1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
/* ========================================================================== */
/* === Source/Mongoose_QPBoundary.cpp ======================================= */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* Mongoose Graph Partitioning Library Copyright (C) 2017-2018,
* Scott P. Kolodziej, Nuri S. Yeralan, Timothy A. Davis, William W. Hager
* Mongoose is licensed under Version 3 of the GNU General Public License.
* Mongoose is also available under other licenses; contact authors for details.
* -------------------------------------------------------------------------- */
/*
Move all components of x to boundary of the feasible region
0 <= x <= 1, a'x = b, lo <= b <= hi
while decreasing the cost function. The algorithm has the following parts
1. For each i in the free set, see if x_i can be feasibly pushed to either
boundary while decreasing the cost.
2. For each i in the bound set, see if x_i can be feasibly flipped to
opposite boundary while decreasing the cost.
3. For each i in the free list with a_{ij} = 0 and with j free,
move either x_i or x_j to the boundary while decreasing
the cost. The adjustments has the form x_i = s/a_i and x_j = -s/a_j
where s is a scalar factor. These adjustments must decrease cost.
4. For the remaining i in the free list, take pair x_i and x_j and
apply adjustments of the same form as in #2 above to push at least one
component to boundary. The quadratic terms can only decrease the
cost function. We choose the sign of s such that g_i x_i + g_j x_j <= 0.
Hence, this adjustment cannot increase the cost.
*/
/* ========================================================================== */
#include "Mongoose_QPBoundary.hpp"
#include "Mongoose_Debug.hpp"
#include "Mongoose_Internal.hpp"
#define EMPTY (-1)
namespace Mongoose
{
void QPBoundary(EdgeCutProblem *graph, const EdgeCut_Options *options, QPDelta *QP)
{
(void)options; // Unused variable
/* ---------------------------------------------------------------------- */
/* Step 0. read in the needed arrays */
/* ---------------------------------------------------------------------- */
/* input and output */
//--- FreeSet
Int nFreeSet = QP->nFreeSet;
Int *FreeSet_list = QP->FreeSet_list; /* list for free indices */
Int *FreeSet_status = QP->FreeSet_status;
/* FreeSet_status [i] = +1, -1, or 0
if x_i = 1, 0, or 0 < x_i < 1 */
//---
PR(("Mongoose_QPBoundary nFreeSet %ld\n", nFreeSet));
if (nFreeSet == 0)
{
// quick return if FreeSet is empty
return;
}
double *x = QP->x; /* current estimate of solution */
double *grad = QP->gradient; /* gradient at current x */
Int ib = QP->ib; /* ib = +1, -1, or 0 ,
if b = hi, lo, or lo < b < hi, respectively. Note there are cases
where roundoff occurs, and ib can be zero even though b == lo or
b == hi. The value of be can even be < lo or > hi, but only by a tiny
amount of roundoff error. This is OK. */
double b = QP->b; /* current value for a'x */
/* problem specification for the graph G */
Int n = graph->n; /* problem dimension */
double *Ex = graph->x; /* numerical values for edge weights */
Int *Ei = graph->i; /* adjacent vertices for each vertex */
Int *Ep = graph->p; /* points into Ex or Ei */
double *a = graph->w; /* a'x = b, lo <= b <= hi */
double lo = QP->lo;
double hi = QP->hi;
/* work array */
double *D = QP->D; /* diagonal of quadratic */
PR(("\n----- QPBoundary start: [\n"));
DEBUG(QPcheckCom(graph, options, QP, 1, QP->nFreeSet, QP->b)); // check b
/* ---------------------------------------------------------------------- */
/* Step 1. if lo < b < hi, then for each free k, */
/* see if x_k can be pushed to 0 or 1 */
/* ---------------------------------------------------------------------- */
DEBUG(FreeSet_dump("QPBoundary start", n, FreeSet_list, nFreeSet,
FreeSet_status, 0, x));
PR(("Boundary 1 start: ib %ld lo %g b %g hi %g b-lo %g hi-b %g\n", ib, lo,
b, hi, b - lo, hi - b));
Int kfree2 = 0;
for (Int kfree = 0; kfree < nFreeSet; kfree++)
{
// Once b becomes bounded, the remainder of the FreeSet is unchanged,
// and no further changes are made to x. However, this loop must still
// continue, so as to compact the FreeSet from deletions made by earlier
// iterations.
// get the next k from the FreeSet
Int k = FreeSet_list[kfree];
PR(("Step 1: k %ld x[k] %g ib %ld b %g\n", k, x[k], ib, b));
// only modify x[k] if ib == 0 (which means lo < b < hi)
if (ib == 0)
{
double delta_xk;
double ak = (a) ? a[k] : 1;
if (grad[k] > 0.0)
{
// decrease x [k]
delta_xk = (b - lo) / ak; // note that delta_xk > 0
if (delta_xk < x[k])
{
// x [k] decreases by delta_xk but does not hit zero
// b hits the lower bound, lo
ib = -1;
b = lo;
x[k] -= delta_xk;
//--- keep k in the FreeSet
FreeSet_list[kfree2++] = k;
}
else
{
// x [k] hits lower bound of zero
// b does not hit lo; still between lower and upper bound
delta_xk = x[k];
x[k] = 0.;
FreeSet_status[k] = -1;
b -= delta_xk * ak;
//--- remove k from the FreeSet by not incrementing kfree2
}
}
else
{
// increase x [k]
delta_xk = (b - hi) / ak; // note that delta_xk < 0
if (delta_xk < x[k] - 1.)
{
// x [k] hits upper bound of one
// b does not reach hi; still between lower and upper bound
delta_xk = x[k] - 1.;
x[k] = 1.;
FreeSet_status[k] = +1;
b -= delta_xk * ak;
//--- remove k from the FreeSet by not incrementing kfree2
}
else
{
// x [k] increases by -delta_xk but does not hit one
// b hits the upper bound, hi.
ib = +1;
b = hi;
x[k] -= delta_xk;
//--- keep k in the FreeSet
FreeSet_list[kfree2++] = k;
}
}
// x [k] has dropped by delta_xk, so update the gradient
for (Int p = Ep[k]; p < Ep[k + 1]; p++)
{
grad[Ei[p]] += delta_xk * ((Ex) ? Ex[p] : 1);
}
grad[k] += delta_xk * D[k];
}
else
{
// b is at lo or hi and thus x [k] is not changed.
// Once this happens, the remainder of this loop does this next
// step only, and no further changes are made to x and the FreeSet.
//--- keep k in the FreeSet
FreeSet_list[kfree2++] = k;
}
}
// update the size of the FreeSet, after pruning
nFreeSet = kfree2;
/* ---------------------------------------------------------------------- */
/* Step 2. Examine flips of x_k from 0 to 1 or from 1 to 0 */
/* ---------------------------------------------------------------------- */
PR(("Boundary step 2:\n"));
for (Int k = 0; k < n; k++)
{
Int FreeSet_status_k = FreeSet_status[k];
if (FreeSet_status_k == 0)
{
// k is in FreeSet so it cannot be simply flipped 0->1 or 1->0
continue;
}
// k not in FreeSet, so no changes here to FreeSet
double ak = (a) ? a[k] : 1;
if (FreeSet_status_k > 0) /* try changing x_k from 1 to 0 */
{
if (b - ak >= lo)
{
if (0.5 * D[k] + grad[k] >= 0) /* flip lowers cost */
{
b -= ak;
ib = (b <= lo ? -1 : 0);
x[k] = 0.0;
FreeSet_status[k] = -1;
}
}
}
else /* try changing x_k from 0 to 1 */
{
if (b + ak <= hi)
{
if (grad[k] - 0.5 * D[k] <= 0) /* flip lowers cost */
{
b += ak;
ib = (b >= hi ? 1 : 0);
x[k] = 1.0;
FreeSet_status[k] = +1;
}
}
}
if (FreeSet_status_k != FreeSet_status[k])
{
if (FreeSet_status_k == 1) /* x [k] was 1, now it is 0 */
{
for (Int p = Ep[k]; p < Ep[k + 1]; p++)
{
grad[Ei[p]] += (Ex) ? Ex[p] : 1;
}
grad[k] += D[k];
}
else /* x [k] was 0, now it is 1 */
{
for (Int p = Ep[k]; p < Ep[k + 1]; p++)
{
grad[Ei[p]] -= (Ex) ? Ex[p] : 1;
}
grad[k] -= D[k];
}
}
// DEBUG (QPcheckCom (graph, options, QP, 1, nFreeSet, b)) ; //
// check b
}
/* ---------------------------------------------------------------------- */
// quick return if FreeSet is now empty
/* ---------------------------------------------------------------------- */
if (nFreeSet == 0)
{
PR(("Boundary quick: ib %ld lo %g b %g hi %g b-lo %g hi-b %g\n", ib, lo,
b, hi, b - lo, hi - b));
QP->nFreeSet = nFreeSet;
QP->b = b;
QP->ib = ib;
PR(("------- QPBoundary end ]\n"));
return;
}
/* ---------------------------------------------------------------------- */
/* Step 3. Search for a_{ij} = 0 in the free index set */
/* ---------------------------------------------------------------------- */
// look for where both i and j are in the FreeSet,
// but i and j are not adjacent in the graph G.
DEBUG(FreeSet_dump("step 3", n, FreeSet_list, nFreeSet, FreeSet_status, 0,
x));
// for each j in FreeSet, except for the last one
for (Int jfree = 0; jfree < nFreeSet - 1; jfree++)
{
// get j from the FreeSet
Int j = FreeSet_list[jfree];
if (j == EMPTY)
{
// j has already been deleted, skip it
continue;
}
/* -------------------------------------------------------------- */
/* find i and j both free and where a_{ij} = 0 */
/* -------------------------------------------------------------- */
// mark all vertices i adjacent to j in the FreeSet
for (Int p = Ep[j]; p < Ep[j + 1]; p++)
{
Int i = Ei[p];
ASSERT(i != j); // graph has no self edges
graph->mark(i);
}
graph->mark(j);
// for each i that follows after j in the FreeSet
for (Int ifree = jfree + 1; ifree < nFreeSet; ifree++)
{
// get i from the FreeSet
Int i = FreeSet_list[ifree];
if (i == EMPTY)
{
// i has already been deleted it; skip it
continue;
}
if (!graph->isMarked(i))
{
// vertex i is not adjacent to j in the graph G
double aj = (a) ? a[j] : 1;
double ai = (a) ? a[i] : 1;
double xi = x[i];
double xj = x[j];
/* cost change if x_j increases dx_j = s/a_j, dx_i = s/a_i */
double s;
Int bind1, bind2;
if (aj * (1. - xj) < ai * xi) // x_j hits upper bound
{
s = aj * (1. - xj);
bind1 = 1;
}
else /* x_i hits lower bound */
{
s = ai * xi;
bind1 = 0;
}
double dxj = s / aj;
double dxi = -s / ai;
double c1 = (grad[j] - .5 * D[j] * dxj) * dxj
+ (grad[i] - .5 * D[i] * dxi) * dxi;
/* cost change if x_j decreases dx_j = s/a_j, dx_i = s/a_i */
if (aj * xj < ai * (1. - xi)) // x_j hits lower bound
{
s = -aj * xj;
bind2 = -1;
}
else /* x_i hits upper bound */
{
s = -ai * (1. - xi);
bind2 = 0;
}
dxj = s / aj;
dxi = -s / ai;
double c2 = (grad[j] - 0.5 * D[j] * dxj) * dxj
+ (grad[i] - 0.5 * D[i] * dxi) * dxi;
Int new_FreeSet_status;
if (c1 < c2) /* increase x_j */
{
if (bind1 == 1)
{
// j is bound (not i) and x_j becomes 1
dxj = 1. - xj;
dxi = -aj * dxj / ai;
x[j] = 1.;
x[i] += dxi;
new_FreeSet_status = +1; /* j is bound at 1 */
}
else // bind1 is zero
{
// i is bound (not j) and x_i becomes 0
dxi = -xi;
dxj = -ai * dxi / aj;
x[i] = 0.;
x[j] += dxj;
new_FreeSet_status = -1; /* i is bound at 0 */
}
}
else
{
if (bind2 == -1)
{
// j is bound (not i) and x_j becomes 0
bind1 = 1;
x[j] = 0.;
x[i] += dxi;
new_FreeSet_status = -1; /* j is bound at 0 */
}
else /* x_i = 1 */
{
// i is bound (not j) and x_i becomes 1
bind1 = 0;
x[i] = 1;
x[j] += dxj;
new_FreeSet_status = +1; /* i is bound at 1 */
}
}
for (Int p = Ep[j]; p < Ep[j + 1]; p++)
{
grad[Ei[p]] -= ((Ex) ? Ex[p] : 1) * dxj;
}
for (Int p = Ep[i]; p < Ep[i + 1]; p++)
{
grad[Ei[p]] -= ((Ex) ? Ex[p] : 1) * dxi;
}
grad[j] -= D[j] * dxj;
grad[i] -= D[i] * dxi;
// Remove either i or j from the FreeSet. Note that it
// is possible for both x[i] and x[j] to reach their bounds
// at the same time. Only one is removed from the FreeSet;
// the other will be removed later.
if (bind1)
{
// remove j from the FreeSet by setting its place to EMPTY
PR(("(b1):remove j = %ld from the FreeSet\n", j));
ASSERT(j == FreeSet_list[jfree]);
ASSERT(FreeSet_status[j] == 0);
FreeSet_list[jfree] = EMPTY;
FreeSet_status[j] = new_FreeSet_status;
ASSERT(FreeSet_status[j] != 0);
//---
// no longer consider j, so skip all of remainder of i loop
break;
}
else
{
// remove i from the FreeSet by setting its place to EMPTY
PR(("(b2):remove i = %ld from the FreeSet\n", i));
ASSERT(i == FreeSet_list[ifree]);
ASSERT(FreeSet_status[i] == 0);
FreeSet_list[ifree] = EMPTY;
FreeSet_status[i] = new_FreeSet_status;
ASSERT(FreeSet_status[i] != 0);
//---
// keep j, and consider it with the next i
continue;
}
}
}
// clear the marks from all the vertices
graph->clearMarkArray();
}
// remove deleted vertices from the FreeSet
kfree2 = 0;
for (Int kfree = 0; kfree < nFreeSet; kfree++)
{
Int k = FreeSet_list[kfree];
if (k != EMPTY)
{
// keep k in the FreeSet
FreeSet_list[kfree2++] = k;
ASSERT(0 <= k && k < n);
ASSERT(FreeSet_status[k] == 0);
}
}
nFreeSet = kfree2;
DEBUG(FreeSet_dump("step 3 done", n, FreeSet_list, nFreeSet, FreeSet_status,
1, x));
DEBUG(QPcheckCom(graph, options, QP, 1, nFreeSet, b)); // check b
#ifndef NDEBUG
// the vertices in the FreeSet now form a single clique. Check this.
// this test is for debug mode only
ASSERT(nFreeSet >= 1); // we can have 1 or more vertices still in FreeSet
for (Int kfree = 0; kfree < nFreeSet; kfree++)
{
// j must be adjacent to all other vertices in the FreeSet
Int j = FreeSet_list[kfree];
Int nfree_neighbors = 0;
for (Int p = Ep[j]; p < Ep[j + 1]; p++)
{
Int i = Ei[p];
ASSERT(i != j);
if (FreeSet_status[i] == 0)
nfree_neighbors++;
}
ASSERT(nfree_neighbors == nFreeSet - 1);
}
#endif
/* ---------------------------------------------------------------------- */
/* Step 4. dxj = s/aj, dxi = -s/ai, choose s with g_j dxj + g_i dxi <= 0 */
/* ---------------------------------------------------------------------- */
DEBUG(FreeSet_dump("step 4 starts", n, FreeSet_list, nFreeSet,
FreeSet_status, 0, x));
// consider pairs of vertices in the FreeSet, until only one is left
while (nFreeSet > 1)
{
/* free variables: 0 < x_j < 1 */
/* choose s so that first derivative terms decrease */
// i and j are the last two vertex in the FreeSet_list, as in:
// FreeSet_list = [ .... i j ]
// at the end of this iteration, one will be deleted, thus becoming
// FreeSet_list = [ .... j ]
// or
// FreeSet_list = [ .... i ]
Int j = FreeSet_list[nFreeSet - 1];
ASSERT(FreeSet_status[j] == 0);
Int i = FreeSet_list[nFreeSet - 2];
ASSERT(FreeSet_status[i] == 0);
double ai = (a) ? a[i] : 1;
double aj = (a) ? a[j] : 1;
double xi = x[i];
double xj = x[j];
Int new_FreeSet_status;
Int bind1;
double dxj, dxi, s = grad[j] / aj - grad[i] / ai;
if (s < 0.) /* increase x_j */
{
if (aj * (1. - xj) < ai * xi) /* x_j hits upper bound */
{
dxj = 1. - xj;
dxi = -aj * dxj / ai;
x[j] = 1.;
x[i] += dxi;
new_FreeSet_status = +1;
bind1 = 1; /* x_j is bound at 1 */
}
else /* x_i hits lower bound */
{
dxi = -xi;
dxj = -ai * dxi / aj;
x[i] = 0.;
x[j] += dxj;
new_FreeSet_status = -1;
bind1 = 0; /* x_i is bound at 0 */
}
}
else /* decrease x_j */
{
if (aj * xj < ai * (1. - xi)) /* x_j hits lower bound */
{
dxj = -xj;
dxi = -aj * dxj / ai;
x[j] = 0;
x[i] += dxi;
new_FreeSet_status = -1;
bind1 = 1; /* x_j is bound */
}
else /* x_i hits upper bound */
{
dxi = 1 - xi;
dxj = -ai * dxi / aj;
x[i] = 1;
x[j] += dxj;
new_FreeSet_status = +1;
bind1 = 0; /* x_i is bound */
}
}
for (Int k = Ep[j]; k < Ep[j + 1]; k++)
{
grad[Ei[k]] -= ((Ex) ? Ex[k] : 1) * dxj;
}
for (Int k = Ep[i]; k < Ep[i + 1]; k++)
{
grad[Ei[k]] -= ((Ex) ? Ex[k] : 1) * dxi;
}
grad[j] -= D[j] * dxj;
grad[i] -= D[i] * dxi;
// ---------------------------------------------------------------------
// the following 2 cases define the next j in the iteration:
// ---------------------------------------------------------------------
// Remove either i or j from the FreeSet. Note that it is possible for
// both x[i] and x[j] to reach their bounds at the same time. Only one
// is removed from the FreeSet; the other will be removed later.
if (bind1)
{
// j is bound.
// remove j from the FreeSet, and keep i. The FreeSet_list was
// FreeSet_list = [ .... i j ] becomes FreeSet_list = [ .... i ]
PR(("(b3):remove j = %ld from the FreeSet\n", j));
ASSERT(FreeSet_status[j] == 0);
FreeSet_status[j] = new_FreeSet_status;
ASSERT(FreeSet_status[j] != 0);
}
else
{
// i is bound.
// remove i from the FreeSet, and keep j. The FreeSet_list was
// FreeSet_list = [ .... i j ] becomes FreeSet_list = [ .... j ]
PR(("(b4):remove i = %ld from the FreeSet\n", i));
ASSERT(FreeSet_status[i] == 0);
FreeSet_status[i] = new_FreeSet_status;
ASSERT(FreeSet_status[i] != 0);
// shift j down by one in the list, thus discarding j.
ASSERT(FreeSet_list[nFreeSet - 2] == i);
FreeSet_list[nFreeSet - 2] = j;
}
// one fewer vertex in the FreeSet (i or j removed)
nFreeSet--;
DEBUG(FreeSet_dump("step 4", n, FreeSet_list, nFreeSet, FreeSet_status,
0, x));
DEBUG(QPcheckCom(graph, options, QP, 1, nFreeSet, b)); // check b
}
DEBUG(FreeSet_dump("wrapup", n, FreeSet_list, nFreeSet, FreeSet_status, 0,
x));
/* ---------------------------------------------------------------------- */
/* step 5: at most one free variable remaining */
/* ---------------------------------------------------------------------- */
ASSERT(nFreeSet == 0 || nFreeSet == 1);
PR(("Step 5: ib %ld lo %g b %g hi %g b-lo %g hi-b %g\n", ib, lo, b, hi,
b - lo, hi - b));
if (nFreeSet == 1) /* j is free, optimize over x [j] */
{
// j is the first and only item in the FreeSet
Int j = FreeSet_list[0];
PR(("ONE AND ONLY!! j = %ld x[j] %g\n", j, x[j]));
Int bind1 = 0;
double aj = (a) ? a[j] : 1;
double dxj = (hi - b) / aj;
PR(("dxj %g x[j] %g (1-x[j]): %g\n", dxj, x[j], 1 - x[j]));
if (dxj < 1. - x[j])
{
bind1 = 1;
}
else
{
dxj = 1. - x[j];
}
Int bind2 = 0;
double dxi = (lo - b) / aj;
PR(("dxi %g x[j] %g (-x[j]): %g\n", dxi, x[j], -x[j]));
if (dxi > -x[j])
{
bind2 = 1;
}
else
{
dxi = -x[j];
}
double c1 = (grad[j] - 0.5 * D[j] * dxj) * dxj;
double c2 = (grad[j] - 0.5 * D[j] * dxi) * dxi;
if (c1 <= c2) /* x [j] += dxj */
{
if (bind1)
{
PR(("bind1: xj changes from %g", x[j]));
x[j] += dxj;
PR((" to %g, b now at hi\n", x[j]));
ib = +1;
b = hi;
}
else
{
x[j] = 1.;
b += dxj * aj;
/// remove j from the FreeSet, which is now empty
PR(("(b5):remove j = %ld from FreeSet, now empty\n", j));
ASSERT(FreeSet_status[j] == 0);
FreeSet_status[j] = 1;
ASSERT(FreeSet_status[j] != 0);
nFreeSet--;
ASSERT(nFreeSet == 0);
}
}
else /* x [j] += dxi */
{
dxj = dxi;
if (bind2)
{
PR(("bind2: xj changes from %g", x[j]));
x[j] += dxj;
PR((" to %g, b now at lo\n", x[j]));
ib = -1;
b = lo;
}
else
{
x[j] = 0.;
b += dxj * aj;
/// remove j from the FreeSet, which is now empty
PR(("(b6):remove j = %ld from FreeSet, now empty\n", j));
ASSERT(FreeSet_status[j] == 0);
FreeSet_status[j] = -1;
ASSERT(FreeSet_status[j] != 0);
nFreeSet--;
ASSERT(nFreeSet == 0);
}
}
if (dxj != 0.)
{
for (Int p = Ep[j]; p < Ep[j + 1]; p++)
{
grad[Ei[p]] -= ((Ex) ? Ex[p] : 1) * dxj;
}
grad[j] -= D[j] * dxj;
}
}
/* ---------------------------------------------------------------------- */
// wrapup
/* ---------------------------------------------------------------------- */
PR(("QBboundary, done:\n"));
DEBUG(FreeSet_dump("QPBoundary: done ", n, FreeSet_list, nFreeSet,
FreeSet_status, 0, x));
ASSERT(nFreeSet == 0 || nFreeSet == 1);
PR(("Boundary done: ib %ld lo %g b %g hi %g b-lo %g hi-b %g\n", ib, lo, b,
hi, b - lo, hi - b));
QP->nFreeSet = nFreeSet;
QP->b = b;
QP->ib = ib;
// clear the marks from all the vertices
graph->clearMarkArray();
DEBUG(QPcheckCom(graph, options, QP, 1, nFreeSet, b)); // check b
PR(("----- QPBoundary end ]\n"));
}
} // end namespace Mongoose
|