| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 
 | //------------------------------------------------------------------------------
// GB_msort_3: sort a 3-by-n list of integers, using A[0:2][ ] as the key
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// A parallel mergesort of an array of 3-by-n integers.  Each key
// consists of three integers.
#include "GB_msort_3.h"
//------------------------------------------------------------------------------
// GB_msort_3_binary_search: binary search for the pivot
//------------------------------------------------------------------------------
// The Pivot value is Y [pivot], and a binary search for the Pivot is made in
// the array X [p_pstart...p_end-1], which is sorted in non-decreasing order on
// input.  The return value is pleft, where
//
//    X [p_start ... pleft-1] <= Pivot and
//    X [pleft ... p_end-1] >= Pivot holds.
//
// pleft is returned in the range p_start to p_end.  If pleft is p_start, then
// the Pivot is smaller than all entries in X [p_start...p_end-1], and the left
// list X [p_start...pleft-1] is empty.  If pleft is p_end, then the Pivot is
// larger than all entries in X [p_start...p_end-1], and the right list X
// [pleft...p_end-1] is empty.
static int64_t GB_msort_3_binary_search    // return pleft
(
    const int64_t *restrict Y_0,         // Pivot is Y [pivot]
    const int64_t *restrict Y_1,
    const int64_t *restrict Y_2,
    const int64_t pivot,
    const int64_t *restrict X_0,         // search in X [p_start..p_end_-1]
    const int64_t *restrict X_1,
    const int64_t *restrict X_2,
    const int64_t p_start,
    const int64_t p_end
)
{
    //--------------------------------------------------------------------------
    // find where the Pivot appears in X
    //--------------------------------------------------------------------------
    // binary search of X [p_start...p_end-1] for the Pivot
    int64_t pleft = p_start ;
    int64_t pright = p_end - 1 ;
    while (pleft < pright)
    { 
        int64_t pmiddle = (pleft + pright) >> 1 ;
        // less = (X [pmiddle] < Pivot)
        bool less = GB_lt_3 (X_0, X_1, X_2, pmiddle,
                             Y_0, Y_1, Y_2, pivot) ;
        pleft  = less ? (pmiddle+1) : pleft ;
        pright = less ? pright : pmiddle ;
    }
    // binary search is narrowed down to a single item
    // or it has found the list is empty:
    ASSERT (pleft == pright || pleft == pright + 1) ;
    // If found is true then X [pleft == pright] == Pivot.  If duplicates
    // appear then X [pleft] is any one of the entries equal to the Pivot
    // in the list.  If found is false then
    //    X [p_start ... pleft-1] < Pivot and
    //    X [pleft+1 ... p_end-1] > Pivot holds.
    //    The value X [pleft] may be either < or > Pivot.
    bool found = (pleft == pright) && GB_eq_3 (X_0, X_1, X_2, pleft,
                                               Y_0, Y_1, Y_2, pivot) ;
    // Modify pleft and pright:
    if (!found && (pleft == pright))
    {
        if (GB_lt_3 (X_0, X_1, X_2, pleft,
                     Y_0, Y_1, Y_2, pivot))
        { 
            pleft++ ;
        }
        else
        { 
//          pright++ ;  // (not needed)
        }
    }
    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------
    // If found is false then
    //    X [p_start ... pleft-1] < Pivot and
    //    X [pleft ... p_end-1] > Pivot holds,
    //    and pleft-1 == pright
    // If X has no duplicates, then whether or not Pivot is found,
    //    X [p_start ... pleft-1] < Pivot and
    //    X [pleft ... p_end-1] >= Pivot holds.
    // If X has duplicates, then whether or not Pivot is found,
    //    X [p_start ... pleft-1] <= Pivot and
    //    X [pleft ... p_end-1] >= Pivot holds.
    return (pleft) ;
}
//------------------------------------------------------------------------------
// GB_msort_3_create_merge_tasks
//------------------------------------------------------------------------------
// Recursively constructs ntasks tasks to merge two arrays, Left and Right,
// into Sresult, where Left is L [pL_start...pL_end-1], Right is R
// [pR_start...pR_end-1], and Sresult is S [pS_start...pS_start+total_work-1],
// and where total_work is the total size of Left and Right.
//
// Task tid will merge L [L_task [tid] ... L_task [tid] + L_len [tid] - 1] and
// R [R_task [tid] ... R_task [tid] + R_len [tid] -1] into the merged output
// array S [S_task [tid] ... ].  The task tids created are t0 to
// t0+ntasks-1.
void GB_msort_3_create_merge_tasks
(
    // output:
    int64_t *restrict L_task,        // L_task [t0...t0+ntasks-1] computed
    int64_t *restrict L_len,         // L_len  [t0...t0+ntasks-1] computed
    int64_t *restrict R_task,        // R_task [t0...t0+ntasks-1] computed
    int64_t *restrict R_len,         // R_len  [t0...t0+ntasks-1] computed
    int64_t *restrict S_task,        // S_task [t0...t0+ntasks-1] computed
    // input:
    const int t0,                       // first task tid to create
    const int ntasks,                   // # of tasks to create
    const int64_t pS_start,             // merge into S [pS_start...]
    const int64_t *restrict L_0,     // Left = L [pL_start...pL_end-1]
    const int64_t *restrict L_1,
    const int64_t *restrict L_2,
    const int64_t pL_start,
    const int64_t pL_end,
    const int64_t *restrict R_0,     // Right = R [pR_start...pR_end-1]
    const int64_t *restrict R_1,
    const int64_t *restrict R_2,
    const int64_t pR_start,
    const int64_t pR_end
)
{
    //--------------------------------------------------------------------------
    // get problem size
    //--------------------------------------------------------------------------
    int64_t nleft  = pL_end - pL_start ;        // size of Left array
    int64_t nright = pR_end - pR_start ;        // size of Right array
    int64_t total_work = nleft + nright ;       // total work to do
    ASSERT (ntasks >= 1) ;
    ASSERT (total_work > 0) ;
    //--------------------------------------------------------------------------
    // create the tasks
    //--------------------------------------------------------------------------
    if (ntasks == 1)
    { 
        //----------------------------------------------------------------------
        // a single task will merge all of Left and Right into Sresult
        //----------------------------------------------------------------------
        L_task [t0] = pL_start ; L_len [t0] = nleft ;
        R_task [t0] = pR_start ; R_len [t0] = nright ;
        S_task [t0] = pS_start ;
    }
    else
    {
        //----------------------------------------------------------------------
        // partition the Left and Right arrays for multiple merge tasks
        //----------------------------------------------------------------------
        int64_t pleft, pright ;
        if (nleft >= nright)
        { 
            // split Left in half, and search for its pivot in Right
            pleft = (pL_end + pL_start) >> 1 ;
            pright = GB_msort_3_binary_search (
                        L_0, L_1, L_2, pleft,
                        R_0, R_1, R_2, pR_start, pR_end) ;
        }
        else
        { 
            // split Right in half, and search for its pivot in Left
            pright = (pR_end + pR_start) >> 1 ;
            pleft = GB_msort_3_binary_search (
                        R_0, R_1, R_2, pright,
                        L_0, L_1, L_2, pL_start, pL_end) ;
        }
        //----------------------------------------------------------------------
        // partition the tasks according to the work of each partition
        //----------------------------------------------------------------------
        // work0 is the total work in the first partition
        int64_t work0 = (pleft - pL_start) + (pright - pR_start) ;
        int ntasks0 = (int) round ((double) ntasks *
            (((double) work0) / ((double) total_work))) ;
        // ensure at least one task is assigned to each partition
        ntasks0 = GB_IMAX (ntasks0, 1) ;
        ntasks0 = GB_IMIN (ntasks0, ntasks-1) ;
        int ntasks1 = ntasks - ntasks0 ;
        //----------------------------------------------------------------------
        // assign ntasks0 to the first half
        //----------------------------------------------------------------------
        // ntasks0 tasks merge L [pL_start...pleft-1] and R [pR_start..pright-1]
        // into the result S [pS_start...work0-1].
        GB_msort_3_create_merge_tasks (
            L_task, L_len, R_task, R_len, S_task, t0, ntasks0, pS_start,
            L_0, L_1, L_2, pL_start, pleft,
            R_0, R_1, R_2, pR_start, pright) ;
        //----------------------------------------------------------------------
        // assign ntasks1 to the second half
        //----------------------------------------------------------------------
        // ntasks1 tasks merge L [pleft...pL_end-1] and R [pright...pR_end-1]
        // into the result S [pS_start+work0...pS_start+total_work].
        int t1 = t0 + ntasks0 ;     // first task id of the second set of tasks
        int64_t pS_start1 = pS_start + work0 ;  // 2nd set starts here in S
        GB_msort_3_create_merge_tasks (
            L_task, L_len, R_task, R_len, S_task, t1, ntasks1, pS_start1,
            L_0, L_1, L_2, pleft,  pL_end,
            R_0, R_1, R_2, pright, pR_end) ;
    }
}
//------------------------------------------------------------------------------
// GB_msort_3_merge: merge two sorted lists via a single thread
//------------------------------------------------------------------------------
// merge Left [0..nleft-1] and Right [0..nright-1] into S [0..nleft+nright-1] */
static void GB_msort_3_merge
(
    int64_t *restrict S_0,              // output of length nleft + nright
    int64_t *restrict S_1,
    int64_t *restrict S_2,
    const int64_t *restrict Left_0,     // left input of length nleft
    const int64_t *restrict Left_1,
    const int64_t *restrict Left_2,
    const int64_t nleft,
    const int64_t *restrict Right_0,    // right input of length nright
    const int64_t *restrict Right_1,
    const int64_t *restrict Right_2,
    const int64_t nright
)
{
    int64_t p, pleft, pright ;
    // merge the two inputs, Left and Right, while both inputs exist
    for (p = 0, pleft = 0, pright = 0 ; pleft < nleft && pright < nright ; p++)
    {
        if (GB_lt_3 (Left_0,  Left_1,  Left_2,  pleft,
                     Right_0, Right_1, Right_2, pright))
        { 
            // S [p] = Left [pleft++]
            S_0 [p] = Left_0 [pleft] ;
            S_1 [p] = Left_1 [pleft] ;
            S_2 [p] = Left_2 [pleft] ;
            pleft++ ;
        }
        else
        { 
            // S [p] = Right [pright++]
            S_0 [p] = Right_0 [pright] ;
            S_1 [p] = Right_1 [pright] ;
            S_2 [p] = Right_2 [pright] ;
            pright++ ;
        }
    }
    // either input is exhausted; copy the remaining list into S
    if (pleft < nleft)
    { 
        int64_t nremaining = (nleft - pleft) ;
        memcpy (S_0 + p, Left_0 + pleft, nremaining * sizeof (int64_t)) ;
        memcpy (S_1 + p, Left_1 + pleft, nremaining * sizeof (int64_t)) ;
        memcpy (S_2 + p, Left_2 + pleft, nremaining * sizeof (int64_t)) ;
    }
    else if (pright < nright)
    { 
        int64_t nremaining = (nright - pright) ;
        memcpy (S_0 + p, Right_0 + pright, nremaining * sizeof (int64_t)) ;
        memcpy (S_1 + p, Right_1 + pright, nremaining * sizeof (int64_t)) ;
        memcpy (S_2 + p, Right_2 + pright, nremaining * sizeof (int64_t)) ;
    }
}
//------------------------------------------------------------------------------
// GB_msort_3: parallel mergesort
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info GB_msort_3    // sort array A of size 3-by-n, using 3 keys (A [0:2][])
(
    int64_t *restrict A_0,   // size n array
    int64_t *restrict A_1,   // size n array
    int64_t *restrict A_2,   // size n array
    const int64_t n,
    int nthreads                // # of threads to use
)
{
    //--------------------------------------------------------------------------
    // handle small problems with a single thread
    //--------------------------------------------------------------------------
    if (nthreads <= 1 || n <= GB_BASECASE)
    { 
        // sequential quicksort
        GB_qsort_3 (A_0, A_1, A_2, n) ;
        return (GrB_SUCCESS) ;
    }
    //--------------------------------------------------------------------------
    // determine # of tasks
    //--------------------------------------------------------------------------
    // determine the number of levels to create, which must always be an
    // even number.  The # of levels is chosen to ensure that the # of leaves
    // of the task tree is between 4*nthreads and 16*nthreads.
    //  2 to 4 threads:     4 levels, 16 qsort leaves
    //  5 to 16 threads:    6 levels, 64 qsort leaves
    // 17 to 64 threads:    8 levels, 256 qsort leaves
    // 65 to 256 threads:   10 levels, 1024 qsort leaves
    // 256 to 1024 threads: 12 levels, 4096 qsort leaves
    // ...
    int k = (int) (2 + 2 * ceil (log2 ((double) nthreads) / 2)) ;
    int ntasks = 1 << k ;
    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------
    int64_t *restrict W = NULL ; size_t W_size = 0 ;
    W = GB_MALLOC_WORK (3*n + 6*ntasks + 1, int64_t, &W_size) ;
    if (W == NULL)
    { 
        // out of memory
        return (GrB_OUT_OF_MEMORY) ;
    }
    int64_t *T = W ;
    int64_t *restrict W_0    = T ; T += n ;
    int64_t *restrict W_1    = T ; T += n ;
    int64_t *restrict W_2    = T ; T += n ;
    int64_t *restrict L_task = T ; T += ntasks ;
    int64_t *restrict L_len  = T ; T += ntasks ;
    int64_t *restrict R_task = T ; T += ntasks ;
    int64_t *restrict R_len  = T ; T += ntasks ;
    int64_t *restrict S_task = T ; T += ntasks ;
    int64_t *restrict Slice  = T ; T += (ntasks+1) ;  
    //--------------------------------------------------------------------------
    // partition and sort the leaves
    //--------------------------------------------------------------------------
    GB_eslice (Slice, n, ntasks) ;
    int tid ;
    #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
    for (tid = 0 ; tid < ntasks ; tid++)
    { 
        int64_t leaf = Slice [tid] ;
        int64_t leafsize = Slice [tid+1] - leaf ;
        GB_qsort_3 (A_0 + leaf, A_1 + leaf, A_2 + leaf, leafsize) ;
    }
    //--------------------------------------------------------------------------
    // merge each level
    //--------------------------------------------------------------------------
    int nt = 1 ;
    for ( ; k >= 2 ; k -= 2)
    {
        //----------------------------------------------------------------------
        // merge level k into level k-1, from A into W
        //----------------------------------------------------------------------
        // TODO: skip k and k-1 for each group of 4 sublists of A if they are
        // already sorted with respect to each other.
        // this could be done in parallel if ntasks was large
        for (int tid = 0 ; tid < ntasks ; tid += 2*nt)
        { 
            // create 2*nt tasks to merge two A sublists into one W sublist
            GB_msort_3_create_merge_tasks (
                L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
                A_0, A_1, A_2, Slice [tid],    Slice [tid+nt],
                A_0, A_1, A_2, Slice [tid+nt], Slice [tid+2*nt]) ;
        }
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        for (tid = 0 ; tid < ntasks ; tid++)
        { 
            // merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
            int64_t pL = L_task [tid], nL = L_len [tid] ;
            int64_t pR = R_task [tid], nR = R_len [tid] ;
            int64_t pS = S_task [tid] ;
            GB_msort_3_merge (
                W_0 + pS, W_1 + pS, W_2 + pS,
                A_0 + pL, A_1 + pL, A_2 + pL, nL,
                A_0 + pR, A_1 + pR, A_2 + pR, nR) ;
        }
        nt = 2*nt ;
        //----------------------------------------------------------------------
        // merge level k-1 into level k-2, from W into A
        //----------------------------------------------------------------------
        // this could be done in parallel if ntasks was large
        for (int tid = 0 ; tid < ntasks ; tid += 2*nt)
        { 
            // create 2*nt tasks to merge two W sublists into one A sublist
            GB_msort_3_create_merge_tasks (
                L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
                W_0, W_1, W_2, Slice [tid],    Slice [tid+nt],
                W_0, W_1, W_2, Slice [tid+nt], Slice [tid+2*nt]) ;
        }
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        for (tid = 0 ; tid < ntasks ; tid++)
        { 
            // merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
            int64_t pL = L_task [tid], nL = L_len [tid] ;
            int64_t pR = R_task [tid], nR = R_len [tid] ;
            int64_t pS = S_task [tid] ;
            GB_msort_3_merge (
                A_0 + pS, A_1 + pS, A_2 + pS,
                W_0 + pL, W_1 + pL, W_2 + pL, nL,
                W_0 + pR, W_1 + pR, W_2 + pR, nR) ;
        }
        nt = 2*nt ;
    }
    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------
    GB_FREE_WORK (&W, W_size) ;
    return (GrB_SUCCESS) ;
}
 |