File: Mongoose_Matching.cpp

package info (click to toggle)
suitesparse 1%3A5.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 138,928 kB
  • sloc: ansic: 389,614; cpp: 24,213; makefile: 5,965; fortran: 1,927; java: 1,808; csh: 1,750; ruby: 725; sh: 226; perl: 225; python: 209; sed: 164; awk: 60
file content (457 lines) | stat: -rw-r--r-- 13,012 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/* ========================================================================== */
/* === Source/Mongoose_Matching.cpp ========================================= */
/* ========================================================================== */

/* -----------------------------------------------------------------------------
 * Mongoose Graph Partitioning Library  Copyright (C) 2017-2018,
 * Scott P. Kolodziej, Nuri S. Yeralan, Timothy A. Davis, William W. Hager
 * Mongoose is licensed under Version 3 of the GNU General Public License.
 * Mongoose is also available under other licenses; contact authors for details.
 * -------------------------------------------------------------------------- */

/**
 * For computing vertex matchings
 *
 * During coarsening, a matching of vertices is computed to determine
 * which vertices are combined together into supervertices. This can be done
 * using a number of different strategies, including Heavy Edge Matching and
 * Community/Brotherly (similar to 2-hop) Matching.
 */

#include "Mongoose_Matching.hpp"
#include "Mongoose_Debug.hpp"
#include "Mongoose_Internal.hpp"
#include "Mongoose_Logger.hpp"

namespace Mongoose
{

//-----------------------------------------------------------------------------
// top-level matching code that serves as a multiple-dispatch system.
//-----------------------------------------------------------------------------
void match(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    Logger::tic(MatchingTiming);
    switch (options->matching_strategy)
    {
    case Random:
        matching_Random(graph, options);
        break;

    case HEM:
        matching_HEM(graph, options);
        break;

    case HEMSR:
        matching_HEM(graph, options);
        matching_SR(graph, options);
        break;

    case HEMSRdeg:
        matching_HEM(graph, options);
        matching_SRdeg(graph, options);
        break;
    }
    matching_Cleanup(graph, options);
    Logger::toc(MatchingTiming);
}

//-----------------------------------------------------------------------------
// Cleans up a matching by matching remaining unmatched vertices to themselves
//-----------------------------------------------------------------------------
void matching_Cleanup(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    (void)options; // Unused variable

    Int n   = graph->n;
    Int *Gp = graph->p;

    /* Match unmatched vertices to themselves. */
    for (Int k = 0; k < n; k++)
    {
        if (!graph->isMatched(k))
        {
            Int degree = Gp[k + 1] - Gp[k];
            if (degree == 0)
            {
                // Singleton!
                if (graph->singleton == -1)
                {
                    graph->singleton = k;
                }
                else
                {
                    graph->createMatch(k, graph->singleton, MatchType_Standard);
                    graph->singleton = -1;
                }
            }
            else
            {
                // Not a singleton
                if (options->do_community_matching)
                {
                    int i;
                    for (i = 0; i < graph->n; i++)
                    {
                        if (graph->matchtype[i] != MatchType_Community)
                            break;
                    }
                    graph->createCommunityMatch(i, k, MatchType_Community);
                }
                else
                {
                    graph->createMatch(k, k, MatchType_Orphan);
                }
            }
        }
    }

    if (graph->singleton != -1)
    {
        // Leftover singleton
        Int k = graph->singleton;
        if (options->do_community_matching)
        {
            int i;
            for (i = 0; i < graph->n; i++)
            {
                if (graph->matchtype[i] != MatchType_Community)
                    break;
            }
            graph->createCommunityMatch(i, k, MatchType_Community);
        }
        else
        {
            graph->createMatch(k, k, MatchType_Orphan);
        }
    }

#ifndef NDEBUG
    /* Every vertex must be matched in no more than a 3-way matching. */
    for (Int k = 0; k < n; k++)
    {
        if (options->do_community_matching)
        {
            if (!graph->isMatched(k))
                PR(("%ld is unmatched\n", k));
            ASSERT(graph->isMatched(k));
        }

        /* Load matching. */
        Int v[3] = { -1, -1, -1 };
        v[0]     = k;
        v[1]     = graph->getMatch(v[0]);

        if (v[1] == v[0])
        {
            v[1] = -1;
        }

        if (v[1] != -1)
        {
            v[2] = graph->getMatch(v[1]);
            if (v[2] == v[0])
                v[2] = -1;
        }

        if (options->do_community_matching)
        {
            if (v[2] != -1)
            {
                ASSERT(graph->getMatch(v[2]) == v[0]);
            }
            else
            {
                ASSERT(graph->getMatch(v[1]) == v[0]);
            }
        }
        else
        {
            if (v[1] != -1)
            {
                ASSERT(graph->getMatch(v[1]) == v[0]);
            }
            else
            {
                ASSERT(graph->getMatch(v[0]) == v[0]);
            }
        }
    }
#endif
}

//-----------------------------------------------------------------------------
// This is a random matching strategy
//-----------------------------------------------------------------------------
void matching_Random(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    (void)options; // Unused variable

    Int n   = graph->n;
    Int *Gp = graph->p;
    Int *Gi = graph->i;

    for (Int k = 0; k < n; k++)
    {
        /* Consider only unmatched vertices */
        if (graph->isMatched(k))
            continue;

        bool unmatched = true;
        for (Int p = Gp[k]; p < Gp[k + 1] && unmatched; p++)
        {
            Int neighbor = Gi[p];

            /* Consider only unmatched neighbors */
            if (graph->isMatched(neighbor))
                continue;

            unmatched = false;

            graph->createMatch(k, neighbor, MatchType_Standard);
        }
    }

#ifndef NDEBUG
    /* If we want to do expensive checks, make sure that every vertex is either:
     *     1) matched
     *     2) has no unmatched neighbors
     */
    for (Int k = 0; k < n; k++)
    {
        /* Check condition 1 */
        if (graph->matching[k])
            continue;
        /* Check condition 2 */
        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            ASSERT(graph->matching[Gi[p]]);
        }
    }
#endif
}

//-----------------------------------------------------------------------------
// This is the implementation of stall-reducing matching
//-----------------------------------------------------------------------------
void matching_SR(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    Int n      = graph->n;
    Int *Gp    = graph->p;
    Int *Gi    = graph->i;
    double *Gx = graph->x;

#ifndef NDEBUG
    /* In order for us to use Passive-Aggressive matching,
     * all unmatched vertices must have matched neighbors. */
    for (Int k = 0; k < n; k++)
    {
        if (graph->isMatched(k))
            continue;
        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            ASSERT(graph->isMatched(Gi[p]));
        }
    }
#endif

    for (Int k = 0; k < n; k++)
    {
        /* Consider only unmatched vertices */
        if (graph->isMatched(k))
            continue;

        Int heaviestNeighbor  = -1;
        double heaviestWeight = -1.0;

        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            Int neighbor = Gi[p];

            /* Keep track of the heaviest. */
            double x = (Gx) ? Gx[p] : 1;
            if (x > heaviestWeight)
            {
                heaviestWeight   = x;
                heaviestNeighbor = neighbor;
            }
        }

        /* If we found a heaviest neighbor then begin resolving matches. */
        if (heaviestNeighbor != -1)
        {
            Int v = -1;
            for (Int p = Gp[heaviestNeighbor]; p < Gp[heaviestNeighbor + 1];
                 p++)
            {
                Int neighbor = Gi[p];
                if (graph->isMatched(neighbor))
                    continue;

                if (v == -1)
                {
                    v = neighbor;
                }
                else
                {
                    graph->createMatch(v, neighbor, MatchType_Brotherly);
                    v = -1;
                }
            }

            /* If we had a vertex left over: */
            if (v != -1)
            {
                if (options->do_community_matching)
                {
                    graph->createCommunityMatch(heaviestNeighbor, v,
                                                MatchType_Community);
                }
                else
                {
                    graph->createMatch(v, v, MatchType_Orphan);
                }
            }
        }
    }
}

//-----------------------------------------------------------------------------
// This uses the stall-reducing matching where we only try SR matching
// with vertices with degree above a user-defined threshold.
//-----------------------------------------------------------------------------
void matching_SRdeg(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    Int n   = graph->n;
    Int *Gp = graph->p;
    Int *Gi = graph->i;

    /* The brotherly threshold is the minimum degree a "high degree" vertex.
     * It is the options->degreeThreshold times the average degree. */
    double bt
        = options->high_degree_threshold * ((double)graph->nz / (double)graph->n);

#ifndef NDEBUG
    /* In order for us to use Passive-Aggressive matching,
     * all unmatched vertices must have matched neighbors. */
    for (Int k = 0; k < n; k++)
    {
        if (graph->isMatched(k))
            continue;
        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            ASSERT(graph->isMatched(Gi[p]));
        }
    }
#endif

    for (Int k = 0; k < n; k++)
    {
        /* Consider only matched vertices */
        if (!graph->isMatched(k))
            continue;

        Int degree = Gp[k + 1] - Gp[k];
        if (degree >= (Int)bt)
        {
            Int v = -1;
            for (Int p = Gp[k]; p < Gp[k + 1]; p++)
            {
                Int neighbor = Gi[p];
                if (graph->isMatched(neighbor))
                    continue;

                if (v == -1)
                {
                    v = neighbor;
                }
                else
                {
                    graph->createMatch(v, neighbor, MatchType_Brotherly);
                    v = -1;
                }
            }

            /* If we had a vertex left over: */
            if (v != -1)
            {
                if (options->do_community_matching)
                {
                    graph->createCommunityMatch(k, v, MatchType_Community);
                }
                else
                {
                    graph->createMatch(v, v, MatchType_Orphan);
                }
            }
        }
    }

    ASSERT(graph->cn < n);
}

//-----------------------------------------------------------------------------
// This is a vanilla implementation of heavy edge matching
//-----------------------------------------------------------------------------
void matching_HEM(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
    (void)options; // Unused variable

    Int n      = graph->n;
    Int *Gp    = graph->p;
    Int *Gi    = graph->i;
    double *Gx = graph->x;

    for (Int k = 0; k < n; k++)
    {
        /* Consider only unmatched vertices */
        if (graph->isMatched(k))
            continue;

        Int heaviestNeighbor  = -1;
        double heaviestWeight = -1.0;
        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            Int neighbor = Gi[p];

            /* Consider only unmatched neighbors */
            if (graph->isMatched(neighbor))
                continue;

            /* Keep track of the heaviest. */
            double x = (Gx) ? Gx[p] : 1;
            if (x > heaviestWeight)
            {
                heaviestWeight   = x;
                heaviestNeighbor = neighbor;
            }
        }

        /* Match to the heaviest. */
        if (heaviestNeighbor != -1)
        {
            graph->createMatch(k, heaviestNeighbor, MatchType_Standard);
        }
    }

#ifndef NDEBUG
    /* If we want to do expensive checks, make sure that every vertex is either:
     *     1) matched
     *     2) has no unmatched neighbors
     */
    for (Int k = 0; k < n; k++)
    {
        /* Check condition 1 */
        if (graph->matching[k])
            continue;

        /* Check condition 2 */
        for (Int p = Gp[k]; p < Gp[k + 1]; p++)
        {
            ASSERT(graph->matching[Gi[p]]);
        }
    }
#endif
}

} // end namespace Mongoose