File: SLIP_test.m

package info (click to toggle)
suitesparse 1%3A5.12.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 176,720 kB
  • sloc: ansic: 1,193,914; cpp: 31,704; makefile: 6,638; fortran: 1,927; java: 1,826; csh: 765; ruby: 725; sh: 529; python: 333; perl: 225; sed: 164; awk: 35
file content (89 lines) | stat: -rw-r--r-- 2,516 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function SLIP_test
%SLIP_test: run a set of tests for SLIP_backslash
%
% Usage:  SLIP_test
%
% See also SLIP_install, SLIP_backslash, SLIP_demo.

% SLIP_LU: (c) 2019-2020, Chris Lourenco, Jinhao Chen, Erick Moreno-Centeno,
% Timothy A. Davis, Texas A&M University.  All Rights Reserved.  See
% SLIP_LU/License for the license.

maxerr = 0 ;
rng ('default') ;

fprintf ('Testing SLIP_backslash: ') ;

% First, check if we can use a real life sparse matrix via ssget
if (exist ('ssget') ~= 0)
    fprintf ('. (please wait) ') ;
    % 159 is a square SPD matrix
    prob = ssget(159);
    A = prob.A;
    [m n] = size(A);
    b = rand(m, 1);
    fprintf ('.') ;
    x = SLIP_backslash(A,b);
    x2 = A\b;
    err = norm(x-x2)/norm(x);
    maxerr = max (maxerr, err) ;

    % now convert to an integer problem (x will not be integer)
    A = floor (2^20 * A) ;
    b = floor (2^20 * b) ;
    fprintf ('.') ;
    x = SLIP_backslash (A, b) ;
    x2 = A\b;
    err = norm(x-x2)/norm(x);
    maxerr = max (maxerr, err) ;
    fprintf ('.') ;
end

orderings = { 'none', 'colamd', 'amd' } ;
pivotings = { 'smallest', 'diagonal', 'first', ...
    'tol smallest', 'tol largest', 'largest' } ;

for n = [1 10 100]
    for density = [0.001 0.05 0.5 1]

        % construct a well-conditioned problem to solve
        A = sprand(n,n,density);
        A = A+A' + n * speye (n) ;
        b = rand(n,1);

        for korder = 1:length (orderings)
            for kpiv = 1:length (pivotings)
                for tol = [0.1 0.5]

                    clear option
                    option.order = orderings {korder} ;
                    option.pivot = pivotings {kpiv} ;
                    option.tol   = tol ;

                    fprintf ('.') ;
                    x = SLIP_backslash(A,b, option);
                    x2 = A\b;
                    err = norm(x-x2)/norm(x);
                    maxerr = max (maxerr, err) ;

                    % now convert to an integer problem (x will not be integer)
                    A = floor (2^20 * A) ;
                    b = floor (2^20 * b) ;
                    x = SLIP_backslash(A,b, option);
                    x2 = A\b;
                    err = norm(x-x2)/norm(x);
                    maxerr = max (maxerr, err) ;
                end
            end
        end
    end
end

fprintf ('\nmaxerr: %g\n', maxerr) ;

if (maxerr < 1e-6)
    fprintf('\nTesting complete, installation successful\n')
else
    error ('SLIP_backslash:test', '\nTesting failure!  error too high\n')
end