| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 
 | //------------------------------------------------------------------------------
// GB_select_phase1: count entries in each vector for C=select(A,thunk)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
    //--------------------------------------------------------------------------
    // get A and its slicing
    //--------------------------------------------------------------------------
    const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
    const int64_t *restrict klast_Aslice  = A_ek_slicing + A_ntasks ;
    const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
    const int64_t *restrict Ap = A->p ;
    const int64_t *restrict Ah = A->h ;
    const int64_t *restrict Ai = A->i ;
    int64_t avlen = A->vlen ;
    int64_t anvec = A->nvec ;
#if defined ( GB_ENTRY_SELECTOR )
    //==========================================================================
    // entry selector
    //==========================================================================
    ASSERT (GB_JUMBLED_OK (A)) ;
    // The count of live entries kth vector A(:,k) is reduced to the kth scalar
    // Cp(k).  Each thread computes the reductions on roughly the same number
    // of entries, which means that a vector A(:,k) may be reduced by more than
    // one thread.  The first vector A(:,kfirst) reduced by thread tid may be
    // partial, where the prior thread tid-1 (and other prior threads) may also
    // do some of the reductions for this same vector A(:,kfirst).  The thread
    // tid reduces all vectors A(:,k) for k in the range kfirst+1 to klast-1.
    // The last vector A(:,klast) reduced by thread tid may also be partial.
    // Thread tid+1, and following threads, may also do some of the reduces for
    // A(:,klast).
    //--------------------------------------------------------------------------
    // get A
    //--------------------------------------------------------------------------
    const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
    size_t  asize = A->type->size ;
    int64_t avdim = A->vdim ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    //--------------------------------------------------------------------------
    // reduce each slice
    //--------------------------------------------------------------------------
    // each thread reduces its own part in parallel
    int tid ;
    #pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
    for (tid = 0 ; tid < A_ntasks ; tid++)
    {
        // if kfirst > klast then thread tid does no work at all
        int64_t kfirst = kfirst_Aslice [tid] ;
        int64_t klast  = klast_Aslice  [tid] ;
        Wfirst [tid] = 0 ;
        Wlast  [tid] = 0 ;
        //----------------------------------------------------------------------
        // reduce vectors kfirst to klast
        //----------------------------------------------------------------------
        for (int64_t k = kfirst ; k <= klast ; k++)
        {
            //------------------------------------------------------------------
            // find the part of A(:,k) to be reduced by this thread
            //------------------------------------------------------------------
            int64_t j = GBH (Ah, k) ;
            int64_t pA, pA_end ;
            GB_get_pA (&pA, &pA_end, tid, k,
                kfirst, klast, pstart_Aslice, Ap, avlen) ;
            //------------------------------------------------------------------
            // count entries in Ax [pA ... pA_end-1]
            //------------------------------------------------------------------
            int64_t cjnz = 0 ;
            for ( ; pA < pA_end ; pA++)
            { 
                ASSERT (Ai != NULL) ;
                int64_t i = Ai [pA] ;
                GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
                if (keep) cjnz++ ;
            }
            if (k == kfirst)
            { 
                Wfirst [tid] = cjnz ;
            }
            else if (k == klast)
            { 
                Wlast [tid] = cjnz ;
            }
            else
            { 
                Cp [k] = cjnz ; 
            }
        }
    }
    //--------------------------------------------------------------------------
    // reduce the first and last vector of each slice using a single thread
    //--------------------------------------------------------------------------
    GB_ek_slice_merge1 (Cp, Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
#else
    //==========================================================================
    // positional selector (tril, triu, diag, offdiag, resize, row*)
    //==========================================================================
    ASSERT (!GB_JUMBLED (A)) ;
    //--------------------------------------------------------------------------
    // tril, triu, diag, offdiag, resize: binary search in each vector
    //--------------------------------------------------------------------------
    int64_t k ;
    #pragma omp parallel for num_threads(A_nthreads) schedule(guided)
    for (k = 0 ; k < anvec ; k++)
    {
        //----------------------------------------------------------------------
        // get A(:,k)
        //----------------------------------------------------------------------
        int64_t pA_start = GBP (Ap, k, avlen) ;
        int64_t pA_end   = GBP (Ap, k+1, avlen) ;
        int64_t p = pA_start ;
        int64_t cjnz = 0 ;
        int64_t ajnz = pA_end - pA_start ;
        bool found = false ;
        if (ajnz > 0)
        {
            //------------------------------------------------------------------
            // search for the entry A(i,k)
            //------------------------------------------------------------------
            int64_t ifirst = GBI (Ai, pA_start, avlen) ;
            int64_t ilast  = GBI (Ai, pA_end-1, avlen) ;
            #if defined ( GB_ROWINDEX_SELECTOR )
            int64_t i = -ithunk ;
            #elif defined ( GB_ROWLE_SELECTOR ) || defined ( GB_ROWGT_SELECTOR )
            int64_t i = ithunk ;
            #else
            // TRIL, TRIU, DIAG, OFFDIAG
            int64_t j = GBH (Ah, k) ;
            int64_t i = j-ithunk ;
            #endif
            if (i < ifirst)
            { 
                // all entries in A(:,k) come after i
                ;
            }
            else if (i > ilast)
            { 
                // all entries in A(:,k) come before i
                p = pA_end ;
            }
            else if (ajnz == avlen)
            { 
                // A(:,k) is dense
                found = true ;
                p += i ;
                ASSERT (GBI (Ai, p, avlen) == i) ;
            }
            else
            { 
                // binary search for A (i,k)
                int64_t pright = pA_end - 1 ;
                GB_SPLIT_BINARY_SEARCH (i, Ai, p, pright, found) ;
            }
            #if defined ( GB_TRIL_SELECTOR )
                // keep p to pA_end-1
                cjnz = pA_end - p ;
            #elif defined ( GB_ROWGT_SELECTOR  )
                // if found, keep p+1 to pA_end-1
                // else keep p to pA_end-1
                if (found)
                { 
                    p++ ;
                    // now in both cases, keep p to pA_end-1
                }
                // keep p to pA_end-1
                cjnz = pA_end - p ;
            #elif defined ( GB_TRIU_SELECTOR   ) \
               || defined ( GB_ROWLE_SELECTOR  )
                // if found, keep pA_start to p
                // else keep pA_start to p-1
                if (found)
                { 
                    p++ ;
                    // now in both cases, keep pA_start to p-1
                }
                // keep pA_start to p-1
                cjnz = p - pA_start ;
            #elif defined ( GB_DIAG_SELECTOR )
                // if found, keep p
                // else keep nothing
                cjnz = found ;
                if (!found) p = -1 ;
                // if (cjnz >= 0) keep p, else keep nothing
            #elif defined ( GB_OFFDIAG_SELECTOR  ) || \
                  defined ( GB_ROWINDEX_SELECTOR )
                // if found, keep pA_start to p-1 and p+1 to pA_end-1
                // else keep pA_start to pA_end
                cjnz = ajnz - found ;
                if (!found)
                { 
                    p = pA_end ;
                    // now just keep pA_start to p-1; p+1 to pA_end is 
                    // now empty
                }
                // in both cases, keep pA_start to p-1 and
                // p+1 to pA_end-1.  If the entry is not found, then
                // p == pA_end, and all entries are kept.
            #endif
        }
        //----------------------------------------------------------------------
        // log the result for the kth vector
        //----------------------------------------------------------------------
        Zp [k] = p ;
        Cp [k] = cjnz ;
    }
    //--------------------------------------------------------------------------
    // compute Wfirst and Wlast for each task
    //--------------------------------------------------------------------------
    // Wfirst [0..A_ntasks-1] and Wlast [0..A_ntasks-1] are required for
    // constructing C_start_slice [0..A_ntasks-1] in GB_selector.
    for (int tid = 0 ; tid < A_ntasks ; tid++)
    {
        // if kfirst > klast then task tid does no work at all
        int64_t kfirst = kfirst_Aslice [tid] ;
        int64_t klast  = klast_Aslice  [tid] ;
        Wfirst [tid] = 0 ;
        Wlast  [tid] = 0 ;
        if (kfirst <= klast)
        {
            int64_t pA_start = pstart_Aslice [tid] ;
            int64_t pA_end   = GBP (Ap, kfirst+1, avlen) ;
            pA_end = GB_IMIN (pA_end, pstart_Aslice [tid+1]) ;
            if (pA_start < pA_end)
            { 
                #if defined ( GB_TRIL_SELECTOR  ) || \
                    defined ( GB_ROWGT_SELECTOR )
                    // keep Zp [kfirst] to pA_end-1
                    int64_t p = GB_IMAX (Zp [kfirst], pA_start) ;
                    Wfirst [tid] = GB_IMAX (0, pA_end - p) ;
                #elif defined ( GB_TRIU_SELECTOR  ) || \
                      defined ( GB_ROWLE_SELECTOR )
                    // keep pA_start to Zp [kfirst]-1
                    int64_t p = GB_IMIN (Zp [kfirst], pA_end) ;
                    Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
                #elif defined ( GB_DIAG_SELECTOR )
                    // task that owns the diagonal entry does this work
                    int64_t p = Zp [kfirst] ;
                    Wfirst [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
                #elif defined ( GB_OFFDIAG_SELECTOR  ) || \
                      defined ( GB_ROWINDEX_SELECTOR )
                    // keep pA_start to Zp [kfirst]-1
                    int64_t p = GB_IMIN (Zp [kfirst], pA_end) ;
                    Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
                    // keep Zp [kfirst]+1 to pA_end-1
                    p = GB_IMAX (Zp [kfirst]+1, pA_start) ;
                    Wfirst [tid] += GB_IMAX (0, pA_end - p) ;
                #endif
            }
        }
        if (kfirst < klast)
        {
            int64_t pA_start = GBP (Ap, klast, avlen) ;
            int64_t pA_end   = pstart_Aslice [tid+1] ;
            if (pA_start < pA_end)
            { 
                #if defined ( GB_TRIL_SELECTOR  ) || \
                    defined ( GB_ROWGT_SELECTOR )
                    // keep Zp [klast] to pA_end-1
                    int64_t p = GB_IMAX (Zp [klast], pA_start) ;
                    Wlast [tid] = GB_IMAX (0, pA_end - p) ;
                #elif defined ( GB_TRIU_SELECTOR  ) || \
                      defined ( GB_ROWLE_SELECTOR )
                    // keep pA_start to Zp [klast]-1
                    int64_t p = GB_IMIN (Zp [klast], pA_end) ;
                    Wlast [tid] = GB_IMAX (0, p - pA_start) ;
                #elif defined ( GB_DIAG_SELECTOR )
                    // task that owns the diagonal entry does this work
                    int64_t p = Zp [klast] ;
                    Wlast [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
                #elif defined ( GB_OFFDIAG_SELECTOR  ) || \
                      defined ( GB_ROWINDEX_SELECTOR )
                    // keep pA_start to Zp [klast]-1
                    int64_t p = GB_IMIN (Zp [klast], pA_end) ;
                    Wlast [tid] = GB_IMAX (0, p - pA_start) ;
                    // keep Zp [klast]+1 to pA_end-1
                    p = GB_IMAX (Zp [klast]+1, pA_start) ;
                    Wlast [tid] += GB_IMAX (0, pA_end - p) ;
                #endif
            }
        }
    }
#endif
 |