limit-1)
            { 
                (*Ikind) = GB_ALL ;
            }
            else
            { 
                (*Ikind) = GB_RANGE ;
            }
            Icolon [GxB_BEGIN] = imin ;
            Icolon [GxB_INC  ] = 1 ;
            Icolon [GxB_END  ] = imax ;
        }
    }
    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------
    ASSERT (GB_IMPLIES (I_contig, !I_unsorted)) ;
    ASSERT (((*Ikind) == GB_ALL || (*Ikind) == GB_RANGE) == I_contig) ;
    // I_is_contig is true if the list of row indices is a contiguous list,
    // imin:imax.  This is an important special case.
    // I_is_unsorted is true if I is an explicit list, the list is non-empty,
    // and the indices are not sorted in ascending order.
    (*I_is_contig) = I_contig ;
    (*I_is_unsorted) = I_unsorted ;
    (*I_has_dupl) = I_has_duplicates ;
    (*imin_result) = imin ;
    (*imax_result) = imax ;
    return (GrB_SUCCESS) ;
}
 |