1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
classdef factorization_cod_sparse < factorization
%FACTORIZATION_COD_SPARSE complete orthogonal factorization: A = U*R*V' where A is sparse.
% A fairly accurate estimate of rank is found. double(inverse(F)) is a fairly
% accurate estimate of pinv(A).
% Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com
methods
function F = factorization_cod_sparse (A)
%FACTORIZATION_SPARSE_COD A = U*R*V'
[f.U, f.R, f.V, f.r] = cod_sparse (A) ;
F.A = A ;
F.Factors = f ;
F.A_rank = f.r ;
F.kind = 'sparse COD factorization: A = U*R*V''' ;
end
function e = error_check (F)
%ERROR_CHECK : return relative 1-norm of error in factorization
% meant for testing only
f = F.Factors ;
U = cod_qmult (f.U, speye (size (f.U.H,1)), 1) ;
V = cod_qmult (f.V, speye (size (f.V.H,1)), 1) ;
e = norm (F.A - U*f.R*V', 1) / norm (F.A, 1) ;
end
function x = mldivide_subclass (F,b)
%MLDIVIDE_SUBLCASS x = A\b using a sparse COD factorization
% If the estimated rank is correct, this is x = pinv(A)*b
f = F.Factors ;
r = f.r ;
c = cod_qmult (f.U, b, 0) ; % c = U' * b
c = f.R (1:r,1:r) \ c (1:r,:) ; % c = R \ c
n = size (f.R, 2) ;
if (r < n)
c = [c ; sparse(n-r,size(c,2))] ; % make sure c has n rows
if (~issparse (b))
c = full (c) ;
end
end
x = cod_qmult (f.V, c, 1) ; % x = V * c
end
function x = mrdivide_subclass (b,F)
%MRDIVIDE_SUBCLASS x = b/A using sparse COD factorization
% If the estimated rank is correct, this is x = b*pinv(A)
f = F.Factors ;
r = f.r ;
c = cod_qmult (f.V, b, 3) ; % c = b * V
c = c (:,1:r) / f.R (1:r,1:r) ; % c = c / R
m = size (f.R, 1) ;
if (r < m)
c = [c , sparse(size(c,1),m-r)] ; % make sure c has m cols
if (~issparse (b))
c = full (c) ;
end
end
x = cod_qmult (f.U, c, 2) ; % x = c * U'
end
end
end
|