1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
//------------------------------------------------------------------------------
// SLIP_LU/Include/SLIP_LU.h: user #include file for SLIP_LU.
//------------------------------------------------------------------------------
// SLIP_LU: (c) 2019-2020, Chris Lourenco, Jinhao Chen, Erick Moreno-Centeno,
// Timothy A. Davis, Texas A&M University. All Rights Reserved. See
// SLIP_LU/License for the license.
//------------------------------------------------------------------------------
#ifndef SLIP_LU_H
#define SLIP_LU_H
// This software package exactly solves a sparse system of linear equations
// using the SLIP LU factorization. This code accompanies the paper (submitted
// to ACM Transactions on Mathematical Software):
// "Algorithm 1xxx: SLIP LU: A Sparse Left-Looking Integer-Preserving LU
// Factorization for Exactly Solving Sparse Linear Systems",
// C. Lourenco, J. Chen, E. Moreno-Centeno, T. Davis, under submission,
// ACM Trans. Mathematical Software.
// The theory associated with this software can be found in the paper
// (published in SIAM journal on matrix analysis and applications):
// "Exact Solution of Sparse Linear Systems via Left-Looking
// Roundoff-Error-Free LU Factorization in Time Proportional to
// Arithmetic Work", C. Lourenco, A. R. Escobedo, E. Moreno-Centeno,
// T. Davis, SIAM J. Matrix Analysis and Applications. pp 609-638,
// vol 40, no 2, 2019.
// If you use this code, you must first download and install the GMP and
// MPFR libraries. GMP and MPFR can be found at:
// https://gmplib.org/
// http://www.mpfr.org/
// If you use SLIP LU for a publication, we request that you please cite
// the above two papers.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//-------------------------Authors----------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Christopher Lourenco, Jinhao Chen, Erick Moreno-Centeno, and Timothy Davis
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//-------------------------Contact Information----------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Please contact Chris Lourenco (chrisjlourenco@gmail.com)
// or Tim Davis (timdavis@aldenmath.com, DrTimothyAldenDavis@gmail.com,
// davis@tamu.edu)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//-------------------------Copyright--------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// SLIP LU is free software; you can redistribute it and/or modify
// it under the terms of either:
//
// * the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// or
//
// * the GNU General Public License as published by the Free Software
// Foundation; either version 2 of the License, or (at your option) any
// later version.
//
// or both in parallel, as here.
//
// See license.txt for license info.
//
// This software is copyright by Christopher Lourenco, Jinhao Chen, Erick
// Moreno-Centeno and Timothy A. Davis. All Rights Reserved.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//---------------------------DISCLAIMER-----------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// SLIP LU is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//--------------------------Summary---------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// This software package solves the linear system Ax = b exactly. The input
// matrix and right hand side vectors are stored as either integers, double
// precision numbers, multiple precision floating points (through the mpfr
// library) or as rational numbers (as a collection of numerators and
// denominators using the GMP mpq_t data structure). Appropriate routines
// within the code transform the input into an integral matrix in compressed
// column form.
// This package computes the factorization PAQ = LDU. Note that we store the
// "functional" form of the factorization by only storing L and U. The user
// is given some freedom to select the permutation matrices P and Q. The
// recommended default settings select Q using the COLAMD column ordering
// and select P via a partial pivoting scheme in which the diagonal entry
// in column k is selected if it is the same magnitude as the smallest
// entry, otherwise the smallest entry is selected as the kth pivot.
// Alternative strategies allowed to select Q include the AMD column
// ordering or no column permutation (Q=I). For pivots, there are a variety
// of potential schemes including traditional partial pivoting, diagonal
// pivoting, tolerance pivoting etc. This package does not allow pivoting
// based on sparsity criterion.
// The factors L and U are computed via integer preserving operations via
// integer-preserving Gaussian elimination. The key part of this algorithm
// is a Roundoff Error Free (REF) sparse triangular solve function which
// exploits sparsity to reduce the number of operations that must be
// performed.
// Once L and U are computed, a simplified version of the triangular solve
// is performed which assumes the vector b is dense. The final solution
// vector x is gauranteed to be exact. This vector can be output in one of
// three ways: 1) full precision rational arithmetic (as a sequence of
// numerators and denominators) using the GMP mpq_t data type, 2) double
// precision while not exact will produce a solution accurate to machine
// roundoff unless the size of the associated solution exceeds double
// precision (i.e., the solution is 10^500 or something), 3) variable
// precision floating point using the GMP mpfr_t data type. The associated
// precision is user defined.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//---------------------Include files required by SLIP LU------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <gmp.h>
#include <mpfr.h>
#include "SuiteSparse_config.h"
//------------------------------------------------------------------------------
// Version
//------------------------------------------------------------------------------
// Current version of the code
#define SLIP_LU_VERSION "1.0.2"
#define SLIP_LU_VERSION_MAJOR 1
#define SLIP_LU_VERSION_MINOR 0
#define SLIP_LU_VERSION_SUB 2
//------------------------------------------------------------------------------
// Error codes
//------------------------------------------------------------------------------
// Most SLIP_LU functions return a code that indicates if it was successful
// or not. Otherwise the code returns a pointer to the object that was created
// or it returns void (in the case that an object was deleted)
typedef enum
{
SLIP_OK = 0, // all is well
SLIP_OUT_OF_MEMORY = -1, // out of memory
SLIP_SINGULAR = -2, // the input matrix A is singular
SLIP_INCORRECT_INPUT = -3, // one or more input arguments are incorrect
SLIP_INCORRECT = -4, // The solution is incorrect
SLIP_PANIC = -5 // SLIP_LU used without proper initialization
}
SLIP_info ;
//------------------------------------------------------------------------------
// Pivot scheme codes
//------------------------------------------------------------------------------
// A code in SLIP_options to tell SLIP LU what type of pivoting to use.
typedef enum
{
SLIP_SMALLEST = 0, // Smallest pivot
SLIP_DIAGONAL = 1, // Diagonal pivoting
SLIP_FIRST_NONZERO = 2, // First nonzero per column chosen as pivot
SLIP_TOL_SMALLEST = 3, // Diagonal pivoting with tol for smallest pivot.
// (Default)
SLIP_TOL_LARGEST = 4, // Diagonal pivoting with tol. for largest pivot
SLIP_LARGEST = 5 // Largest pivot
}
SLIP_pivot ;
//------------------------------------------------------------------------------
// Column ordering scheme codes
//------------------------------------------------------------------------------
// A code in SLIP_options to tell SLIP LU what column ordering to use.
typedef enum
{
SLIP_NO_ORDERING = 0, // None: A is factorized as-is
SLIP_COLAMD = 1, // COLAMD: Default
SLIP_AMD = 2 // AMD
}
SLIP_col_order ;
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//-------------------------Data Structures--------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// This struct serves as a global struct to define all user-selectable options.
typedef struct SLIP_options
{
SLIP_pivot pivot ; // row pivoting scheme used.
SLIP_col_order order ; // column ordering scheme used
double tol ; // tolerance for the row-pivotin methods
// SLIP_TOL_SMALLEST and SLIP_TOL_LARGEST
int print_level ; // 0: print nothing, 1: just errors,
// 2: terse (basic stats from COLAMD/AMD and
// SLIP LU), 3: all, with matrices and results
int32_t prec ; // Precision used to output file if MPFR is chosen
mpfr_rnd_t round ; // Type of MPFR rounding used
bool check ; // Set true if the solution to the system should be
// checked. Intended for debugging only; SLIP_LU is
// guaranteed to return the exact solution.
} SLIP_options ;
// Purpose: Create and return SLIP_options object with default parameters
// upon successful allocation, which are defined in SLIP_LU_internal.h
// To free it, simply use SLIP_FREE (option).
SLIP_options* SLIP_create_default_options (void) ;
//------------------------------------------------------------------------------
// SLIP_matrix: a sparse CSC, sparse triplet, or dense matrix
//------------------------------------------------------------------------------
// SLIP LU uses a single matrix data type, SLIP_matrix, which can be held in
// one of three kinds of formats: sparse CSC (compressed sparse column),
// sparse triplet, and dense:
typedef enum
{
SLIP_CSC = 0, // matrix is in compressed sparse column format
SLIP_TRIPLET = 1, // matrix is in sparse triplet format
SLIP_DENSE = 2 // matrix is in dense format
}
SLIP_kind ;
// Each of the three formats can have values of 5 different data types: mpz_t,
// mpq_t, mpfr_t, int64_t, and double:
typedef enum
{
SLIP_MPZ = 0, // matrix of mpz_t integers
SLIP_MPQ = 1, // matrix of mpq_t rational numbers
SLIP_MPFR = 2, // matrix of mpfr_t
SLIP_INT64 = 3, // matrix of int64_t integers
SLIP_FP64 = 4 // matrix of doubles
}
SLIP_type ;
// This gives a total of 15 different matrix types. Not all functions accept
// all 15 matrices types, however.
// Suppose A is an m-by-n matrix with nz <= nzmax entries.
// The p, i, j, and x components are defined as:
// (0) SLIP_CSC: A sparse matrix in CSC (compressed sparse column) format.
// A->p is an int64_t array of size n+1, A->i is an int64_t array of size
// nzmax (with nz <= nzmax), and A->x.type is an array of size nzmax of
// matrix entries ('type' is one of mpz, mpq, mpfr, int64, or fp64). The
// row indices of column j appear in A->i [A->p [j] ... A->p [j+1]-1], and
// the values appear in the same locations in A->x.type. The A->j array
// is NULL. A->nz is ignored; nz is A->p [A->n].
// (1) SLIP_TRIPLET: A sparse matrix in triplet format. A->i and A->j are
// both int64_t arrays of size nzmax, and A->x.type is an array of values
// of the same size. The kth tuple has row index A->i [k], column index
// A->j [k], and value A->x.type [k], with 0 <= k < A->nz. The A->p array
// is NULL.
// (2) SLIP_DENSE: A dense matrix. The integer arrays A->p, A->i, and A->j
// are all NULL. A->x.type is a pointer to an array of size m*n, stored
// in column-oriented format. The value of A(i,j) is A->x.type [p]
// with p = i + j*A->m. A->nz is ignored; nz is A->m * A->n.
// The SLIP_matrix may contain 'shallow' components, A->p, A->i, A->j, and
// A->x. For example, if A->p_shallow is true, then a non-NULL A->p is a
// pointer to a read-only array, and the A->p array is not freed by
// SLIP_matrix_free. If A->p is NULL (for a triplet or dense matrix), then
// A->p_shallow has no effect.
typedef struct
{
int64_t m ; // number of rows
int64_t n ; // number of columns
int64_t nzmax ; // size of A->i, A->j, and A->x
int64_t nz ; // # nonzeros in a triplet matrix .
// Ignored for CSC and dense matrices.
SLIP_kind kind ; // CSC, triplet, or dense
SLIP_type type ; // mpz, mpq, mpfr, int64, or fp64 (double)
int64_t *p ; // if CSC: column pointers, an array size is n+1.
// if triplet or dense: A->p is NULL.
bool p_shallow ; // if true, A->p is shallow.
int64_t *i ; // if CSC or triplet: row indices, of size nzmax.
// if dense: A->i is NULL.
bool i_shallow ; // if true, A->i is shallow.
int64_t *j ; // if triplet: column indices, of size nzmax.
// if CSC or dense: A->j is NULL.
bool j_shallow ; // if true, A->j is shallow.
union // A->x.type has size nzmax.
{
mpz_t *mpz ; // A->x.mpz
mpq_t *mpq ; // A->x.mpq
mpfr_t *mpfr ; // A->x.mpfr
int64_t *int64 ; // A->x.int64
double *fp64 ; // A->x.fp64
} x ;
bool x_shallow ; // if true, A->x.type is shallow.
mpq_t scale ; // scale factor for mpz matrices (never shallow)
// For all matrices who's type is not mpz,
// mpz_scale = 1.
} SLIP_matrix ;
//------------------------------------------------------------------------------
// SLIP_matrix_allocate: allocate an m-by-n SLIP_matrix
//------------------------------------------------------------------------------
// if shallow is false: All components (p,i,j,x) are allocated and set to zero,
// and then shallow flags are all false.
// if shallow is true: All components (p,i,j,x) are NULL, and their shallow
// flags are all true. The user can then set A->p,
// A->i, A->j, and/or A->x accordingly, from their own
// arrays.
SLIP_info SLIP_matrix_allocate
(
SLIP_matrix **A_handle, // matrix to allocate
SLIP_kind kind, // CSC, triplet, or dense
SLIP_type type, // mpz, mpq, mpfr, int64, or double
int64_t m, // # of rows
int64_t n, // # of columns
int64_t nzmax, // max # of entries
bool shallow, // if true, matrix is shallow. A->p, A->i, A->j,
// A->x are all returned as NULL and must be set
// by the caller. All A->*_shallow are returned
// as true.
bool init, // If true, and the data types are mpz, mpq, or
// mpfr, the entries are initialized (using the
// appropriate SLIP_mp*_init function). If false,
// the mpz, mpq, and mpfr arrays are allocated but
// not initialized.
const SLIP_options *option
) ;
//------------------------------------------------------------------------------
// SLIP_matrix_free: free a SLIP_matrix
//------------------------------------------------------------------------------
SLIP_info SLIP_matrix_free
(
SLIP_matrix **A_handle, // matrix to free
const SLIP_options *option
) ;
//------------------------------------------------------------------------------
// SLIP_matrix_nnz: # of entries in a matrix
//------------------------------------------------------------------------------
int64_t SLIP_matrix_nnz // return # of entries in A, or -1 on error
(
const SLIP_matrix *A, // matrix to query
const SLIP_options *option
) ;
//------------------------------------------------------------------------------
// SLIP_matrix_copy: makes a copy of a matrix
//------------------------------------------------------------------------------
// SLIP_matrix_copy: make a copy of a SLIP_matrix, into another kind and type.
SLIP_info SLIP_matrix_copy
(
SLIP_matrix **C_handle, // matrix to create (never shallow)
// inputs, not modified:
SLIP_kind C_kind, // C->kind: CSC, triplet, or dense
SLIP_type C_type, // C->type: mpz_t, mpq_t, mpfr_t, int64_t, or double
SLIP_matrix *A, // matrix to make a copy of (may be shallow)
const SLIP_options *option
) ;
//------------------------------------------------------------------------------
// SLIP_matrix macros
//------------------------------------------------------------------------------
// These macros simplify the access to entries in a SLIP_matrix.
// The type parameter is one of: mpq, mpz, mpfr, int64, or fp64.
// To access the kth entry in a SLIP_matrix using 1D linear addressing,
// in any matrix kind (CSC, triplet, or dense), in any type:
#define SLIP_1D(A,k,type) ((A)->x.type [k])
// To access the (i,j)th entry in a 2D SLIP_matrix, in any type:
#define SLIP_2D(A,i,j,type) SLIP_1D (A, (i)+(j)*((A)->m), type)
//------------------------------------------------------------------------------
// SLIP_LU_analysis: symbolic pre-analysis
//------------------------------------------------------------------------------
// This struct stores the column permutation for LU and the estimate of the
// number of nonzeros in L and U.
typedef struct
{
int64_t *q ; // Column permutation for LU factorization, representing
// the permutation matrix Q. The matrix A*Q is factorized.
// If the kth column of L, U, and A*Q is column j of the
// unpermuted matrix A, then j = S->q [k].
int64_t lnz ; // Approximate number of nonzeros in L.
int64_t unz ; // Approximate number of nonzeros in U.
// lnz and unz are used to allocate the initial space for
// L and U; the space is reallocated as needed.
} SLIP_LU_analysis ;
// The symbolic analysis object is created by SLIP_LU_analyze.
// SLIP_LU_analysis_free frees the SLIP_LU_analysis object.
SLIP_info SLIP_LU_analysis_free
(
SLIP_LU_analysis **S, // Structure to be deleted
const SLIP_options *option
) ;
//------------------------------------------------------------------------------
// Memory management
//------------------------------------------------------------------------------
// SLIP_LU relies on the SuiteSparse memory management functions,
// SuiteSparse_malloc, SuiteSparse_calloc, SuiteSparse_realloc, and
// SuiteSparse_free.
// Allocate and initialize memory space for SLIP_LU.
void *SLIP_calloc
(
size_t nitems, // number of items to allocate
size_t size // size of each item
) ;
// Allocate memory space for SLIP_LU.
void *SLIP_malloc
(
size_t size // size of memory space to allocate
) ;
// Free the memory allocated by SLIP_calloc, SLIP_malloc, or SLIP_realloc.
void SLIP_free
(
void *p // pointer to memory space to free
) ;
// Free a pointer and set it to NULL.
#define SLIP_FREE(p) \
{ \
SLIP_free (p) ; \
(p) = NULL ; \
}
// SLIP_realloc is a wrapper for realloc. If p is non-NULL on input, it points
// to a previously allocated object of size old_size * size_of_item. The
// object is reallocated to be of size new_size * size_of_item. If p is NULL
// on input, then a new object of that size is allocated. On success, a
// pointer to the new object is returned. If the reallocation fails, p is not
// modified, and a flag is returned to indicate that the reallocation failed.
// If the size decreases or remains the same, then the method always succeeds
// (ok is returned as true).
// Typical usage: the following code fragment allocates an array of 10 int's,
// and then increases the size of the array to 20 int's. If the SLIP_malloc
// succeeds but the SLIP_realloc fails, then the array remains unmodified,
// of size 10.
//
// int *p ;
// p = SLIP_malloc (10 * sizeof (int)) ;
// if (p == NULL) { error here ... }
// printf ("p points to an array of size 10 * sizeof (int)\n") ;
// bool ok ;
// p = SLIP_realloc (20, 10, sizeof (int), p, &ok) ;
// if (ok) printf ("p has size 20 * sizeof (int)\n") ;
// else printf ("realloc failed; p still has size 10 * sizeof (int)\n") ;
// SLIP_free (p) ;
void *SLIP_realloc // pointer to reallocated block, or original block
// if the realloc failed
(
int64_t nitems_new, // new number of items in the object
int64_t nitems_old, // old number of items in the object
size_t size_of_item, // sizeof each item
void *p, // old object to reallocate
bool *ok // true if success, false on failure
) ;
//------------------------------------------------------------------------------
// SLIP LU memory environment routines
//------------------------------------------------------------------------------
// SLIP_initialize: initializes the working evironment for SLIP LU library.
// It must be called prior to calling any other SLIP_* function.
SLIP_info SLIP_initialize (void) ;
// SLIP_initialize_expert is the same as SLIP_initialize, except that it allows
// for a redefinition of custom memory functions that are used for SLIP_LU and
// GMP. The four inputs to this function are pointers to four functions with
// the same signatures as the ANSI C malloc, calloc, realloc, and free.
SLIP_info SLIP_initialize_expert
(
void* (*MyMalloc) (size_t), // user-defined malloc
void* (*MyCalloc) (size_t, size_t), // user-defined calloc
void* (*MyRealloc) (void *, size_t), // user-defined realloc
void (*MyFree) (void *) // user-defined free
) ;
// SLIP_finalize: This function finalizes the working evironment for SLIP LU
// library, and frees any internal workspace created by SLIP_LU. It must be
// called as the last SLIP_* function called.
SLIP_info SLIP_finalize (void) ;
//------------------------------------------------------------------------------
// Primary factorization & solve routines
//------------------------------------------------------------------------------
// SLIP_backslash solves the linear system Ax = b. This is the simplest way to
// use the SLIP LU package. This function encompasses both factorization and
// solve and returns the solution vector in the user desired type. It can be
// thought of as an exact version of MATLAB sparse backslash.
SLIP_info SLIP_backslash
(
// Output
SLIP_matrix **X_handle, // Final solution vector
// Input
SLIP_type type, // Type of output desired:
// Must be SLIP_MPQ, SLIP_MPFR,
// or SLIP_FP64
const SLIP_matrix *A, // Input matrix
const SLIP_matrix *b, // Right hand side vector(s)
const SLIP_options* option
) ;
// SLIP_LU_analyze performs the symbolic ordering and analysis for SLIP LU.
// Currently, there are three options: no ordering, COLAMD, and AMD.
SLIP_info SLIP_LU_analyze
(
SLIP_LU_analysis **S, // symbolic analysis (column permutation and nnz L,U)
const SLIP_matrix *A, // Input matrix
const SLIP_options *option // Control parameters
) ;
// SLIP_LU_factorize performs the SLIP LU factorization. This factorization is
// done via n iterations of the sparse REF triangular solve function. The
// overall factorization is PAQ = LDU. The determinant can be obtained as
// rhos->x.mpz[n-1].
//
// L: undefined on input, created on output
// U: undefined on input, created on output
// rhos: undefined on input, created on output
// pinv: undefined on input, created on output
//
// A: input only, not modified
// S: input only, not modified
// option: input only, not modified
SLIP_info SLIP_LU_factorize
(
// output:
SLIP_matrix **L_handle, // lower triangular matrix
SLIP_matrix **U_handle, // upper triangular matrix
SLIP_matrix **rhos_handle, // sequence of pivots
int64_t **pinv_handle, // inverse row permutation
// input:
const SLIP_matrix *A, // matrix to be factored
const SLIP_LU_analysis *S, // column permutation and estimates
// of nnz in L and U
const SLIP_options* option
) ;
// SLIP_LU_solve solves the linear system LD^(-1)U x = b.
SLIP_info SLIP_LU_solve // solves the linear system LD^(-1)U x = b
(
// Output
SLIP_matrix **X_handle, // rational solution to the system
// input:
const SLIP_matrix *b, // right hand side vector
const SLIP_matrix *A, // Input matrix
const SLIP_matrix *L, // lower triangular matrix
const SLIP_matrix *U, // upper triangular matrix
const SLIP_matrix *rhos, // sequence of pivots
const SLIP_LU_analysis *S, // symbolic analysis struct
const int64_t *pinv, // inverse row permutation
const SLIP_options* option
) ;
// SLIP_matrix_check: check and print a SLIP_sparse matrix
SLIP_info SLIP_matrix_check // returns a SLIP_LU status code
(
const SLIP_matrix *A, // matrix to check
const SLIP_options* option // defines the print level
) ;
//------------------------------------------------------------------------------
//---------------------------SLIP GMP/MPFR Functions----------------------------
//------------------------------------------------------------------------------
// The following functions are the SLIP LU interface to the GMP/MPFR libary.
// Each corresponding GMP/MPFR function is given a wrapper to ensure that no
// memory leaks or crashes occur. All covered GMP functions can be found in
// SLIP_gmp.c
// The GMP library does not handle out-of-memory failures. However, it does
// provide a mechanism for passing function pointers that replace GMP's use of
// malloc, realloc, and free. This mechanism is used to provide a try/catch
// mechanism for memory allocation errors, using setjmp and longjmp.
// When a GMP function is called, this wrapper keeps track of a list of objects
// allocated by that function. The list is started fresh each time a GMP
// function is called. If any allocation fails, the NULL pointer is not
// returned to GMP. Instead, all allocated blocks in the list are freed,
// and slip_gmp_allocate returns directly to wrapper.
SLIP_info SLIP_mpfr_asprintf (char **str, const char *format, ... ) ;
SLIP_info SLIP_gmp_fscanf (FILE *fp, const char *format, ... ) ;
SLIP_info SLIP_mpz_init (mpz_t x) ;
SLIP_info SLIP_mpz_init2(mpz_t x, const size_t size) ;
SLIP_info SLIP_mpz_set (mpz_t x, const mpz_t y) ;
SLIP_info SLIP_mpz_set_ui (mpz_t x, const uint64_t y) ;
SLIP_info SLIP_mpz_set_si (mpz_t x, const int64_t y) ;
SLIP_info SLIP_mpz_get_d (double *x, const mpz_t y) ;
SLIP_info SLIP_mpz_get_si (int64_t *x, const mpz_t y) ;
SLIP_info SLIP_mpz_set_q (mpz_t x, const mpq_t y) ;
SLIP_info SLIP_mpz_mul (mpz_t a, const mpz_t b, const mpz_t c) ;
SLIP_info SLIP_mpz_submul (mpz_t x, const mpz_t y, const mpz_t z) ;
SLIP_info SLIP_mpz_divexact (mpz_t x, const mpz_t y, const mpz_t z) ;
SLIP_info SLIP_mpz_gcd (mpz_t x, const mpz_t y, const mpz_t z) ;
SLIP_info SLIP_mpz_lcm (mpz_t lcm, const mpz_t x, const mpz_t y) ;
SLIP_info SLIP_mpz_abs (mpz_t x, const mpz_t y) ;
SLIP_info SLIP_mpz_cmp (int *r, const mpz_t x, const mpz_t y) ;
SLIP_info SLIP_mpz_cmpabs (int *r, const mpz_t x, const mpz_t y) ;
SLIP_info SLIP_mpz_cmp_ui (int *r, const mpz_t x, const uint64_t y) ;
SLIP_info SLIP_mpz_sgn (int *sgn, const mpz_t x) ;
SLIP_info SLIP_mpz_sizeinbase (size_t *size, const mpz_t x, int64_t base) ;
SLIP_info SLIP_mpq_init (mpq_t x) ;
SLIP_info SLIP_mpq_set (mpq_t x, const mpq_t y) ;
SLIP_info SLIP_mpq_set_z (mpq_t x, const mpz_t y) ;
SLIP_info SLIP_mpq_set_d (mpq_t x, const double y) ;
SLIP_info SLIP_mpq_set_ui (mpq_t x, const uint64_t y, const uint64_t z) ;
SLIP_info SLIP_mpq_set_si (mpq_t x, const int64_t y, const uint64_t z) ;
SLIP_info SLIP_mpq_set_num (mpq_t x, const mpz_t y) ;
SLIP_info SLIP_mpq_set_den (mpq_t x, const mpz_t y) ;
SLIP_info SLIP_mpq_get_den (mpz_t x, const mpq_t y) ;
SLIP_info SLIP_mpq_get_d (double *x, const mpq_t y) ;
SLIP_info SLIP_mpq_abs (mpq_t x, const mpq_t y) ;
SLIP_info SLIP_mpq_add (mpq_t x, const mpq_t y, const mpq_t z) ;
SLIP_info SLIP_mpq_mul (mpq_t x, const mpq_t y, const mpq_t z) ;
SLIP_info SLIP_mpq_div (mpq_t x, const mpq_t y, const mpq_t z) ;
SLIP_info SLIP_mpq_cmp (int *r, const mpq_t x, const mpq_t y) ;
SLIP_info SLIP_mpq_cmp_ui (int *r, const mpq_t x,
const uint64_t num, const uint64_t den) ;
SLIP_info SLIP_mpq_sgn (int *sgn, const mpq_t x) ;
SLIP_info SLIP_mpq_equal (int *r, const mpq_t x, const mpq_t y) ;
SLIP_info SLIP_mpfr_init2(mpfr_t x, const uint64_t size) ;
SLIP_info SLIP_mpfr_set (mpfr_t x, const mpfr_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_set_d (mpfr_t x, const double y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_set_si (mpfr_t x, int64_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_set_q (mpfr_t x, const mpq_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_set_z (mpfr_t x, const mpz_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_get_z (mpz_t x, const mpfr_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_get_q (mpq_t x, const mpfr_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_get_d (double *x, const mpfr_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_get_si (int64_t *x, const mpfr_t y, const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_mul (mpfr_t x, const mpfr_t y, const mpfr_t z,
const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_mul_d (mpfr_t x, const mpfr_t y, const double z,
const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_div_d (mpfr_t x, const mpfr_t y, const double z,
const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_ui_pow_ui (mpfr_t x, const uint64_t y, const uint64_t z,
const mpfr_rnd_t rnd) ;
SLIP_info SLIP_mpfr_sgn (int *sgn, const mpfr_t x) ;
SLIP_info SLIP_mpfr_free_cache (void) ;
SLIP_info SLIP_mpfr_free_str (char *str) ;
#if 0
// These functions are currently unused, but kept here for future reference.
SLIP_info SLIP_gmp_asprintf (char **str, const char *format, ... ) ;
SLIP_info SLIP_gmp_printf (const char *format, ... ) ;
SLIP_info SLIP_mpfr_printf ( const char *format, ... ) ;
SLIP_info SLIP_gmp_fprintf (FILE *fp, const char *format, ... ) ;
SLIP_info SLIP_mpfr_fprintf (FILE *fp, const char *format, ... ) ;
SLIP_info SLIP_mpz_set_d (mpz_t x, const double y) ;
SLIP_info SLIP_mpz_add (mpz_t a, const mpz_t b, const mpz_t c) ;
SLIP_info SLIP_mpz_addmul (mpz_t x, const mpz_t y, const mpz_t z) ;
SLIP_info SLIP_mpfr_log2(mpfr_t x, const mpfr_t y, const mpfr_rnd_t rnd) ;
#endif
#endif
|