File: compareAll.m

package info (click to toggle)
suitesparse 1%3A5.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 138,928 kB
  • sloc: ansic: 389,614; cpp: 24,213; makefile: 5,965; fortran: 1,927; java: 1,808; csh: 1,750; ruby: 725; sh: 226; perl: 225; python: 209; sed: 164; awk: 60
file content (177 lines) | stat: -rw-r--r-- 8,261 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
function comparisonData = compareAll(trials)
    if (nargin < 1 || trials < 1)
        trials = 5;
    end
    
    try
        load('mongoose_data.mat');
    catch fileNotFound
        save('mongoose_data.mat');
        comparisonData = {};
        lastMatrixCompleted = 0;
        j = 1;
    end
    
    index = ssget;
    % Sort by nnz
    nnzs = index.nnz;
    [~,ids] = sortrows(nnzs');
    
    for i = ids'
        % Skip specific problematic matrices
        if (i == 1772 || i == 2177 || i == 2249)
            continue;
        end

        found = ID_present(comparisonData,i);
        if (index.isReal(i) && ~found)
            Prob = ssget(i);
            A = Prob.A;
            
            fprintf('Computing separator for %d: %s\n', i, Prob.name);

            [~, n_cols] = size(A);
            
            % If matrix is unsymmetric, form the augmented system
            if (index.numerical_symmetry(i) < 1)
                [m_rows, n_cols] = size(A);
                A = [sparse(m_rows,m_rows) A; A' sparse(n_cols,n_cols)];
            end
            
            for use_weights = 0:1
                
                % Sanitize the matrix (remove diagonal, make symmetric)
                A = sanitize(A, ~use_weights);

                % If the sanitization removed all vertices, skip this matrix
                if nnz(A) < 2
                    comparisonData(j).problem_id = Prob.id;
                    j = j+1;
                    continue;
                end

                % Run Mongoose with various options to partition the graph.
                for guessCutType = 0:2
                    
                    for doCommunityMatching = 0:1
                        
                        for matchingStrategy = 3:-1:0
                            % Community matching does not affect matching
                            % strategies Random or HEM
                            if (doCommunityMatching == 1 && (matchingStrategy == 0 || matchingStrategy == 1))
                                continue;
                            end
                            
                            % if highest degree > 10*sqrt(n), skip Random/HEM
                            if (max(sum(sign(A))) > 10*sqrt(n_cols))
                                if (matchingStrategy == 0 || matchingStrategy == 1)
                                    continue;
                                end
                            end
                            
                            for coarsenLimit = [64, 256, 1024]
                                comparisonData(j).mongoose = 1;
                                comparisonData(j).problem_id = Prob.id;
                                comparisonData(j).problem_name = Prob.name;
                                comparisonData(j).problem_kind = Prob.kind;
                                comparisonData(j).problem_nnz = nnz(A);
                                comparisonData(j).problem_n = n_cols;
                                comparisonData(j).useWeights = use_weights;
                                comparisonData(j).guessCutType = guessCutType;
                                comparisonData(j).doCommunityMatching = doCommunityMatching;
                                comparisonData(j).matchingStrategy = matchingStrategy;
                                comparisonData(j).coarsenLimit = coarsenLimit;
                                
                                fprintf('name = %s\n', Prob.name);
                                fprintf('use_weights = %d\n', use_weights);
                                fprintf('guessCutType = %d\n', guessCutType);
                                fprintf('doCommunityMatching = %d\n', doCommunityMatching);
                                fprintf('matchingStrategy = %d\n', matchingStrategy);
                                fprintf('coarsenLimit = %d\n', coarsenLimit);
                                
                                for k = 1:trials
                                    % Set up options struct for this run
                                    O = edgecut_options();
                                    O.randomSeed = 123456789;
                                    O.guessCutType = guessCutType;
                                    O.doCommunityMatching = doCommunityMatching;
                                    O.matchingStrategy = matchingStrategy;
                                    O.coarsenLimit = coarsenLimit;
                                    
                                    tic;
                                    partition = edgecut(A,O);
                                    t = toc;
                                    
                                    fprintf('Mongoose: %0.2f\n', t);
                                    mongoose_times(j, k) = t;
                                    part_A = find(partition);
                                    part_B = find(1-partition);
                                    perm = [part_A part_B];
                                    p = length(part_A);
                                    A_perm = A(perm, perm);
                                    mongoose_cut_weight(j, k) = sum(sum(A_perm((p+1):n_cols, 1:p)));
                                    mongoose_cut_size(j, k) = sum(sum(sign(A_perm((p+1):n_cols, 1:p))));
                                    mongoose_imbalance(j, k) = abs(0.5-(length(part_A)/(length(part_A) + length(part_B))));
                                    % If it took more than 30 minutes, only
                                    % run once.
                                    if (t > 1800)
                                        break;
                                    end
                                end
                                
                                comparisonData(j).time = trimmean(mongoose_times(j, 1:k), 40);
                                comparisonData(j).cutWeight = trimmean(mongoose_cut_weight(j, 1:k), 40);
                                comparisonData(j).cutSize = trimmean(mongoose_cut_size(j, 1:k), 40);
                                comparisonData(j).cutImbalance = trimmean(mongoose_imbalance(j, 1:k), 40);
                                j = j+1;
                            end
                        end
                    end
                end
                
                % Run METIS to partition the graph.
                for k = 1:trials
                    tic;
                    [part_A,part_B] = metispart(A, 0, 123456789);
                    t = toc;
                    fprintf('METIS:    %0.2f\n', t);
                    metis_times(j, k) = t;
                    p = length(part_A);
                    perm = [part_A part_B];
                    A_perm = A(perm, perm);
                    metis_cut_weight(j, k) = sum(sum(A_perm((p+1):n_cols, 1:p)));
                    metis_cut_size(j, k) = sum(sum(sign(A_perm((p+1):n_cols, 1:p))));
                    metis_imbalance(j, k) = abs(0.5-(length(part_A)/(length(part_A) + length(part_B))));
                end
                comparisonData(j).problem_id = Prob.id;
                comparisonData(j).problem_name = Prob.name;
                comparisonData(j).problem_kind = Prob.kind;
                comparisonData(j).problem_nnz = nnz(A);
                comparisonData(j).problem_n = n_cols;
                comparisonData(j).useWeights = use_weights;
                comparisonData(j).mongoose = 0;
                comparisonData(j).time = trimmean(metis_times(j, 1:k), 40);
                comparisonData(j).cutWeight = trimmean(metis_cut_weight(j, 1:k), 40);
                comparisonData(j).cutSize = trimmean(metis_cut_size(j, 1:k), 40);
                comparisonData(j).cutImbalance = trimmean(metis_imbalance(j, 1:k), 40);
                j = j+1;
            end
        end
        lastMatrixCompleted = i;
        save('mongoose_data.mat');
    end

    % Write data to file for future comparisons
    writetable(struct2table(comparisonData), 'mongoose_data.csv');
end

function found = ID_present(comparisonData, id)
    found = 0;
    for i = 1:length(comparisonData)
        if (comparisonData(i).problem_id == id)
            found = 1;
            return;
        end
    end
end