1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/* ========================================================================== */
/* === Source/Mongoose_Matching.cpp ========================================= */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* Mongoose Graph Partitioning Library Copyright (C) 2017-2018,
* Scott P. Kolodziej, Nuri S. Yeralan, Timothy A. Davis, William W. Hager
* Mongoose is licensed under Version 3 of the GNU General Public License.
* Mongoose is also available under other licenses; contact authors for details.
* -------------------------------------------------------------------------- */
/**
* For computing vertex matchings
*
* During coarsening, a matching of vertices is computed to determine
* which vertices are combined together into supervertices. This can be done
* using a number of different strategies, including Heavy Edge Matching and
* Community/Brotherly (similar to 2-hop) Matching.
*/
#include "Mongoose_Matching.hpp"
#include "Mongoose_Debug.hpp"
#include "Mongoose_Internal.hpp"
#include "Mongoose_Logger.hpp"
namespace Mongoose
{
//-----------------------------------------------------------------------------
// top-level matching code that serves as a multiple-dispatch system.
//-----------------------------------------------------------------------------
void match(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
Logger::tic(MatchingTiming);
switch (options->matching_strategy)
{
case Random:
matching_Random(graph, options);
break;
case HEM:
matching_HEM(graph, options);
break;
case HEMSR:
matching_HEM(graph, options);
matching_SR(graph, options);
break;
case HEMSRdeg:
matching_HEM(graph, options);
matching_SRdeg(graph, options);
break;
}
matching_Cleanup(graph, options);
Logger::toc(MatchingTiming);
}
//-----------------------------------------------------------------------------
// Cleans up a matching by matching remaining unmatched vertices to themselves
//-----------------------------------------------------------------------------
void matching_Cleanup(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
(void)options; // Unused variable
Int n = graph->n;
Int *Gp = graph->p;
/* Match unmatched vertices to themselves. */
for (Int k = 0; k < n; k++)
{
if (!graph->isMatched(k))
{
Int degree = Gp[k + 1] - Gp[k];
if (degree == 0)
{
// Singleton!
if (graph->singleton == -1)
{
graph->singleton = k;
}
else
{
graph->createMatch(k, graph->singleton, MatchType_Standard);
graph->singleton = -1;
}
}
else
{
// Not a singleton
if (options->do_community_matching)
{
int i;
for (i = 0; i < graph->n; i++)
{
if (graph->matchtype[i] != MatchType_Community)
break;
}
graph->createCommunityMatch(i, k, MatchType_Community);
}
else
{
graph->createMatch(k, k, MatchType_Orphan);
}
}
}
}
if (graph->singleton != -1)
{
// Leftover singleton
Int k = graph->singleton;
if (options->do_community_matching)
{
int i;
for (i = 0; i < graph->n; i++)
{
if (graph->matchtype[i] != MatchType_Community)
break;
}
graph->createCommunityMatch(i, k, MatchType_Community);
}
else
{
graph->createMatch(k, k, MatchType_Orphan);
}
}
#ifndef NDEBUG
/* Every vertex must be matched in no more than a 3-way matching. */
for (Int k = 0; k < n; k++)
{
if (options->do_community_matching)
{
if (!graph->isMatched(k))
PR(("%ld is unmatched\n", k));
ASSERT(graph->isMatched(k));
}
/* Load matching. */
Int v[3] = { -1, -1, -1 };
v[0] = k;
v[1] = graph->getMatch(v[0]);
if (v[1] == v[0])
{
v[1] = -1;
}
if (v[1] != -1)
{
v[2] = graph->getMatch(v[1]);
if (v[2] == v[0])
v[2] = -1;
}
if (options->do_community_matching)
{
if (v[2] != -1)
{
ASSERT(graph->getMatch(v[2]) == v[0]);
}
else
{
ASSERT(graph->getMatch(v[1]) == v[0]);
}
}
else
{
if (v[1] != -1)
{
ASSERT(graph->getMatch(v[1]) == v[0]);
}
else
{
ASSERT(graph->getMatch(v[0]) == v[0]);
}
}
}
#endif
}
//-----------------------------------------------------------------------------
// This is a random matching strategy
//-----------------------------------------------------------------------------
void matching_Random(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
(void)options; // Unused variable
Int n = graph->n;
Int *Gp = graph->p;
Int *Gi = graph->i;
for (Int k = 0; k < n; k++)
{
/* Consider only unmatched vertices */
if (graph->isMatched(k))
continue;
bool unmatched = true;
for (Int p = Gp[k]; p < Gp[k + 1] && unmatched; p++)
{
Int neighbor = Gi[p];
/* Consider only unmatched neighbors */
if (graph->isMatched(neighbor))
continue;
unmatched = false;
graph->createMatch(k, neighbor, MatchType_Standard);
}
}
#ifndef NDEBUG
/* If we want to do expensive checks, make sure that every vertex is either:
* 1) matched
* 2) has no unmatched neighbors
*/
for (Int k = 0; k < n; k++)
{
/* Check condition 1 */
if (graph->matching[k])
continue;
/* Check condition 2 */
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
ASSERT(graph->matching[Gi[p]]);
}
}
#endif
}
//-----------------------------------------------------------------------------
// This is the implementation of stall-reducing matching
//-----------------------------------------------------------------------------
void matching_SR(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
Int n = graph->n;
Int *Gp = graph->p;
Int *Gi = graph->i;
double *Gx = graph->x;
#ifndef NDEBUG
/* In order for us to use Passive-Aggressive matching,
* all unmatched vertices must have matched neighbors. */
for (Int k = 0; k < n; k++)
{
if (graph->isMatched(k))
continue;
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
ASSERT(graph->isMatched(Gi[p]));
}
}
#endif
for (Int k = 0; k < n; k++)
{
/* Consider only unmatched vertices */
if (graph->isMatched(k))
continue;
Int heaviestNeighbor = -1;
double heaviestWeight = -1.0;
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
Int neighbor = Gi[p];
/* Keep track of the heaviest. */
double x = (Gx) ? Gx[p] : 1;
if (x > heaviestWeight)
{
heaviestWeight = x;
heaviestNeighbor = neighbor;
}
}
/* If we found a heaviest neighbor then begin resolving matches. */
if (heaviestNeighbor != -1)
{
Int v = -1;
for (Int p = Gp[heaviestNeighbor]; p < Gp[heaviestNeighbor + 1];
p++)
{
Int neighbor = Gi[p];
if (graph->isMatched(neighbor))
continue;
if (v == -1)
{
v = neighbor;
}
else
{
graph->createMatch(v, neighbor, MatchType_Brotherly);
v = -1;
}
}
/* If we had a vertex left over: */
if (v != -1)
{
if (options->do_community_matching)
{
graph->createCommunityMatch(heaviestNeighbor, v,
MatchType_Community);
}
else
{
graph->createMatch(v, v, MatchType_Orphan);
}
}
}
}
}
//-----------------------------------------------------------------------------
// This uses the stall-reducing matching where we only try SR matching
// with vertices with degree above a user-defined threshold.
//-----------------------------------------------------------------------------
void matching_SRdeg(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
Int n = graph->n;
Int *Gp = graph->p;
Int *Gi = graph->i;
/* The brotherly threshold is the minimum degree a "high degree" vertex.
* It is the options->degreeThreshold times the average degree. */
double bt
= options->high_degree_threshold * ((double)graph->nz / (double)graph->n);
#ifndef NDEBUG
/* In order for us to use Passive-Aggressive matching,
* all unmatched vertices must have matched neighbors. */
for (Int k = 0; k < n; k++)
{
if (graph->isMatched(k))
continue;
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
ASSERT(graph->isMatched(Gi[p]));
}
}
#endif
for (Int k = 0; k < n; k++)
{
/* Consider only matched vertices */
if (!graph->isMatched(k))
continue;
Int degree = Gp[k + 1] - Gp[k];
if (degree >= (Int)bt)
{
Int v = -1;
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
Int neighbor = Gi[p];
if (graph->isMatched(neighbor))
continue;
if (v == -1)
{
v = neighbor;
}
else
{
graph->createMatch(v, neighbor, MatchType_Brotherly);
v = -1;
}
}
/* If we had a vertex left over: */
if (v != -1)
{
if (options->do_community_matching)
{
graph->createCommunityMatch(k, v, MatchType_Community);
}
else
{
graph->createMatch(v, v, MatchType_Orphan);
}
}
}
}
ASSERT(graph->cn < n);
}
//-----------------------------------------------------------------------------
// This is a vanilla implementation of heavy edge matching
//-----------------------------------------------------------------------------
void matching_HEM(EdgeCutProblem *graph, const EdgeCut_Options *options)
{
(void)options; // Unused variable
Int n = graph->n;
Int *Gp = graph->p;
Int *Gi = graph->i;
double *Gx = graph->x;
for (Int k = 0; k < n; k++)
{
/* Consider only unmatched vertices */
if (graph->isMatched(k))
continue;
Int heaviestNeighbor = -1;
double heaviestWeight = -1.0;
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
Int neighbor = Gi[p];
/* Consider only unmatched neighbors */
if (graph->isMatched(neighbor))
continue;
/* Keep track of the heaviest. */
double x = (Gx) ? Gx[p] : 1;
if (x > heaviestWeight)
{
heaviestWeight = x;
heaviestNeighbor = neighbor;
}
}
/* Match to the heaviest. */
if (heaviestNeighbor != -1)
{
graph->createMatch(k, heaviestNeighbor, MatchType_Standard);
}
}
#ifndef NDEBUG
/* If we want to do expensive checks, make sure that every vertex is either:
* 1) matched
* 2) has no unmatched neighbors
*/
for (Int k = 0; k < n; k++)
{
/* Check condition 1 */
if (graph->matching[k])
continue;
/* Check condition 2 */
for (Int p = Gp[k]; p < Gp[k + 1]; p++)
{
ASSERT(graph->matching[Gi[p]]);
}
}
#endif
}
} // end namespace Mongoose
|