1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
classdef factorization_qr_dense < factorization
%FACTORIZATION_QR_DENSE A = Q*R where A is full.
% Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com
methods
function F = factorization_qr_dense (A, fail_if_singular)
%FACTORIZATION_QR_DENSE : A = Q*R
[m, n] = size (A) ;
if (m < n)
error ('FACTORIZE:wrongdim', 'QR(A) method requires m>=n.') ;
end
[f.Q, f.R] = qr (A,0) ;
F.A_condest = cheap_condest (get_diag (f.R), fail_if_singular) ;
F.A = A ;
F.Factors = f ;
F.A_rank = rank_est (f.R, m, n) ;
F.kind = 'dense economy QR factorization: A = Q*R' ;
end
function e = error_check (F)
%ERROR_CHECK : return relative 1-norm of error in factorization
% meant for testing only
f = F.Factors ;
e = norm (F.A - f.Q*f.R, 1) / norm (F.A, 1) ;
end
function x = mldivide_subclass (F,b)
%MLDIVIDE_SUBLCASS x = A\b using a dense economy QR of A
% least-squares solution of an overdetermined problem
% x = R \ (Q' * b)
f = F.Factors ;
opU.UT = true ;
y = f.Q' * b ;
if (issparse (y))
y = full (y) ;
end
x = linsolve (f.R, y, opU) ;
end
function x = mrdivide_subclass (b,F)
%MRDIVIDE_SUBCLASS x = b/A using dense economy QR of A
% minimum 2-norm solution of a underdetermined problem
% x = (Q * (R' \ b'))' ;
f = F.Factors ;
opUT.UT = true ;
opUT.TRANSA = true ;
y = b' ;
if (issparse (y))
y = full (y) ;
end
x = (f.Q * linsolve (f.R, y, opUT))' ;
end
end
end
|