1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
/* ========================================================================== */
/* === Source/Mongoose_QPNapsack.cpp ======================================== */
/* ========================================================================== */
/* -----------------------------------------------------------------------------
* Mongoose Graph Partitioning Library Copyright (C) 2017-2018,
* Scott P. Kolodziej, Nuri S. Yeralan, Timothy A. Davis, William W. Hager
* Mongoose is licensed under Version 3 of the GNU General Public License.
* Mongoose is also available under other licenses; contact authors for details.
* -------------------------------------------------------------------------- */
/* ========================================================================== */
/* === QPNapsack ============================================================ */
/* ========================================================================== */
/* Find x that minimizes ||x-y|| while satisfying 0 <= x <= 1,
a'x = b, lo <= b <= hi. It is assumed that the column vector a is strictly
positive since, in our application, the vector a is the vertex weights,
which are >= 1. If a is NULL, then it is assumed that a is identically 1.
The approach is to solve the dual problem obtained by introducing
a multiplier lambda for the constraint a'x = b. The dual function is
L (lambda) = min { ||x-y||^2 + lambda (a'x - b): 0 <= x <= 1, lo <= b <= hi}
The dual function is concave. It is continuously differentiable
except at lambda = 0. If mu denotes the maximizer of the dual function,
then the solution of the primal problem is
x = proj (y - mu*a) ,
where proj (z) is the projection of z onto the set { x : 0 <= x <= 1}.
Thus we have
proj (z)_i = 1 if z_i >= 1,
0 if z_i <= 0,
z_i otherwise .
Note that for any lambda, the minimizing x in the dual function is
x (lambda) = proj (y - lambda*a).
The slope of the dual function is
L'(lambda) = a'proj (x(lambda)) - hi (if lambda > 0)
a'proj (x(lambda)) - lo (if lambda < 0)
The minimizing b in the dual function is b = hi if lambda > 0 and b = lo
if b <= 0. When L' (lamdbda) = 0 with lambda != 0, either x'a = hi or
x'a = lo. The minimum is attained at lambda = 0 if and only if the
slope of L is negative at lambda = 0+ and positive at lambda = 0-.
This is equivalent to the inequalities
lo <= a' proj (y) <= hi .
The solution technique is to start with an initial guess lambda for
mu and search for a zero of L'. We have the following cases:
1. lambda >= 0, L'(lambda+) >= 0: mu >= lambda. If L' = 0, then done.
Otherwise, increase lambda using napup until
slope vanishes
2. lambda <= 0, L'(lambda-) <= 0: mu <= lambda. If L' = 0, then done.
Otherwise, decrease lambda using napdown
until slope vanishes
3. lambda >= 0, L'(lambda+) < 0: If L' (0-) < 0, then mu < 0. Call napdown
with lambda = 0 as starting guess. If
L' (0+) > 0, then 0 < mu < lambda. Call
napdown with given starting guess lambda.
Otherwise, if L' (0+) <= 0, then mu = 0.
4. lambda <= 0, L'(lambda-) > 0: If L' (0+) > 0, then mu > 0. Call napup
with lambda = 0 as starting guess. If
L' (0-) < 0, then lambda < mu < 0. Call
napup with given starting guess lambda.
Otherwise, if L' (0-) >= 0, then mu = 0.
By the "free set" we mean those i for which 0 < x_i (lambda) < 1. The
total time taken by napsack is O (n + h log n), where n is the size of y,
h is the number of times an element of x (lambda) moves off the boundary
into the free set (entries between zero and one) plus the number of times
elements move from the free set to the opposite boundary. A heap is used
to hold the entries in the boundary and in the free set. If the slope
vanishes at either the starting lambda or at lambda = 0, then no heap is
constructed, and the time is just O (n).
If we have a guess for which components of x will be free at the optimal
solution, then we can obtain a good guess for the starting lambda by
setting the slope of the dual function to zero and solving for lambda. If
FreeSet_status is not NULL, then the FreeSet_status array is used to
compute a starting guess for lambda based on the estimated free indices.
Note that FreeSet_status is an INPUT array, it is not modified by this
routine.
========================================================================== */
#include "Mongoose_Debug.hpp"
#include "Mongoose_Internal.hpp"
#include "Mongoose_Logger.hpp"
#include "Mongoose_QPNapDown.hpp"
#include "Mongoose_QPNapUp.hpp"
#include <cfloat>
namespace Mongoose
{
#ifndef NDEBUG
void checkatx(double *x, double *a, Int n, double lo, double hi, double tol)
{
double atx = 0.;
int ok = 1;
for (Int k = 0; k < n; k++)
{
if (x[k] < 0.)
{
ok = 0;
PR(("x [%ld] = %g < 0!\n", k, x[k]));
}
if (x[k] > 1.)
{
ok = 0;
PR(("x [%ld] = %g > 1!\n", k, x[k]));
}
if (a != NULL)
{
double ak = (a) ? a[k] : 1;
PR(("a'x = %g * %g = %g\n", ak, x[k], ak * x[k]));
atx += ak * x[k];
}
else
{
PR(("a'x = %g * %g = %g\n", 1.0, x[k], x[k]));
atx += x[k];
}
}
if (atx < lo - tol)
{
ok = 0;
}
if (atx > hi + tol)
{
ok = 0;
}
if (!ok)
{
PR(("tol = %g\n", tol));
PR(("napsack error! lo %g a'x %g hi %g\n", lo, atx, hi));
FFLUSH;
ASSERT(0);
}
}
#endif
double QPNapsack /* return the final lambda */
(double *x, /* holds y on input, and the solution x on output */
Int n, /* size of x, constraint lo <= a'x <= hi */
double lo, /* partition lower bound */
double hi, /* partition upper bound */
double *Gw, /* vector of nodal weights */
double Lambda, /* initial guess for lambda */
const Int *FreeSet_status,
/* FreeSet_status [i] = +1,-1, or 0 on input,
for 3 cases: x_i =1,0, or 0< x_i< 1. Not modified. */
double *w, /* work array of size n */
Int *heap1, /* work array of size n+1 */
Int *heap2, /* work array of size n+1 */
double tol /* Gradient projection tolerance */
)
{
(void)tol; // unused variable except during debug
double lambda = Lambda;
PR(("QPNapsack start [\n"));
/* ---------------------------------------------------------------------- */
/* compute starting guess if FreeSet_status is provided and lambda != 0 */
/* ---------------------------------------------------------------------- */
if ((FreeSet_status != NULL) && (lambda != 0))
{
double asum = (lambda > 0 ? -hi : -lo);
double a2sum = 0.;
for (Int k = 0; k < n; k++)
{
if (FreeSet_status[k] == 1)
{
asum += (Gw) ? Gw[k] : 1;
}
else if (FreeSet_status[k] == 0)
{
double ai = (Gw) ? Gw[k] : 1;
asum += x[k] * ai;
a2sum += ai * ai;
}
}
if (a2sum != 0.)
lambda = asum / a2sum;
}
/* ---------------------------------------------------------------------- */
/* compute the initial slope */
/* ---------------------------------------------------------------------- */
double slope = 0;
for (Int k = 0; k < n; k++)
{
double xi = x[k] - ((Gw) ? Gw[k] : 1) * lambda;
if (xi >= 1.)
{
slope += ((Gw) ? Gw[k] : 1);
}
else if (xi > 0.)
{
slope += ((Gw) ? Gw[k] : 1) * xi;
}
}
PR(("slope %g lo %g hi %g\n", slope, lo, hi));
/* remember: must still adjust slope by "-hi" or "-lo" for its final value
*/
if ((lambda >= 0.) && (slope >= hi)) /* case 1 */
{
if (slope > hi)
{
PR(("napsack case 1 up\n"));
lambda = QPNapUp(x, n, lambda, Gw, hi, w, heap1, heap2);
lambda = std::max(0., lambda);
}
else
{
PR(("napsack case 1 nothing\n"));
}
}
else if ((lambda <= 0.) && (slope <= lo)) /* case 2 */
{
if (slope < lo)
{
PR(("napsack case 2 down\n"));
lambda = QPNapDown(x, n, lambda, Gw, lo, w, heap1, heap2);
lambda = std::min(lambda, 0.);
}
else
{
PR(("napsack case 2 nothing\n"));
}
}
else /* case 3 or 4 */
{
if (lambda != 0.)
{
double slope0 = 0.;
for (Int k = 0; k < n; k++)
{
double xi = x[k];
if (xi >= 1.)
{
slope0 += ((Gw) ? Gw[k] : 1);
}
else if (xi > 0.)
{
slope0 += ((Gw) ? Gw[k] : 1) * xi;
}
}
if ((lambda >= 0) && (slope < hi)) /* case 3 */
{
if (slope0 < lo)
{
PR(("napsack case 3a down\n"));
lambda = 0.;
lambda = QPNapDown(x, n, lambda, Gw, lo, w, heap1, heap2);
if (lambda > 0.)
{
lambda = 0.;
}
}
else if (slope0 > hi)
{
PR(("napsack case 3b down\n"));
lambda = QPNapDown(x, n, lambda, Gw, hi, w, heap1, heap2);
if (lambda < 0.)
lambda = 0.;
}
else
{
PR(("napsack case 3c nothing\n"));
lambda = 0.;
}
}
else /* ( (lambda <= 0) && (slope > lo) ) case 4 */
{
if (slope0 > hi)
{
PR(("napsack case 4a up\n"));
lambda = 0.;
lambda = QPNapUp(x, n, lambda, Gw, hi, w, heap1, heap2);
lambda = std::max(lambda, 0.);
}
else if (slope0 < lo)
{
PR(("napsack case 4b up\n"));
lambda = QPNapUp(x, n, lambda, Gw, lo, w, heap1, heap2);
lambda = std::min(0., lambda);
}
else
{
PR(("napsack case 4c nothing\n"));
lambda = 0.;
}
}
}
else /* lambda == 0 */
{
if (slope < hi) /* case 3 */
{
if (slope < lo)
{
PR(("napsack case 3d down\n"));
lambda = QPNapDown(x, n, lambda, Gw, lo, w, heap1, heap2);
lambda = std::min(0., lambda);
}
else
{
PR(("napsack case 3e nothing\n"));
}
}
else /* ( slope > lo ) case 4 */
{
if (slope > hi)
{
PR(("napsack case 4d up\n"));
lambda = QPNapUp(x, n, lambda, Gw, hi, w, heap1, heap2);
lambda = std::max(lambda, 0.);
}
else
{
PR(("napsack case 4e nothing\n"));
}
}
}
}
/* ---------------------------------------------------------------------- */
/* replace x by x (lambda) */
/* ---------------------------------------------------------------------- */
PR(("lambda %g\n", lambda));
double atx = 0;
Int last_move = 0;
for (Int k = 0; k < n; k++)
{
double xi = x[k] - ((Gw) ? Gw[k] : 1) * lambda;
if (xi < 0)
{
x[k] = 0;
}
else if (xi > 1)
{
x[k] = 1;
}
else
{
x[k] = xi;
last_move = k;
}
double newatx = atx + ((Gw) ? Gw[k] : 1) * x[k];
// Correction step if we go too far
if (newatx > hi)
{
double diff = hi - atx - FLT_MIN;
// Need diff = Gw[k] * x[k], so...
x[k] = diff / ((Gw) ? Gw[k] : 1);
newatx = atx + ((Gw) ? Gw[k] : 1) * x[k];
}
atx = newatx;
}
// Correction step if we didn't go far enough
for (Int kk = 0; kk < n && atx < lo; kk++)
{
Int k = last_move;
atx -= ((Gw) ? Gw[k] : 1) * x[k];
double diff = lo - atx;
// Need diff = Gw[k] * x[k], so...
x[k] = std::min(1., diff / ((Gw) ? Gw[k] : 1));
atx += ((Gw) ? Gw[k] : 1) * x[k];
last_move = (k + 1) % n;
}
#ifndef NDEBUG
// Define check tolerance by lambda values
double atx_tol = log10(std::max(fabs(lambda), fabs(Lambda))
/ (1e-9 + std::min(fabs(lambda), fabs(Lambda))));
atx_tol = std::max(atx_tol, tol);
checkatx(x, Gw, n, lo, hi, atx_tol);
#endif
PR(("QPNapsack done ]\n"));
return lambda;
}
} // end namespace Mongoose
|