1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
//------------------------------------------------------------------------------
// SLIP_LU/Demo/SLIPLU.c: example main program for SLIP_LU
//------------------------------------------------------------------------------
// SLIP_LU: (c) 2019-2020, Chris Lourenco, Jinhao Chen, Erick Moreno-Centeno,
// Timothy A. Davis, Texas A&M University. All Rights Reserved. See
// SLIP_LU/License for the license.
//------------------------------------------------------------------------------
#include "demos.h"
/* This program will exactly solve the sparse linear system Ax = b by
* performing the SLIP LU factorization. This is intended to be a demonstration
* of the "advanced interface" of SLIP LU. Refer to README.txt for
* information on how to properly use this code
*/
// usage:
// SLIPLU Followed by the listed args:
//
// help. e.g., SLIPLU help, which indicates SLIPLU to print to guideline
// for using this function.
//
// f (or file) Filename. e.g., SLIPLU f MATRIX_NAME RHS_NAME, which indicates
// SLIPLU will read matrix from MATRIX_NAME and right hand side from RHS_NAME.
// The matrix must be stored in Matrix Market format. Refer to
// http://math.nist.gov/MatrixMarket/formats.html for information on
// Matrix Market format.
// The right hand side vector must be stored as a dense vector.
//
// p (or piv) Pivot_param. e.g., SLIPLU p 0, which inidcates SLIPLU will use
// smallest pivot for pivot scheme. Other available options are listed
// as follows:
// 0: Smallest pivot: Default and recommended
// 1: Diagonal pivoting
// 2: First nonzero per column chosen as pivot
// 3: Diagonal pivoting with tolerance for smallest pivot
// 4: Diagonal pivoting with tolerance for largest pivot
// 5: Largest pivot
//
// q (or col) Column_order_param. e.g., SLIPLU q 1, which indicates SLIPLU
// will use COLAMD for column ordering. Other available options are:
// 0: None: Not recommended for sparse matrices
// 1: COLAMD: Default
// 2: AMD
//
// t (or tol) tolerance_param. e.g., SLIPLU t 1e-10, which indicates SLIPLU
// will use 1e-10 as the tolerance for pivot scheme 3 and 4 mentioned above.
// Therefore, it is only necessary if pivot scheme 3 or 4 is used.
//
// o (or out). e.g., SLIPLU o 1, which indicates SLIPLU will output the
// errors and warnings during the process. Other available options are:
// 0: print nothing
// 1: just errors and warnings: Default
// 2: terse, with basic stats from COLAMD/AMD and SLIP and solution
//
//
// If none of the above args is given, they are set to the following default:
//
// mat_name = "../ExampleMats/10teams_mat.txt"
// rhs_name = "../ExampleMats/10teams_v.txt"
// p = 0, i.e., using smallest pivot
// q = 1, i.e., using COLAMD
// t = 0.1, not being using since p != 3 or 4
#define FREE_WORKSPACE \
SLIP_matrix_free(&A, option); \
SLIP_matrix_free(&L, option); \
SLIP_matrix_free(&U, option); \
SLIP_matrix_free(&x, option); \
SLIP_matrix_free(&b, option); \
SLIP_matrix_free(&rhos, option); \
SLIP_FREE(pinv); \
SLIP_LU_analysis_free(&S, option); \
SLIP_FREE(option); \
SLIP_finalize( ) ;
int main (int argc, char* argv[])
{
//--------------------------------------------------------------------------
// Prior to using SLIP LU, its environment must be initialized. This is done
// by calling the SLIP_initialize() function.
//--------------------------------------------------------------------------
SLIP_initialize();
//--------------------------------------------------------------------------
// We first initialize the default parameters. These parameters are modified
// either via command line arguments or when reading in data. The important
// initializations are in the block below.
//
// First, we initialize 6 SLIP_matrices. Note that these matrices must
// simply be declared, they will be created and allocated within their
// respective functions. These matrices are:
//
// A: User input matrix. Must be SLIP_CSC and SLIP_MPZ for routines
//
// L: Lower triangular matrix. Will be output as SLIP_CSC and SLIP_MPZ
//
// U: Upper triangular matrix. Will be output as SLIP_CSC and SLIP_MPZ
//
// x: Solution to the linear system. Will be output as SLIP_DENSE and SLIP_MPQ
//
// b: Set of right hand side vectors. Must be SLIP_DENSE and SLIP_MPZ
//
// Additionally, two other data structures are declared here:
//
// pinv: Inverse row permutation used for LDU factorization and permutation
//
// S: Symbolic analysis struct.
//
// Lastly, the following parameter is created:
//
// option: Command options for the factorization. In general, this can be
// set to default values and is almost always the last input argument
// for SLIP LU functions (except SLIP_malloc and such)
//--------------------------------------------------------------------------
SLIP_matrix *A = NULL;
SLIP_matrix *L = NULL;
SLIP_matrix *U = NULL;
SLIP_matrix *x = NULL;
SLIP_matrix *b = NULL;
SLIP_matrix *rhos = NULL;
int64_t* pinv = NULL;
SLIP_LU_analysis* S = NULL;
// Initialize option, command options for the factorization
SLIP_options *option = SLIP_create_default_options();
// Extra parameters used to obtain A, b, etc
SLIP_info ok ;
char *mat_name, *rhs_name;
SLIP_type rat;
mat_name = "../ExampleMats/10teams_mat.txt";// Set demo matrix and RHS name
rhs_name = "../ExampleMats/10teams_v.txt";
if (!option)
{
fprintf (stderr, "Error! OUT of MEMORY!\n");
SLIP_finalize();
return 0;
}
//--------------------------------------------------------------------------
// After initializing memory, we process the command line for this function.
// Such a step is optional, a user can also manually set these parameters.
// For example, if one wished to use the AMD ordering, they can just set
// option->order = SLIP_AMD.
//--------------------------------------------------------------------------
bool help ;
OK(SLIP_process_command_line(argc, argv, option,
&mat_name, &rhs_name, &rat, &help));
if (help) return (0) ;
//--------------------------------------------------------------------------
// In this demo file, we now read in the A and b matrices from external
// files. Refer to the example.c file or the user guide for other
// methods of creating the input matrix. In general, the user can create
// his/her matrix (say in double form) and then create a copy of it with
// SLIP_matrix_copy
//--------------------------------------------------------------------------
// Read in A
FILE* mat_file = fopen(mat_name,"r");
if( mat_file == NULL )
{
perror("Error while opening the file");
FREE_WORKSPACE;
return 0;
}
OK(SLIP_tripread(&A, mat_file, option));
fclose(mat_file);
// Read in right hand side
FILE* rhs_file = fopen(rhs_name,"r");
if( rhs_file == NULL )
{
perror("Error while opening the file");
FREE_WORKSPACE;
return 0;
}
OK(SLIP_read_dense(&b, rhs_file, option));
fclose(rhs_file);
// Check if the size of A matches b
if (A->n != b->m)
{
fprintf (stderr, "Error! Size of A and b do not match!\n");
FREE_WORKSPACE;
return 0;
}
//--------------------------------------------------------------------------
// We now perform symbolic analysis by getting the column preordering of
// the matrix A. This is done via the SLIP_LU_analyze function. The output
// of this function is a column permutation Q where we factor the matrix AQ
// and an estimate of the number of nonzeros in L and U.
//
// Note that in the simple interface demostrated in the example*.c files,
// all of the following code is condensed into the single SLIP_backslash
// function.
//--------------------------------------------------------------------------
clock_t start_col = clock();
// Column ordering using either AMD, COLAMD or nothing
OK(SLIP_LU_analyze(&S, A, option));
if (option->print_level > 0)
{
SLIP_print_options(option);
}
clock_t end_col = clock();
//--------------------------------------------------------------------------
// Now we perform the SLIP LU factorization to obtain matrices L and U and a
// row permutation P such that PAQ = LDU. Note that the D matrix is never
// explicitly constructed or used.
//--------------------------------------------------------------------------
clock_t start_factor = clock();
OK(SLIP_LU_factorize(&L, &U, &rhos, &pinv, A, S, option));
clock_t end_factor = clock();
//--------------------------------------------------------------------------
// We now solve the system Ax=b using the L and U factors computed above.
//--------------------------------------------------------------------------
clock_t start_solve = clock();
// SLIP LU has an optional check step which can verify that the solution
// vector x satisfies Ax=b in perfect precision intended for debugging.
//
// Note that this is entirely optional and not necessary. The solution
// returned is guaranteed to be exact. It appears here just as a
// verification that SLIP LU is computing its expected result. This test
// can fail only if it runs out of memory, or if there is a bug in the
// code. Also, note that this function can be quite time consuming; thus
// it is not recommended to be used in general.
//
// To enable said check, the following bool is set to true
//
option->check = true;
// Solve LDU x = b
OK(SLIP_LU_solve(&x, b,
(const SLIP_matrix *) A,
(const SLIP_matrix *) L,
(const SLIP_matrix *) U,
(const SLIP_matrix *) rhos,
S,
(const int64_t *) pinv,
option));
clock_t end_solve = clock();
// Done, x now contains the exact solution of the linear system Ax=b in
// dense rational form. There is an optional final step here where the user
// can cast their solution to a different data type or matrix format.
// Below, we have a block of code which illustrates how one would do this.
// Example of how to transform output. Uncomment if desired
//
// SLIP_kind my_kind = SLIP_DENSE; // SLIP_CSC, SLIP_TRIPLET or SLIP_DENSE
// SLIP_type my_type = SLIP_FP64; // SLIP_MPQ, SLIP_MPFR, or SLIP_FP64
//
// SLIP_matrix* my_x = NULL; // New output
// Create copy which is stored as my_kind and my_type:
// SLIP_matrix_copy( &my_x, my_kind, my_type, x, option);
// Timing stats
double t_sym = (double) (end_col-start_col)/CLOCKS_PER_SEC;
double t_factor = (double) (end_factor - start_factor) / CLOCKS_PER_SEC;
double t_solve = (double) (end_solve - start_solve) / CLOCKS_PER_SEC;
printf("\nNumber of L+U nonzeros: \t\t%"PRId64,
(L->p[L->n]) + (U->p[U->n]) - (L->m));
printf("\nSymbolic analysis time: \t\t%lf", t_sym);
printf("\nSLIP LU Factorization time: \t\t%lf", t_factor);
printf("\nFB Substitution time: \t\t\t%lf\n\n", t_solve);
//--------------------------------------------------------------------------
// Free Memory
//--------------------------------------------------------------------------
FREE_WORKSPACE;
printf ("\n%s: all tests passed\n\n", __FILE__) ;
return 0;
}
|