1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/tricount.c: count the number of triangles in a graph
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com See GraphBLAS/Doc/License.txt for license.
//------------------------------------------------------------------------------
// Given a symmetric graph A with no-self edges, tricount counts the exact
// number of triangles in the graph.
// One of 5 methods are used. Each computes the same result, ntri:
// 0: minitri: ntri = nnz (A*E == 2) / 3
// 1: Burkhardt: ntri = sum (sum ((A^2) .* A)) / 6
// 2: Cohen: ntri = sum (sum ((L * U) .* A)) / 2
// 3: Sandia: ntri = sum (sum ((L * L) .* L))
// 4: Sandia2: ntri = sum (sum ((U * U) .* U))
// 5: SandiaDot: ntri = sum (sum ((L * U') .* L)). Note that L=U'.
// 6: SandiaDot2: ntri = sum (sum ((U * L') .* U))
// All matrices are assumed to be in CSR format (GxB_BY_ROW).
// Method 0 can take a huge amount of memory, for all of A*E. As a result,
// it often fails for large problems.
// Methods 1 and 2 are much more memory efficient as compare to Method 0,
// taking memory space the same size as A. But they are slower than methods 3
// and 4.
// Methods 3 and 4 take a little less memory than methods 1 and 2, are by far
// the fastest methods in general. The two methods compute the same
// intermediate matrix (U*U), and differ only in the way the matrix
// multiplication is done. Method 3 uses an outer-product method (Gustavson's
// method). Method 5 uses dot products and does not explicitly transpose U.
// They are called the "Sandia" method since matrices in the KokkosKernels
// are stored in compressed-sparse row form, so (L*L).*L in the KokkosKernel
// method is equivalent to (L*L).*L in SuiteSparse:GraphBLAS when the matrices
// in SuiteSparse:GraphBLAS are in their default format (also by row).
// A is a binary square symmetric matrix. E is the edge incidence matrix of A.
// L=tril(A), and U=triu(A). See GraphBLAS/Demo/tricount.m for a complete
// definition of each method and the matrices A, E, L, and U, and citations of
// relevant references.
// All input matrices should have binary values (0 and 1). Any type will work,
// but int32 is recommended for fastest results since that is the type used
// here for the semiring. GraphBLAS will do typecasting internally, but that
// takes extra time.
// This method has been updated as of Version 2.2 of SuiteSparse:GraphBLAS. It
// now assumes the matrix is held by row (GxB_BY_ROW), not by column
// (GxB_BY_COL). Both methods work fine, but with matrices stored by column,
// C<M>=A'*B uses the dot product method by default, whereas C<M>=A*B' uses the
// dot product method if the matrices are stored by row.
#include "GraphBLAS.h"
#define FREE_ALL \
GrB_UnaryOp_free (&Two) ; \
GrB_Descriptor_free (&d) ; \
GrB_Matrix_free (&S) ; \
GrB_Matrix_free (&C) ;
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
//------------------------------------------------------------------------------
// two: unary function for GrB_apply
//------------------------------------------------------------------------------
void two (int32_t *z, const int32_t *x)
{
(*z) = (double) (((*x) == 2) ? 1 : 0) ;
}
//------------------------------------------------------------------------------
// tricount: count the number of triangles in a graph
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info tricount // count # of triangles
(
int64_t *p_ntri, // # of trianagles
const int method, // 0 to 6, see above
const GrB_Matrix A, // adjacency matrix for methods 0, 1, and 2
const GrB_Matrix E, // edge incidence matrix for method 0
const GrB_Matrix L, // L=tril(A) for methods 2, 3, 5, and 6
const GrB_Matrix U, // U=triu(A) for methods 2, 4, 5, and 6
double t [2] // t [0]: multiply time, t [1]: reduce time
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
double tic [2] ;
simple_tic (tic) ;
GrB_Info info ;
int64_t ntri ;
GrB_Index n, ne ;
GrB_UnaryOp Two = NULL ;
GrB_Matrix S = NULL, C = NULL ;
GrB_Descriptor d = NULL ;
OK (GrB_Descriptor_new (&d)) ;
GrB_Semiring semiring = GrB_PLUS_TIMES_SEMIRING_INT32 ;
GrB_Type ctype = GrB_INT32 ;
switch (method)
{
case 0: // minitri: ntri = nnz (A*E == 2) / 3
OK (GrB_Matrix_nrows (&n, A)) ;
OK (GrB_Matrix_ncols (&ne, E)) ;
OK (GrB_Matrix_new (&C, ctype, n, ne)) ;
// mxm: outer product method, no mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON)) ;
OK (GrB_mxm (C, NULL, NULL, GxB_PLUS_TIMES_UINT32, A, E, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_UnaryOp_new (&Two, (GxB_unary_function) two, ctype, ctype));
OK (GrB_Matrix_new (&S, ctype, n, ne)) ;
OK (GrB_Matrix_apply (S, NULL, NULL, Two, C, NULL)) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
S, NULL)) ;
ntri /= 3 ;
break ;
case 1: // Burkhardt: ntri = sum (sum ((A^2) .* A)) / 6
OK (GrB_Matrix_nrows (&n, A)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
// mxm: outer product method, with mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON)) ;
OK (GrB_mxm (C, A, NULL, semiring, A, A, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
ntri /= 6 ;
break ;
case 2: // Cohen: ntri = sum (sum ((L * U) .* A)) / 2
OK (GrB_Matrix_nrows (&n, A)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
// mxm: outer product method, with mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON)) ;
OK (GrB_mxm (C, A, NULL, semiring, L, U, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
ntri /= 2 ;
break ;
case 3: // Sandia: ntri = sum (sum ((L * L) .* L))
OK (GrB_Matrix_nrows (&n, L)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON)) ;
OK (GrB_mxm (C, L, NULL, semiring, L, L, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
break ;
case 4: // Sandia2: ntri = sum (sum ((U * U) .* U))
OK (GrB_Matrix_nrows (&n, U)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
// mxm: outer product method, with mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON)) ;
OK (GrB_mxm (C, U, NULL, semiring, U, U, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
break ;
case 5: // SandiaDot: ntri = sum (sum ((L * U') .* L))
OK (GrB_Matrix_nrows (&n, U)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
OK (GrB_Descriptor_new (&d)) ;
OK (GxB_Desc_set (d, GrB_INP1, GrB_TRAN)) ;
// mxm: dot product method, with mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_DOT)) ;
OK (GrB_mxm (C, L, NULL, semiring, L, U, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
break ;
case 6: // SandiaDot2: ntri = sum (sum ((U * L') .* U))
OK (GrB_Matrix_nrows (&n, U)) ;
OK (GrB_Matrix_new (&C, ctype, n, n)) ;
OK (GrB_Descriptor_new (&d)) ;
OK (GxB_Desc_set (d, GrB_INP1, GrB_TRAN)) ;
// mxm: dot product method, with mask
OK (GxB_Desc_set (d, GxB_AxB_METHOD, GxB_AxB_DOT)) ;
OK (GrB_mxm (C, U, NULL, semiring, U, L, d)) ;
t [0] = simple_toc (tic) ;
simple_tic (tic) ;
OK (GrB_Matrix_reduce_INT64 (&ntri, NULL, GrB_PLUS_MONOID_INT64,
C, NULL)) ;
break ;
default: // invalid method
return (GrB_INVALID_VALUE) ;
break ;
}
FREE_ALL ;
t [1] = simple_toc (tic) ;
(*p_ntri) = ntri ;
return (GrB_SUCCESS) ;
}
|