File: factorization_lu_dense.m

package info (click to toggle)
suitesparse 1%3A5.12.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 176,720 kB
  • sloc: ansic: 1,193,914; cpp: 31,704; makefile: 6,638; fortran: 1,927; java: 1,826; csh: 765; ruby: 725; sh: 529; python: 333; perl: 225; sed: 164; awk: 35
file content (59 lines) | stat: -rw-r--r-- 1,958 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
classdef factorization_lu_dense < factorization
%FACTORIZATION_LU_DENSE A(p,:) = L*U where A is square and full.

% Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com

    methods

        function F = factorization_lu_dense (A, fail_if_singular)
            %FACTORIZATION_LU_DENSE : A(p,:) = L*U
            [m, n] = size (A) ;
            if (m ~= n)
                error ('FACTORIZE:wrongdim', ...
                    'LU for rectangular matrices not supported.  Use QR.') ;
            end
            [f.L, f.U, f.p] = lu (A, 'vector') ;
            F.A_condest = cheap_condest (get_diag (f.U), fail_if_singular) ;
            F.A = A ;
            F.Factors = f ;
            F.A_rank = n ;
            F.kind = 'dense LU factorization: A(p,:) = L*U' ;
        end

        function e = error_check (F)
            %ERROR_CHECK : return relative 1-norm of error in factorization
            % meant for testing only
            f = F.Factors ;
            e = norm (F.A (f.p,:) - f.L*f.U, 1) / norm (F.A, 1) ;
        end

        function x = mldivide_subclass (F,b)
            %MLDIVIDE_SUBCLASS x=A\b using dense LU
            % x = U \ (L \ (b (p,:))) ;
            f = F.Factors ;
            opL.LT = true ;
            opU.UT = true ;
            y = b (f.p, :) ;
            if (issparse (y))
                y = full (y) ;
            end
            x = linsolve (f.U, linsolve (f.L, y, opL), opU) ;
        end

        function x = mrdivide_subclass (b,F)
            %MRDIVIDE_SUBCLASS x = b/A using dense LU
            % x (:,p) = (L' \ (U' \ b'))'
            f = F.Factors ;
            opUT.UT = true ;
            opUT.TRANSA = true ;
            opLT.LT = true ;
            opLT.TRANSA = true ;
            y = b' ;
            if (issparse (y))
                y = full (y) ;
            end
            x = (linsolve (f.L, linsolve (f.U, y, opUT), opLT))';
            x (:, f.p) = x ;
        end
    end
end