File: factorize.m

package info (click to toggle)
suitesparse 1%3A5.12.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 176,720 kB
  • sloc: ansic: 1,193,914; cpp: 31,704; makefile: 6,638; fortran: 1,927; java: 1,826; csh: 765; ruby: 725; sh: 529; python: 333; perl: 225; sed: 164; awk: 35
file content (369 lines) | stat: -rw-r--r-- 11,934 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
function F = factorize (A,strategy,burble)
%FACTORIZE an object-oriented method for solving linear systems
% and least-squares problems, and for representing operations with the
% inverse of a square matrix or the pseudo-inverse of a rectangular matrix.
%
% F = factorize(A) returns an object F that holds the factorization of A.
% x=F\b then solves a linear system or a least-squares problem.  S=inverse(F)
% or S=inverse(A) returns a factorized representation of the inverse of A so
% that inverse(A)*b is mathematically equivalent to pinv(A)*b, but the former
% does not actually compute the inverse or pseudo-inverse of A.
%
% Example
%
%   F = factorize(A) ;      % LU, QR, or Cholesky factorization of A
%   x = F\b ;               % solve A*x=b; same as x=A\b
%   S = inverse (F) ;       % S represents the factorization of inv(A)
%   x = S*b ;               % same as x = A\b.
%   E = A-B*inverse(D)*C    % efficiently computes the Schur complement
%   E = A-B*inv(D)*C        % bad method for computing the Schur complement
%   S = inverse(A) ; S(:,1) % compute just the first column of inv(A),
%                           % without computing inv(A)
%
%   F = factorize (A, strategy, burble) ;   % optional 2nd and 3rd inputs
%
% A string can be specified as a second input parameter to select the strategy
% used to factorize the matrix.  The first two are meta-strategies:
%
%   'default'   if rectangular
%                   use QR for sparse A or A' (whichever is tall and thin);
%                   use COD for full A
%               else
%                   if symmetric
%                       if positive real diagonal: try CHOL
%                       else (or if CHOL fails): try LDL
%                   end
%                   if not yet factorized: try LU (fails if rank-deficient)
%               end
%               if all else fails, or if QR or LU report that the matrix
%               is singular (or nearly so): use COD
%               This strategy mimics backslash, except that backslash never
%               uses COD.  Backslash also exploits other solvers, such as
%               specialized tridiagonal and banded solvers.
%
%   'symmetric' as 'default' above, but assumes A is symmetric without
%               checking, which is faster if you already know A is symmetric.
%               Uses tril(A) and assumes triu(A) is its transpose.  Results
%               will be incorrect if A is not symmetric.  If A is rectangular,
%               the 'default' strategy is used instead.
%
%   'unsymmetric'  as 'default', but assumes A is unsymmetric.
%
% The next "strategies" just select a single method, listed in decreasing order
% of generality and increasing order of speed and memory efficiency.  All of
% them except the SVD can exploit sparsity.
%
%   'svd'       use SVD.  Never fails ... unless it runs out of time or memory.
%                   Coerces a sparse matrix A to full.
%
%   'cod'       use COD.  Almost as accurate as SVD, and much faster.  Based
%                   on dense or sparse QR with rank estimation.  Handles
%                   rank-deficient matrices, as long as it correctly estimates
%                   the rank.  If the rank is ill-defined, use the SVD instead.
%                   Sparse COD requires the SPQR package to be installed
%                   (see http://www.suitesparse.com).
%
%   'qr'        use QR.  Reports a warning if A is singular.
%
%   'lu'        use LU.  Fails if A is rectangular; warning if A singular.
%
%   'ldl'       use LDL.  Fails if A is rank-deficient or not symmetric, or if
%                   A is sparse and complex.  Uses tril(A) and assumes triu(A)
%                   is the transpose of tril(A).
%
%   'chol'      use CHOL.  Fails if A is rank-deficient or not symmetric
%                   positive definite.  If A is sparse, it uses tril(A) and
%                   assumes triu(A) is the transpose of tril(A).  If A is dense,
%                   triu(A) is used instead.
%
% A third input, burble, can be provided to tell this function to print what
% methods it tries (if burble is nonzero).
%
% For a demo type "fdemo" in the Demo directory or see the Doc/ directory.
%
% See also inverse, slash, linsolve, spqr.

% Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com

assert (ndims (A) == 2, 'Matrix must be 2D.') ;

if (nargin < 2 || isempty (strategy))
    strategy = 'default' ;
end
if (nargin < 3)
    burble = 0 ;
end

if (burble)
    fprintf ('\nfactorize: strategy %s, A has size %d-by-%d, ', ...
        strategy, size (A)) ;
    if (issparse (A))
        fprintf ('sparse with %d nonzeros.\n', nnz (A)) ;
    else
        fprintf ('full.\n') ;
    end
end

switch strategy

    case 'default'
        [F, me] = backslash_mimic (A, burble, 0) ;

    case 'symmetric'
        [F, me] = backslash_mimic (A, burble, 1) ;

    case 'unsymmetric'
        [F, me] = backslash_mimic (A, burble, 2) ;

    case 'svd'
        [F, me] = factorize_svd (A, burble) ;

    case 'cod'
        [F, me] = factorize_cod (A, burble) ;

    case 'qr'
        [F, me] = factorize_qr (A, burble, 0) ;

    case 'lu'
        % do not report a failure if the matrix is singular
        [F, me] = factorize_lu (A, burble, 0) ;

    case 'ldl'
        [F, me] = factorize_ldl (A, burble) ;

    case 'chol'
        [F, me] = factorize_chol (A, burble) ;

    otherwise
        error ('FACTORIZE:invalidStrategy', 'unrecognized strategy.') ;

end

if (~isobject (F))
    throw (me) ;
end

%-------------------------------------------------------------------------------

function [F, me] = backslash_mimic (A, burble, strategy)
%BACKSLASH_MIMIC automatically select a method to factorize A.
F = [ ] ;
me = [ ] ;
[m, n] = size (A) ;

% If the following condition is true, then the QR, QRT, or LU factorizations
% will report a failure if A is singular (or nearly so).  This allows COD
% or COD_SPARSE to then be used instead.  COD_SPARSE relies on the SPQR
% mexFunction in SuiteSparse, which might not be installed.  In this case,
% QR, QRT, and LU do not report failures for sparse matrices that are singular
% (or nearly so), since there is no COD_SPARSE to fall back on.
fail_if_singular = ~issparse (A) || (exist ('spqr') == 3) ;                 %#ok
try_cod = true ;

if (m ~= n)
    if (issparse (A))
        % Use QR for the sparse rectangular case (ignore 'strategy' argument).
        [F, me] = factorize_qr (A, burble, fail_if_singular) ;
    else
        % Use COD for the full rectangular case (ignore 'strategy' argument).
        % If this fails, there's no reason to retry the COD below.  If A has
        % full rank, then COD is the same as QR with column pivoting (with the
        % same cost in terms of run time and memory).  Backslash in MATLAB uses
        % QR with column pivoting alone, so this is just as fast as x=A\b in
        % the full-rank case, but gives a more reliable result in the rank-
        % deficient case.
        try_cod = false ;
        [F, me] = factorize_cod (A, burble) ;
    end
else
    % square case: Cholesky, LDL, or LU factorization of A
    switch strategy
        case 0
            is_symmetric = (nnz (A-A') == 0) ;
        case 1
            is_symmetric = true ;
        case 2
            is_symmetric = false ;
    end
    if (is_symmetric)
        % A is symmetric (or assumed to be so)
        d = diag (A) ;
        if (all (d > 0) && nnz (imag (d)) == 0)
            % try a Cholesky factorization
            [F, me] = factorize_chol (A, burble) ;
        end
        if (~isobject (F) && (~issparse (A) || isreal (A)))
            % try an LDL factorization.
            % complex sparse LDL does not yet exist in MATLAB
            [F, me] = factorize_ldl (A, burble) ;
        end
    end
    if (~isobject (F))
        % use LU if Cholesky and/or LDL failed, or were skipped.
        [F, me] = factorize_lu (A, burble, fail_if_singular) ;
    end
end
if (~isobject (F) && try_cod)
    % everything else failed, matrix is rank-deficient.  Use COD
    [F, me] = factorize_cod (A, burble) ;
end


%-------------------------------------------------------------------------------

function [F, me] = factorize_qr (A, burble, fail_if_singular)
% QR fails if the matrix is rank-deficient.
F = [ ] ;
me = [ ] ;
try
    [m, n] = size (A) ;
    if (m >= n)
        if (burble)
            fprintf ('factorize: try QR of A ... ') ;
        end
        if (issparse (A))
            F = factorization_qr_sparse (A, fail_if_singular) ;
        else
            F = factorization_qr_dense (A, fail_if_singular) ;
        end
    else
        if (burble)
            fprintf ('factorize: try QR of A'' ... ') ;
        end
        if (issparse (A))
            F = factorization_qrt_sparse (A, fail_if_singular) ;
        else
            F = factorization_qrt_dense (A, fail_if_singular) ;
        end
    end
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end


%-------------------------------------------------------------------------------

function [F, me] = factorize_chol (A, burble)
% LDL fails if the matrix is rectangular, rank-deficient, or not positive
% definite.  Only the lower triangular part of A is used.
F = [ ] ;
me = [ ] ;
try
    if (burble)
        fprintf ('factorize: try CHOL ... ') ;
    end
    if (issparse (A))
        F = factorization_chol_sparse (A) ;
    else
        F = factorization_chol_dense (A) ;
    end
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end


%-------------------------------------------------------------------------------

function [F, me] = factorize_ldl (A, burble)
% LDL fails if the matrix is rectangular or rank-deficient.
% As of MATLAB R2012a, ldl does not work for complex sparse matrices.
% Only the lower triangular part of A is used.
F = [ ] ;
me = [ ] ;
try
    if (burble)
        fprintf ('factorize: try LDL ... ') ;
    end
    if (issparse (A))
        F = factorization_ldl_sparse (A) ;
    else
        F = factorization_ldl_dense (A) ;
    end
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end


%-------------------------------------------------------------------------------

function [F, me] = factorize_lu (A, burble, fail_if_singular)
% LU fails if the matrix is rectangular or rank-deficient.
F = [ ] ;
me = [ ] ;
try
    if (burble)
        fprintf ('factorize: try LU ... ') ;
    end
    if (issparse (A))
        F = factorization_lu_sparse (A, fail_if_singular) ;
    else
        F = factorization_lu_dense (A, fail_if_singular) ;
    end
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end


%-------------------------------------------------------------------------------

function [F, me] = factorize_cod (A, burble)
% COD only fails when it runs out of memory.
F = [ ] ;
me = [ ] ;
try
    if (burble)
        fprintf ('factorize: try COD ... ') ;
    end
    if (issparse (A))
        F = factorization_cod_sparse (A) ;
    else
        F = factorization_cod_dense (A) ;
    end
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end

%-------------------------------------------------------------------------------

function [F, me] = factorize_svd (A, burble)
% SVD only fails when it runs out of memory.
F = [ ] ;
me = [ ] ;
try
    if (burble)
        fprintf ('factorize: try SVD ... ') ;
    end
    F = factorization_svd (A) ;
    if (burble)
        fprintf ('OK.\n') ;
    end
catch me
    if (burble)
        fprintf ('failed.\nfactorize: %s\n', me.message) ;
    end
end