1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
function gee_its_simple_test
%GEE_ITS_SIMPLE_TEST tests the "Gee! It's Simple!" package
% Exhaustive test of the "Gee! It's Simple!" package. Returns the largest
% relative residual for any solution to A*x=b (using the inf norm). This test
% exercises all statements in the package. Note that the rand state is
% modified.
%
% Example:
% gee_its_simple_test ;
%
% See also: gee_its_simple, gee_its_short, rand, mldivide, gee_its_simple_resid
% Copyright 2007, Timothy A. Davis, http://www.suitesparse.com
%-------------------------------------------------------------------------------
% error-handling tests
%-------------------------------------------------------------------------------
fprintf ('\nTesting error handling (expect error and warning messages):\n\n');
gunk = 0 ;
ok = 0 ;
lasterr ('') ;
try
% too many inputs
gee_its_simple_factorize (A,gunk) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many outputs
[LU,p,rcnd,gunk] = gee_its_simple_factorize (A) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too few inputs
gee_its_simple_factorize ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many inputs
x = gee_its_simple (A,b,gunk) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many outputs
[x,rcnd,gunk] = gee_its_simple (A,b) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too few inputs
x = gee_its_simple ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many inputs
x = gee_its_simple_forwardsolve (A,b,gunk) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many outputs
[x,gunk] = gee_its_simple_forwardsolve (A,b) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too few inputs
x = gee_its_simple_forwardsolve ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many inputs
x = gee_its_simple_backsolve (A,b,gunk) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too many outputs
[x,gunk] = gee_its_simple_backsolve (A,b) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% too few inputs
x = gee_its_simple_backsolve ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% rectangular A
x = gee_its_simple (eye (4,3), ones (4,1)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% A is 3D
x = gee_its_simple (ones (9,3,3), ones (9,1)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% b is 3D
x = gee_its_simple (eye (3,3), ones (3,3,3)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% dimensions of A and b do not matrix
x = gee_its_simple (eye (3,3), ones (4,1)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% dimensions of L and b do not matrix
x = gee_its_simple_forwardsolve (eye (3,3), ones (4,1)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
try
% dimensions of U and b do not matrix
x = gee_its_simple_backsolve (eye (3,3), ones (4,1)) ; %#ok
catch
ok = ok + 1 ;
disp (lasterr) ;
end
fprintf ('\n') ;
% singular matrix
lastwarn ('') ;
x = gee_its_simple (0, 1) ; %#ok
[msg, id] = lastwarn ;
if (~isempty (msg) & ~isempty (id)) %#ok
ok = ok + 1 ;
end
fprintf ('\n') ;
% ill-conditioned matrix
lastwarn ('') ;
x = gee_its_simple ([1e30 2e30 ; 1 1], [1 ; 1]) ; %#ok
[msg, id] = lastwarn ;
if (~isempty (msg) & ~isempty (id)) %#ok
ok = ok + 1 ;
end
if (ok ~= 20)
error ('test failed') ;
end
fprintf ('\n\nError-handing tests complete (all error messages and warnings\n');
fprintf ('shown above were expected). Now testing for accuracy:\n\n') ;
%-------------------------------------------------------------------------------
% compare accuracy vs. backslash
%-------------------------------------------------------------------------------
maxerr1 = 0 ; % largest residual for A\b (gee_its_sweet)
maxerr2 = 0 ; % largest residual for gee_its_simple (A,b)
maxerr3 = 0 ; % largest residual for gee_its_short (A,b)
maxerr4 = 0 ; % largest residual for gee_its_too_short (A,b)
rmax = 0 ; % largest relative difference in rcond
nmax = 50 ; % largest dimension of A to test
cmax = 10 ; % largest number of columns of b to test
ntrials = 2 ; % number of trials for each x=A\b
rand ('state', 0) ;
for n = 0:nmax
fprintf ('.') ;
for c = 0:cmax
for trial = 1:ntrials
% set up the system
A = rand (n) ;
b = rand (n,c) ;
% solve it four different ways
x1 = gee_its_sweet (A,b) ; % this is just a one-liner: x=A\b
x2 = gee_its_simple (A,b) ;
x3 = gee_its_short (A,b) ;
x4 = gee_its_too_short (A,b) ;
% get the relative residuals
err1 = gee_its_simple_resid (A, x1, b) ;
err2 = gee_its_simple_resid (A, x2, b) ;
err3 = gee_its_simple_resid (A, x3, b) ;
err4 = gee_its_simple_resid (A, x4, b) ;
maxerr1 = max (maxerr1, err1) ;
maxerr2 = max (maxerr2, err2) ;
maxerr3 = max (maxerr3, err3) ;
maxerr4 = max (maxerr4, err4) ;
if (max ([err1 err2 err3]) > 1e-14)
error ('test failed') ;
end
% test rcond
if (n > 0)
[L,U,p] = lu (A) ; %#ok
r1 = min (abs (diag (U))) / max (abs (diag (U))) ;
[LU,p,r2] = gee_its_simple_factorize (A) ;
if (r1 ~= 0)
r = abs (r1 - r2) / r1 ;
rmax = max (rmax, r) ;
end
if (r > 1e-10)
error ('test failed') ;
end
end
end
end
end
fprintf ('\n') ;
fprintf ('max residual for backslash: %g\n', maxerr1) ;
fprintf ('max residual for gee_its_simple: %g\n', maxerr2) ;
fprintf ('max residual for gee_its_short: %g\n', maxerr3) ;
fprintf ('max residual for gee_its_too_short: %g (no pivoting!)\n', maxerr4) ;
fprintf ('\n\nAll tests passed OK\n') ;
|