1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//------------------------------------------------------------------------------
// SuiteSparse/GraphBLAS/Demo/Source/dpagerank: pagerank using a real semiring
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com See GraphBLAS/Doc/License.txt for license.
//------------------------------------------------------------------------------
// A is a square unsymmetric binary matrix of size n-by-n, where A(i,j) is the
// edge (i,j). Self-edges are OK. A can be of any built-in type.
// On output, P is pointer to an array of PageRank structs. P[0] is the
// highest ranked page, with pagerank P[0].pagerank and the page corresponds to
// node number P[0].page in the graph. P[1] is the next page, and so on, to
// the lowest-ranked page P[n-1].page with rank P[n-1].pagerank.
// See dpagerank.m for the equivalent computation in MATLAB (except the random
// number generator differs).
#include "GraphBLAS.h"
//------------------------------------------------------------------------------
// helper macros
//------------------------------------------------------------------------------
// free all workspace
#define FREEWORK \
{ \
GrB_Matrix_free (&C) ; \
GrB_Vector_free (&r) ; \
if (I != NULL) free (I) ; \
if (X != NULL) free (X) ; \
GrB_UnaryOp_free (&op_scale) ; \
GrB_UnaryOp_free (&op_div) ; \
}
// error handler: free output P and all workspace (used by CHECK and OK macros)
#define FREE_ALL \
{ \
if (P != NULL) free (P) ; \
FREEWORK ; \
}
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
//------------------------------------------------------------------------------
// scalar operators
//------------------------------------------------------------------------------
// NOTE: these operators use global values. dpagerank can be done in parallel,
// internally, but only one instance of dpagerank can be used.
double c, s ;
void fscale (double *z, const double *x) { (*z) = c * (*x) ; }
void fdiv (double *z, const double *x) { (*z) = (*x) / s ; }
//------------------------------------------------------------------------------
// comparison function for qsort
//------------------------------------------------------------------------------
int compar (const void *x, const void *y)
{
PageRank *a = (PageRank *) x ;
PageRank *b = (PageRank *) y ;
// sort by pagerank in descending order
if (a->pagerank > b->pagerank)
{
return (-1) ;
}
else if (a->pagerank == b->pagerank)
{
return (0) ;
}
else
{
return (1) ;
}
}
//------------------------------------------------------------------------------
// dpagerank: compute the PageRank of all nodes in a graph
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info dpagerank // GrB_SUCCESS or error condition
(
PageRank **Phandle, // output: pointer to array of PageRank structs
GrB_Matrix A // input graph, not modified
)
{
//--------------------------------------------------------------------------
// initializations
//--------------------------------------------------------------------------
GrB_Info info ;
double *X = NULL ;
GrB_Index n, *I = NULL ;
PageRank *P = NULL ;
GrB_Vector r = NULL ;
GrB_UnaryOp op_scale = NULL, op_div = NULL ;
GrB_Matrix C = NULL ;
(*Phandle) = NULL ;
// n = size (A,1) ; // number of nodes
OK (GrB_Matrix_nrows (&n, A)) ;
c = 0.85 ; // probability of walking to random neighbor
// Note the random number generate used here differs from MATLAB, so this
// function will not compute exactly the same thing as dpagerank.m.
// r = rand (1,n) ; // random initial pageranks
// simple_rand_seed ((uint64_t) n) ;
srand ((int) n) ;
OK (GrB_Vector_new (&r, GrB_FP64, n)) ;
for (int64_t i = 0 ; i < n ; i++)
{
// get a random double value in the range 0 to 1
// this is too low quality:
// double x = simple_rand_x ( ) ;
// this is not portable:
double x = ((double) rand ( )) / (double) RAND_MAX ;
OK (GrB_Vector_setElement_FP64 (r, x, i)) ;
}
// skip this (see dpagerank.m and compare with ipagerank.m):
// r = r / sum (r) ; // normalize so sum(r) == 1
double a = (1-c) / n ; // to jump to any random node in entire graph
OK (drowscale (&C, A)) ; // C = scale A by out-degree
// create unary operators
OK (GrB_UnaryOp_new (&op_scale,
(GxB_unary_function) fscale, GrB_FP64, GrB_FP64)) ;
OK (GrB_UnaryOp_new (&op_div ,
(GxB_unary_function) fdiv, GrB_FP64, GrB_FP64)) ;
//--------------------------------------------------------------------------
// iterate to compute the pagerank of each node
//--------------------------------------------------------------------------
for (int i = 0 ; i < 20 ; i++)
{
// r = ((c*r) * C) + (a * sum (r)) ;
// s = a * sum (r) ;
OK (GrB_Vector_reduce_FP64 (&s, NULL, GrB_PLUS_MONOID_FP64, r, NULL)) ;
s *= a ;
// r = c * r
OK (GrB_Vector_apply (r, NULL, NULL, op_scale, r, NULL)) ;
// r = r * C
OK (GrB_vxm (r, NULL, NULL, GxB_PLUS_TIMES_FP64, r, C, NULL)) ;
// r = r + s
OK (GrB_Vector_assign_FP64 (r, NULL, GrB_PLUS_FP64, s,
GrB_ALL, n, NULL)) ;
}
//--------------------------------------------------------------------------
// scale the result
//--------------------------------------------------------------------------
// s = sum (r)
OK (GrB_Vector_reduce_FP64 (&s, NULL, GrB_PLUS_MONOID_FP64, r, NULL)) ;
// r = r / s
OK (GrB_Vector_apply (r, NULL, NULL, op_div, r, NULL)) ;
//--------------------------------------------------------------------------
// sort the nodes by pagerank
//--------------------------------------------------------------------------
// [r,irank] = sort (r, 'descend') ;
// [I,X] = find (r) ;
X = (double *) malloc (n * sizeof (double)) ;
I = (GrB_Index *) malloc (n * sizeof (GrB_Index)) ;
CHECK (I != NULL && X != NULL, GrB_OUT_OF_MEMORY) ;
GrB_Index nvals = n ;
OK (GrB_Vector_extractTuples_FP64 (I, X, &nvals, r)) ;
// this will always be true since r is dense, but double-check anyway:
CHECK (nvals == n, GrB_PANIC) ;
// r no longer needed
GrB_Vector_free (&r) ;
// P = struct (X,I)
P = (PageRank *) malloc (n * sizeof (PageRank)) ;
CHECK (P != NULL, GrB_OUT_OF_MEMORY) ;
for (int64_t k = 0 ; k < nvals ; k++)
{
// The kth ranked page is P[k].page (with k=0 being the highest rank),
// and its pagerank is P[k].pagerank.
P [k].pagerank = X [k] ;
// I [k] == k will be true for SuiteSparse:GraphBLAS but in general I
// can be returned in any order, so use I [k] instead of k, for other
// GraphBLAS implementations.
P [k].page = I [k] ;
}
// free workspace
FREEWORK ;
// qsort (P) in descending order
qsort (P, n, sizeof (PageRank), compar) ;
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
(*Phandle) = P ;
return (GrB_SUCCESS) ;
}
|