File: Mongoose_CSparse.cpp

package info (click to toggle)
suitesparse 1%3A5.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 138,928 kB
  • sloc: ansic: 389,614; cpp: 24,213; makefile: 5,965; fortran: 1,927; java: 1,808; csh: 1,750; ruby: 725; sh: 226; perl: 225; python: 209; sed: 164; awk: 60
file content (300 lines) | stat: -rw-r--r-- 10,402 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* ========================================================================== */
/* === Source/Mongoose_CSparse.cpp ========================================== */
/* ========================================================================== */

/* -----------------------------------------------------------------------------
 * Mongoose Graph Partitioning Library  Copyright (C) 2017-2018,
 * Scott P. Kolodziej, Nuri S. Yeralan, Timothy A. Davis, William W. Hager
 * Mongoose is licensed under Version 3 of the GNU General Public License.
 * Mongoose is also available under other licenses; contact authors for details.
 * -------------------------------------------------------------------------- */

/**
 * Fundamental sparse matrix operations.
 *
 * A subset of the CSparse library is used for its sparse matrix data
 * structure and efficient fundamental matrix operations, such as adding,
 * transposing, and converting from triplet to CSC form.
 */
#include "Mongoose_CSparse.hpp"
#include "Mongoose_Debug.hpp"
#include "Mongoose_Internal.hpp"
#include "Mongoose_Logger.hpp"

namespace Mongoose
{

double cs_cumsum(csi *p, csi *c, csi n);
csi cs_scatter(const cs *A, csi j, double beta, csi *w, double *x, csi mark,
               cs *C, csi nz);
cs *cs_done(cs *C, void *w, void *x, csi ok);

/**
 * C = A'
 *
 * @details Given a CSparse matrix @p A, cs_transpose returns a new matrix that
 * is the transpose of @p A. In other words, C(j,i) = A(i,j).
 * The second parameter, @p values, allows for the copying of the A->x array.
 * If @p values = 0, the A->x array is ignored, and C->x is left NULL. If
 * @p values != 0, then the A->x array is copied (transposed) to C->x.
 *
 * @code
 * cs *C = cs_transpose(A, 0); // C is A' but C->x = NULL
 * cs *D = cs_transpose(A, 1); // D is A' and C->x is transpose of A->x
 * @endcode
 *
 * @param A Matrix to be transposed
 * @param values 1 to transpose the values A->x, 0 to ignore
 * @return A transposed version of A
 * @note Allocates memory for the returned matrix, but frees on error.
 */
cs *cs_transpose(const cs *A, csi values)
{
    csi p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w;
    double *Cx, *Ax;
    cs *C;
    ASSERT(A != NULL);
    ASSERT(CS_CSC(A));
    m  = A->m;
    n  = A->n;
    Ap = A->p;
    Ai = A->i;
    Ax = A->x;
    C  = cs_spalloc(n, m, Ap[n], values && Ax, 0); /* allocate result */
    w  = (csi *)SuiteSparse_calloc(static_cast<size_t>(m),
                                  sizeof(csi)); /* get workspace */
    if (!C || !w)
        return (cs_done(C, w, NULL, 0)); /* out of memory */

    Cp = C->p;
    Ci = C->i;
    Cx = C->x;
    for (p = 0; p < Ap[n]; p++)
        w[Ai[p]]++;      /* row counts */
    cs_cumsum(Cp, w, m); /* row pointers */
    for (j = 0; j < n; j++)
    {
        for (p = Ap[j]; p < Ap[j + 1]; p++)
        {
            Ci[q = w[Ai[p]]++] = j; /* place A(i,j) as entry C(j,i) */
            if (Cx)
                Cx[q] = Ax[p];
        }
    }
    return (cs_done(C, w, NULL, 1)); /* success; release w and return C */
}

/**
 * C = alpha*A + beta*B
 *
 * @details Given two CSparse matrices @p A and @p B, and scaling constants
 * @p alpha and @p beta, cs_add returns a new matrix such that
 * C = alpha*A + beta*B. In other words, C(i,j) = alpha*A(i,j) + beta*B(i,j).
 *
 * @code
 * cs *C = cs_add(A, B, 1, 1);     // C = A + B
 * cs *D = cs_add(A, B, 0.5, 0.5); // C = 0.5*A + 0.5*B
 * cs *E = cs_add(A, B, 1, 0);     // C = A
 * @endcode
 *
 * @param A Matrix to be added to B.
 * @param B Matrix to be added to A
 * @param alpha Scalar (double) value to scale all elements of A matrix by
 * @param beta Scalar (double) value to scale all elements of B matrix by
 * @return A matrix such that C = alpha*A + beta*B
 * @note Allocates memory for the returned matrix, but frees on error.
 */
cs *cs_add(const cs *A, const cs *B, double alpha, double beta)
{
    csi p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values;
    double *x, *Bx, *Cx;
    cs *C;
    ASSERT(A != NULL);
    ASSERT(CS_CSC(A));
    ASSERT(B != NULL);
    ASSERT(CS_CSC(B));
    ASSERT(A->m == B->m);
    ASSERT(A->n == B->n);
    m      = A->m;
    anz    = A->p[A->n];
    n      = B->n;
    Bp     = B->p;
    Bx     = B->x;
    bnz    = Bp[n];
    w      = (csi *)SuiteSparse_calloc(static_cast<size_t>(m),
                                  sizeof(csi)); /* get workspace */
    values = (A->x != NULL) && (Bx != NULL);
    x      = values ? (double *)SuiteSparse_malloc(static_cast<size_t>(m),
                                              sizeof(double))
               : NULL;                          /* get workspace */
    C = cs_spalloc(m, n, anz + bnz, values, 0); /* allocate result*/
    if (!C || !w || (values && !x))
        return (cs_done(C, w, x, 0));
    Cp = C->p;
    Ci = C->i;
    Cx = C->x;
    for (j = 0; j < n; j++)
    {
        Cp[j] = nz; /* column j of C starts here */
        nz    = cs_scatter(A, j, alpha, w, x, j + 1, C, nz); /* alpha*A(:,j)*/
        nz    = cs_scatter(B, j, beta, w, x, j + 1, C, nz);  /* beta*B(:,j) */
        if (values)
            for (p = Cp[j]; p < nz; p++)
                Cx[p] = x[Ci[p]];
    }
    Cp[n] = nz;                   /* finalize the last column of C */
    return (cs_done(C, w, x, 1)); /* success; release workspace, return C */
}

/**
 * C = compressed-column form of a triplet matrix T
 *
 * Given a CSparse matrix @p T in triplet form, cs_compress returns
 * the same matrix in compressed sparse column (CSC) format.
 *
 * A triplet form matrix is a simple listing of the nonzeros in the matrix and
 * their row, column coordinates. For example, the 2x2 identity matrix would be
 * specified with the following triplets in (row, column, value) format:
 * (1, 1, 1) and (2, 2, 1).
 *
 * @param T Matrix in triplet form to be compressed
 * @return A compressed sparse column (CSC) format matrix representing the
 * triplet form matrix T passed in.
 * @note Uses an O(n) workspace w, and frees on error.
 */
cs *cs_compress(const cs *T)
{
    csi m, n, nz, k, *Cp, *Ci, *w, *Ti, *Tj;
    double *Cx, *Tx;
    cs *C;
    ASSERT(CS_TRIPLET(T));
    m  = T->m;
    n  = T->n;
    Ti = T->i;
    Tj = T->p;
    Tx = T->x;
    nz = T->nz;
    C  = cs_spalloc(m, n, nz, Tx != NULL, 0); /* allocate result */
    w  = (csi *)SuiteSparse_calloc(static_cast<size_t>(n),
                                  sizeof(csi)); /* get workspace */
    if (!C || !w)
        return (cs_done(C, w, NULL, 0)); /* out of memory */
    Cp = C->p;
    Ci = C->i;
    Cx = C->x;
    for (k = 0; k < nz; k++)
        w[Tj[k]]++;      /* column counts */
    cs_cumsum(Cp, w, n); /* column pointers */
    for (k = 0; k < nz; k++)
    {
        csi p = w[Tj[k]]++;
        Ci[p] = Ti[k]; /* A(i,j) is the pth entry in C */
        if (Cx)
            Cx[p] = Tx[k];
    }
    return (cs_done(C, w, NULL, 1)); /* success; release w and return C */
}

/**
 * p [0..n] = cumulative sum of c [0..n-1], and then copy p [0..n-1]
 * into c
 *
 * @param p A vector of size @p n to be summed. On return, p is overwritten such
 * that p[i] contains the cumulative sum of p[0..i] that was passed in.
 * @param c A vector of size @p n used as a workspace. On return, c[i] contains
 * the cumulative sum of p[0..i].
 * @param n The dimension of @p p and @p c
 * @return The cumulative sum of c[0..n-1]
 */
double cs_cumsum(csi *p, csi *c, csi n)
{
    csi i, nz = 0;
    double nz2 = 0;
    ASSERT(p != NULL);
    ASSERT(c != NULL);
    for (i = 0; i < n; i++)
    {
        p[i] = nz;
        nz += c[i];
        nz2 += c[i]; /* also in double to avoid csi overflow */
        c[i] = p[i]; /* also copy p[0..n-1] back into c[0..n-1]*/
    }
    p[n] = nz;
    return (nz2); /* return sum (c [0..n-1]) */
}

//-----------------------------------------------------------------------------
// x = x + beta * A(:,j), where x is a dense vector and A(:,j) is sparse
//-----------------------------------------------------------------------------
csi cs_scatter(const cs *A, csi j, double beta, csi *w, double *x, csi mark,
               cs *C, csi nz)
{
    csi p, *Ap, *Ai, *Ci;
    double *Ax;
    ASSERT(CS_CSC(A));
    ASSERT(CS_CSC(C));
    ASSERT(w != NULL);
    Ap = A->p;
    Ai = A->i;
    Ax = A->x;
    Ci = C->i;
    for (p = Ap[j]; p < Ap[j + 1]; p++)
    {
        csi i = Ai[p]; /* A(i,j) is nonzero */
        if (w[i] < mark)
        {
            w[i]     = mark; /* i is new entry in column j */
            Ci[nz++] = i;    /* add i to pattern of C(:,j) */
            if (x)
                x[i] = beta * Ax[p]; /* x(i) = beta*A(i,j) */
        }
        else if (x)
            x[i] += beta * Ax[p]; /* i exists in C(:,j) already */
    }
    return (nz);
}

//-----------------------------------------------------------------------------
// utility functions
//-----------------------------------------------------------------------------
/* allocate a sparse matrix (triplet form or compressed-column form) */
cs *cs_spalloc(csi m, csi n, csi nzmax, csi values, csi triplet)
{
    cs *A
        = (cs *)SuiteSparse_calloc(1, sizeof(cs)); /* allocate the cs struct */
    if (!A)
        return (NULL); /* out of memory */
    A->m     = m;      /* define dimensions and nzmax */
    A->n     = n;
    A->nzmax = nzmax = std::max(nzmax, 1L);
    A->nz            = triplet ? 0 : -1; /* allocate triplet or comp.col */
    A->p             = (csi *)SuiteSparse_malloc(
        static_cast<size_t>(triplet ? nzmax : n + 1), sizeof(csi));
    A->i = (csi *)SuiteSparse_malloc(static_cast<size_t>(nzmax), sizeof(csi));
    A->x = values ? (double *)SuiteSparse_malloc(static_cast<size_t>(nzmax),
                                                 sizeof(double))
                  : NULL;
    return ((!A->p || !A->i || (values && !A->x)) ? cs_spfree(A) : A);
}

/* release a sparse matrix */
cs *cs_spfree(cs *A)
{
    if (!A)
        return (NULL); /* do nothing if A already NULL */
    SuiteSparse_free(A->p);
    SuiteSparse_free(A->i);
    SuiteSparse_free(A->x);
    return (
        (cs *)SuiteSparse_free(A)); /* release the cs struct and return NULL */
}

/* release workspace and return a sparse matrix result */
cs *cs_done(cs *C, void *w, void *x, csi ok)
{
    SuiteSparse_free(w); /* release workspace */
    SuiteSparse_free(x);
    return (ok ? C : cs_spfree(C)); /* return result if OK, else release it */
}

} // end namespace Mongoose