File: ipagerank.c

package info (click to toggle)
suitesparse 1%3A5.8.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 152,716 kB
  • sloc: ansic: 774,385; cpp: 24,213; makefile: 6,310; fortran: 1,927; java: 1,826; csh: 1,686; ruby: 725; sh: 535; perl: 225; python: 209; sed: 164; awk: 60
file content (266 lines) | stat: -rw-r--r-- 9,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//------------------------------------------------------------------------------
// SuiteSparse/GraphBLAS/Demo/Source/ipagerank: pagerank using uint64 semiring
//------------------------------------------------------------------------------ 
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com   See GraphBLAS/Doc/License.txt for license.

//------------------------------------------------------------------------------ 
// A is a square unsymmetric binary matrix of size n-by-n, where A(i,j) is the
// edge (i,j).  Self-edges are OK.  A can be of any built-in type.

// On output, P is pointer to an array of iPageRank structs.  P[0] is the
// highest ranked page, with pagerank P[0].pagerank and the page corresponds to
// node number P[0].page in the graph.  P[1] is the next page, and so on, to
// the lowest-ranked page P[n-1].page with rank P[n-1].pagerank.

// See ipagerank.m for the equivalent computation in MATLAB (except the random
// number generator differs).

// This method uses no floating-point arithmetic at all.

#include "GraphBLAS.h"

//------------------------------------------------------------------------------
// helper macros
//------------------------------------------------------------------------------

// free all workspace
#define FREEWORK                        \
{                                       \
    GrB_Matrix_free (&C) ;              \
    GrB_Vector_free (&r) ;              \
    if (I != NULL) free (I) ;           \
    if (X != NULL) free (X) ;           \
    GrB_UnaryOp_free (&op_scale) ;      \
    GrB_UnaryOp_free (&op_div) ;        \
}

// error handler: free output P and all workspace (used by CHECK and OK macros)
#define FREE_ALL                \
{                               \
    if (P != NULL) free (P) ;   \
    FREEWORK ;                  \
}

#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"

//------------------------------------------------------------------------------
// scalar operators
//------------------------------------------------------------------------------

// NOTE: this operator uses global value.  ipagerank can be done in
// parallel, internally, but only one instance of ipagerank can be used.
uint64_t ic ;

// scale by the integer ic
void iscale (uint64_t *z, const uint64_t *x)
{
    (*z) = ic * (*x) ;
}

// divide an integer by ZSCALE = 2^30, guard against integer underflow
void idiv (uint64_t *z, const uint64_t *x)
{
    (*z) = (*x) / ZSCALE ;
    if ((*z) == 0) (*z) = 1 ;
}

//------------------------------------------------------------------------------
// comparison function for qsort
//------------------------------------------------------------------------------

int icompar (const void *x, const void *y)
{
    iPageRank *a = (iPageRank *) x ;
    iPageRank *b = (iPageRank *) y ;

    // sort by pagerank in descending order
    if (a->pagerank > b->pagerank)
    {
        return (-1) ;
    }
    else if (a->pagerank == b->pagerank)
    {
        return (0) ;
    }
    else
    {
        return (1) ;
    }
}

//------------------------------------------------------------------------------
// ipagerank: compute the iPageRank of all nodes in a graph
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info ipagerank          // GrB_SUCCESS or error condition
(
    iPageRank **Phandle,    // output: pointer to array of iPageRank structs
    GrB_Matrix A            // input graph, not modified
)
{

    //--------------------------------------------------------------------------
    // initializations
    //--------------------------------------------------------------------------

    GrB_Info info ;
    uint64_t *X = NULL ;
    GrB_Index n, *I = NULL ;
    iPageRank *P = NULL ;
    GrB_Vector r = NULL ;
    GrB_UnaryOp op_scale = NULL, op_div = NULL ;
    GrB_Matrix C = NULL ;
    (*Phandle) = NULL ;

    // n = size (A,1) ;         // number of nodes
    OK (GrB_Matrix_nrows (&n, A)) ;

    // ic = 912680550 if ZSCALE = 2^30
    // double c = 0.85 ;           // probability of walking to random neighbor
    // ic = 0.85 * ZSCALE ;        // scaled integer version of c
    ic = 912680550 ;

    // Note the random number generate used here differs from MATLAB, so this
    // function will not compute exactly the same thing as ipagerank.m.

    // since rand() is in the range 0 to RAND_MAX, the sum of all unscaled
    // rand() values will be about n*RMAX/2.  The desired sum(r) = ZSCALE,
    // so scale each value from rand() by 2*ZSCALE / (RMAX*n)

    #define RMAX (((uint64_t) RAND_MAX) + 1)

    // r = rand (1,n) ;         // random initial pageranks
    srand ((int) n) ;
    OK (GrB_Vector_new (&r, GrB_UINT64, n)) ;
    for (int64_t i = 0 ; i < n ; i++)
    {
        // get a random integer in the range 0 to RMAX-1.
        uint64_t x = (uint64_t) rand ( ) ;

        // ZSCALE = 2^30 so 2*ZSCALE = 2^31.  RMAX is typically 2^31.  So the
        // ratio 2*ZSCALE / RMAX is typically equal to 1.  In that case,
        // neither of the two if-cases need to be used.  The test is a
        // compile-time constant so the compiler should be able to remove all
        // of if-test code below.  But do this anway in case RMAX is not 2^31.
        if (2*ZSCALE > RMAX)
        {
            x = x * (2*ZSCALE / RMAX) ;
        }
        else if (2*ZSCALE < RMAX)
        {
            // RMAX is larger than 2*ZSCALE, so instead of multiplying
            // by (2*ZSCALE / RMAX), divide by the reciprocal.
            x = x / (RMAX / 2*ZSCALE) ;
        }

        // finish the scaling by dividing by n
        x = x / n ;

        // ensure x > 0 however
        if (x == 0) x = 1 ;

        // now each r(i) is in the range 1 to 2*ZSCALE/n, and the expected value
        // of sum (r) will be ZSCALE.
        OK (GrB_Vector_setElement_UINT64 (r, x, i)) ;
    }

    // double a = (1-c) / n ;   // to jump to any random node in entire graph

    // ZSCALE - ic = 161061274 if ZSCALE = 2^31
    uint64_t ia = ZSCALE - ic ;      // scaled integer version of (1-c)
    ia = ia / n ;
    if (ia == 0) ia = 1 ;       // ensure ia > 0

    OK (irowscale (&C, A)) ;    // C = scale A by out-degree

    // create unary operators
    OK (GrB_UnaryOp_new (&op_scale,
        (GxB_unary_function) iscale, GrB_UINT64, GrB_UINT64)) ;
    OK (GrB_UnaryOp_new (&op_div,
        (GxB_unary_function) idiv,   GrB_UINT64, GrB_UINT64)) ;

    //--------------------------------------------------------------------------
    // iterate to compute the pagerank of each node
    //--------------------------------------------------------------------------

    for (int i = 0 ; i < 20 ; i++)
    {
        // r = floor ((floor (floor ((c*r)/z) * C) + floor (a * sum (r))) / z) ;

        // with implicit floor:
        // r = ((((c*r) / z) * C) + (a * sum (r))) / z ;

        // s = ia * sum (r) ;
        uint64_t s ;
        OK (GrB_Vector_reduce_UINT64 (&s, NULL, GrB_PLUS_MONOID_UINT64,
            r, NULL)) ;
        s = s * ia ;

        // r = ic * r
        OK (GrB_Vector_apply (r, NULL, NULL, op_scale, r, NULL)) ;

        // r = r / ZSCALE
        OK (GrB_Vector_apply (r, NULL, NULL, op_div, r, NULL)) ;

        // r = r * C
        OK (GrB_vxm (r, NULL, NULL, GxB_PLUS_TIMES_UINT64, r, C, NULL)) ;

        // r = r + s
        OK (GrB_Vector_assign_FP64 (r, NULL, GrB_PLUS_UINT64, s,
            GrB_ALL, n, NULL)) ;

        // r = r / ZSCALE
        OK (GrB_Vector_apply (r, NULL, NULL, op_div, r, NULL)) ;
    }

    //--------------------------------------------------------------------------
    // sort the nodes by pagerank
    //--------------------------------------------------------------------------

    // [r,irank] = sort (r, 'descend') ;

    // [I,X] = find (r) ;
    X = (uint64_t *) malloc (n * sizeof (uint64_t)) ;
    I = (GrB_Index *) malloc (n * sizeof (GrB_Index)) ;
    CHECK (I != NULL && X != NULL, GrB_OUT_OF_MEMORY) ;
    GrB_Index nvals = n ;
    OK (GrB_Vector_extractTuples_UINT64 (I, X, &nvals, r)) ;

    // this will always be true since r is dense, but double-check anyway:
    CHECK (nvals == n, GrB_PANIC) ;

    // r no longer needed
    GrB_Vector_free (&r) ;

    // P = struct (X,I)
    P = (iPageRank *) malloc (n * sizeof (iPageRank)) ;
    CHECK (P != NULL, GrB_OUT_OF_MEMORY) ;
    for (int64_t k = 0 ; k < nvals ; k++)
    {
        // The kth ranked page is P[k].page (with k=0 being the highest rank),
        // and its pagerank is P[k].pagerank.
        P [k].pagerank = X [k] ;
        // I [k] == k will be true for SuiteSparse:GraphBLAS but in general I
        // can be returned in any order, so use I [k] instead of k, for other
        // GraphBLAS implementations.
        P [k].page = I [k] ;
    }

    // free workspace
    FREEWORK ;

    // qsort (P) in descending order
    qsort (P, n, sizeof (iPageRank), icompar) ;

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    (*Phandle) = P ;
    return (GrB_SUCCESS) ;
}