1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/usercomplex.c: complex numbers as a user-defined type
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com See GraphBLAS/Doc/License.txt for license.
//------------------------------------------------------------------------------
#include "GraphBLAS.h"
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
#if defined __INTEL_COMPILER
#pragma warning (disable: 58 167 144 161 177 181 186 188 589 593 869 981 1418 1419 1572 1599 2259 2282 2557 2547 3280 )
#elif defined __GNUC__
#pragma GCC diagnostic ignored "-Wunused-parameter"
#if !defined ( __cplusplus )
#pragma GCC diagnostic ignored "-Wincompatible-pointer-types"
#endif
#endif
GrB_BinaryOp Complex_first = NULL, Complex_second = NULL, Complex_min = NULL,
Complex_max = NULL, Complex_plus = NULL, Complex_minus = NULL,
Complex_times = NULL, Complex_div = NULL, Complex_rminus = NULL,
Complex_rdiv = NULL, Complex_pair = NULL ;
GrB_BinaryOp Complex_iseq = NULL, Complex_isne = NULL,
Complex_isgt = NULL, Complex_islt = NULL,
Complex_isge = NULL, Complex_isle = NULL ;
GrB_BinaryOp Complex_or = NULL, Complex_and = NULL, Complex_xor = NULL ;
GrB_BinaryOp Complex_eq = NULL, Complex_ne = NULL,
Complex_gt = NULL, Complex_lt = NULL,
Complex_ge = NULL, Complex_le = NULL ;
GrB_BinaryOp Complex_complex = NULL ;
GrB_UnaryOp Complex_identity = NULL, Complex_ainv = NULL, Complex_minv = NULL,
Complex_not = NULL, Complex_conj = NULL,
Complex_one = NULL, Complex_abs = NULL ;
GrB_UnaryOp Complex_real = NULL, Complex_imag = NULL,
Complex_cabs = NULL, Complex_angle = NULL ;
GrB_UnaryOp Complex_complex_real = NULL, Complex_complex_imag = NULL ;
GrB_Type Complex = NULL ;
GrB_Monoid Complex_plus_monoid = NULL, Complex_times_monoid = NULL ;
GrB_Semiring Complex_plus_times = NULL ;
#define ONE GxB_CMPLX(1,0)
#define ZERO GxB_CMPLX(0,0)
#define C GxB_FC64_t
#define X *x
#define Y *y
#define Z *z
#define T ONE
#define F ZERO
#define BOOL(X) (creal (X) != 0 || cimag (X) != 0)
//------------------------------------------------------------------------------
// binary functions, z=f(x,y), where CxC -> C
//------------------------------------------------------------------------------
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC void complex_first (C Z, const C X, const C Y) { Z = X ; }
GB_PUBLIC void complex_second (C Z, const C X, const C Y) { Z = Y ; }
GB_PUBLIC void complex_pair (C Z, const C X, const C Y) { Z = ONE ; }
GB_PUBLIC void complex_plus (C Z, const C X, const C Y) { Z = X + Y ; }
GB_PUBLIC void complex_minus (C Z, const C X, const C Y) { Z = X - Y ; }
GB_PUBLIC void complex_rminus (C Z, const C X, const C Y) { Z = Y - X ; }
GB_PUBLIC void complex_times (C Z, const C X, const C Y) { Z = X * Y ; }
GB_PUBLIC void complex_div (C Z, const C X, const C Y) { Z = X / Y ; }
GB_PUBLIC void complex_rdiv (C Z, const C X, const C Y) { Z = Y / X ; }
#endif
GB_PUBLIC
void complex_min (C Z, const C X, const C Y)
{
// min (x,y): complex number with smallest magnitude. If tied, select the
// one with the smallest phase angle (same as MATLAB definition).
// No special cases for NaNs.
double absx = cabs (X) ;
double absy = cabs (Y) ;
if (absx < absy)
{
Z = X ;
}
else if (absx > absy)
{
Z = Y ;
}
else
{
if (carg (X) < carg (Y))
{
Z = X ;
}
else
{
Z = Y ;
}
}
}
GB_PUBLIC
void complex_max (C Z, const C X, const C Y)
{
// max (x,y): complex number with largest magnitude. If tied, select the
// one with the largest phase angle (same as MATLAB definition).
// No special cases for NaNs.
double absx = cabs (X) ;
double absy = cabs (Y) ;
if (absx > absy)
{
Z = X ;
}
else if (absx < absy)
{
Z = Y ;
}
else
{
if (carg (X) > carg (Y))
{
Z = X ;
}
else
{
Z = Y ;
}
}
}
//------------------------------------------------------------------------------
// 6 binary functions, z=f(x,y), where CxC -> C ; (1,0) = true, (0,0) = false
//------------------------------------------------------------------------------
// inequality operators follow the MATLAB convention
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC
void complex_iseq (C Z, const C X, const C Y)
{
Z = (creal (X) == creal (Y) && cimag (X) == cimag (Y)) ? T : F ;
}
GB_PUBLIC
void complex_isne (C Z, const C X, const C Y)
{
Z = (creal (X) != creal (Y) || cimag (X) != cimag (Y)) ? T : F ;
}
#endif
GB_PUBLIC
void complex_isgt (C Z, const C X, const C Y)
{
Z = (creal (X) > creal (Y)) ? T : F ;
}
GB_PUBLIC
void complex_islt (C Z, const C X, const C Y)
{
Z = (creal (X) < creal (Y)) ? T : F ;
}
GB_PUBLIC
void complex_isge (C Z, const C X, const C Y)
{
Z = (creal (X) >= creal (Y)) ? T : F ;
}
GB_PUBLIC
void complex_isle (C Z, const C X, const C Y)
{
Z = (creal (X) <= creal (Y)) ? T : F ;
}
//------------------------------------------------------------------------------
// binary boolean functions, z=f(x,y), where CxC -> C
//------------------------------------------------------------------------------
GB_PUBLIC
void complex_or (C Z, const C X, const C Y)
{
Z = (BOOL (X) || BOOL (Y)) ? T : F ;
}
GB_PUBLIC
void complex_and (C Z, const C X, const C Y)
{
Z = (BOOL (X) && BOOL (Y)) ? T : F ;
}
GB_PUBLIC
void complex_xor (C Z, const C X, const C Y)
{
Z = (BOOL (X) != BOOL (Y)) ? T : F ;
}
//------------------------------------------------------------------------------
// 6 binary functions, z=f(x,y), where CxC -> bool
//------------------------------------------------------------------------------
// inequality operators follow the MATLAB convention
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC
void complex_eq (bool Z, const C X, const C Y)
{
Z = (creal (X) == creal (Y) && cimag (X) == cimag (Y)) ;
}
GB_PUBLIC
void complex_ne (bool Z, const C X, const C Y)
{
Z = (creal (X) != creal (Y) || cimag (X) != cimag (Y)) ;
}
#endif
GB_PUBLIC
void complex_gt (bool Z, const C X, const C Y)
{
Z = (creal (X) > creal (Y)) ;
}
GB_PUBLIC
void complex_lt (bool Z, const C X, const C Y)
{
Z = (creal (X) < creal (Y)) ;
}
GB_PUBLIC
void complex_ge (bool Z, const C X, const C Y)
{
Z = (creal (X) >= creal (Y)) ;
}
GB_PUBLIC
void complex_le (bool Z, const C X, const C Y)
{
Z = (creal (X) <= creal (Y)) ;
}
//------------------------------------------------------------------------------
// binary functions, z=f(x,y), where double x double -> complex
//------------------------------------------------------------------------------
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC
void complex_complex (C Z, const double X, const double Y)
{
Z = GxB_CMPLX (X,Y) ;
}
#endif
//------------------------------------------------------------------------------
// unary functions, z=f(x) where C -> C
//------------------------------------------------------------------------------
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC
void complex_one (C Z, const C X) { Z = ONE ; }
GB_PUBLIC
void complex_identity (C Z, const C X) { Z = X ; }
GB_PUBLIC
void complex_ainv (C Z, const C X) { Z = -X ; }
GB_PUBLIC
void complex_minv (C Z, const C X) { Z = 1. / X ; }
GB_PUBLIC
void complex_conj (C Z, const C X) { Z = conj (X) ; }
#endif
GB_PUBLIC
void complex_abs (C Z, const C X) { Z = GxB_CMPLX (cabs (X), 0) ; }
GB_PUBLIC
void complex_not (C Z, const C X) { Z = BOOL (X) ? F : T ; }
//------------------------------------------------------------------------------
// unary functions, z=f(x) where C -> double
//------------------------------------------------------------------------------
#if GxB_STDC_VERSION >= 201112L
GB_PUBLIC
void complex_real (double Z, const C X) { Z = creal (X) ; }
GB_PUBLIC
void complex_imag (double Z, const C X) { Z = cimag (X) ; }
GB_PUBLIC
void complex_cabs (double Z, const C X) { Z = cabs (X) ; }
GB_PUBLIC
void complex_angle (double Z, const C X) { Z = carg (X) ; }
#endif
//------------------------------------------------------------------------------
// unary functions, z=f(x) where double -> C
//------------------------------------------------------------------------------
GB_PUBLIC
void complex_complex_real (C Z, const double X) { Z = GxB_CMPLX (X, 0) ; }
GB_PUBLIC
void complex_complex_imag (C Z, const double X) { Z = GxB_CMPLX (0, X) ; }
//------------------------------------------------------------------------------
// OK: check if a method fails
//------------------------------------------------------------------------------
#undef OK
#define OK(method) \
info = method ; \
if (info != GrB_SUCCESS) \
{ \
Complex_finalize ( ) ; \
return (info) ; \
}
//------------------------------------------------------------------------------
// Complex_init: create the complex type, operators, monoids, and semiring
//------------------------------------------------------------------------------
#undef C
#undef D
#define C Complex
#define D GrB_FP64
#define U (GxB_unary_function)
#define B (GxB_binary_function)
GB_PUBLIC
GrB_Info Complex_init (bool builtin_complex)
{
GrB_Info info ;
#if GxB_STDC_VERSION < 201112L
// the Complex type requires the ANSI C11 "double complex" type
builtin_complex = true ;
#endif
//--------------------------------------------------------------------------
// create the Complex type, or set to GxB_FC64
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in type
Complex = GxB_FC64 ;
}
else
{
// create the user-defined type
#if GxB_STDC_VERSION >= 201112L
OK (GrB_Type_new (&Complex, sizeof (GxB_FC64_t))) ;
#endif
}
//--------------------------------------------------------------------------
// create the Complex binary operators, CxC->C
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_first = GxB_FIRST_FC64 ;
Complex_second = GxB_SECOND_FC64 ;
Complex_pair = GxB_PAIR_FC64 ;
Complex_plus = GxB_PLUS_FC64 ;
Complex_minus = GxB_MINUS_FC64 ;
Complex_rminus = GxB_RMINUS_FC64 ;
Complex_times = GxB_TIMES_FC64 ;
Complex_div = GxB_DIV_FC64 ;
Complex_rdiv = GxB_RDIV_FC64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_BinaryOp_new (&Complex_first , B complex_first , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_second , B complex_second , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_pair , B complex_pair , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_plus , B complex_plus , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_minus , B complex_minus , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_rminus , B complex_rminus , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_times , B complex_times , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_div , B complex_div , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_rdiv , B complex_rdiv , C, C, C)) ;
#endif
}
// these are not built-in
OK (GrB_BinaryOp_new (&Complex_min , B complex_min , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_max , B complex_max , C, C, C)) ;
//--------------------------------------------------------------------------
// create the Complex binary comparison operators, CxC -> C
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_iseq = GxB_ISEQ_FC64 ;
Complex_isne = GxB_ISNE_FC64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_BinaryOp_new (&Complex_iseq , B complex_iseq , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_isne , B complex_isne , C, C, C)) ;
#endif
}
// these are not built-in
OK (GrB_BinaryOp_new (&Complex_isgt , B complex_isgt , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_islt , B complex_islt , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_isge , B complex_isge , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_isle , B complex_isle , C, C, C)) ;
//--------------------------------------------------------------------------
// create the Complex boolean operators, CxC -> C
//--------------------------------------------------------------------------
// these are not built-in
OK (GrB_BinaryOp_new (&Complex_or , B complex_or , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_and , B complex_and , C, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_xor , B complex_xor , C, C, C)) ;
//--------------------------------------------------------------------------
// create the Complex binary operators, CxC -> bool
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_eq = GxB_EQ_FC64 ;
Complex_ne = GxB_NE_FC64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_BinaryOp_new (&Complex_eq , B complex_eq , GrB_BOOL, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_ne , B complex_ne , GrB_BOOL, C, C)) ;
#endif
}
// these are not built-in
OK (GrB_BinaryOp_new (&Complex_gt , B complex_gt , GrB_BOOL, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_lt , B complex_lt , GrB_BOOL, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_ge , B complex_ge , GrB_BOOL, C, C)) ;
OK (GrB_BinaryOp_new (&Complex_le , B complex_le , GrB_BOOL, C, C)) ;
//--------------------------------------------------------------------------
// create the Complex binary operator, double x double -> C
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_complex = GxB_CMPLX_FP64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_BinaryOp_new (&Complex_complex, B complex_complex, C, D, D)) ;
#endif
}
//--------------------------------------------------------------------------
// create the Complex unary operators, C->C
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_one = GxB_ONE_FC64 ;
Complex_identity = GxB_IDENTITY_FC64 ;
Complex_ainv = GxB_AINV_FC64 ;
Complex_minv = GxB_MINV_FC64 ;
Complex_conj = GxB_CONJ_FC64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_UnaryOp_new (&Complex_one , U complex_one , C, C)) ;
OK (GrB_UnaryOp_new (&Complex_identity, U complex_identity, C, C)) ;
OK (GrB_UnaryOp_new (&Complex_ainv , U complex_ainv , C, C)) ;
OK (GrB_UnaryOp_new (&Complex_minv , U complex_minv , C, C)) ;
OK (GrB_UnaryOp_new (&Complex_conj , U complex_conj , C, C)) ;
#endif
}
// these are not built-in
OK (GrB_UnaryOp_new (&Complex_abs , U complex_abs , C, C)) ;
OK (GrB_UnaryOp_new (&Complex_not , U complex_not , C, C)) ;
//--------------------------------------------------------------------------
// create the unary functions, C -> double
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_real = GxB_CREAL_FC64 ;
Complex_imag = GxB_CIMAG_FC64 ;
Complex_cabs = GxB_ABS_FC64 ;
Complex_angle = GxB_CARG_FC64 ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
OK (GrB_UnaryOp_new (&Complex_real , U complex_real , D, C)) ;
OK (GrB_UnaryOp_new (&Complex_imag , U complex_imag , D, C)) ;
OK (GrB_UnaryOp_new (&Complex_cabs , U complex_cabs , D, C)) ;
OK (GrB_UnaryOp_new (&Complex_angle , U complex_angle , D, C)) ;
#endif
}
//--------------------------------------------------------------------------
// create the unary functions, double -> C
//--------------------------------------------------------------------------
// these are not built-in
OK (GrB_UnaryOp_new (&Complex_complex_real, U complex_complex_real, C, D)) ;
OK (GrB_UnaryOp_new (&Complex_complex_imag, U complex_complex_imag, C, D)) ;
//--------------------------------------------------------------------------
// create the Complex monoids
//--------------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_plus_monoid = GxB_PLUS_FC64_MONOID ;
Complex_times_monoid = GxB_TIMES_FC64_MONOID ;
}
else
{
// create user-defined versions
#if GxB_STDC_VERSION >= 201112L
double complex C_1 = ONE ;
double complex C_0 = ZERO ;
OK (GrB_Monoid_new_UDT (&Complex_plus_monoid, Complex_plus, &C_0)) ;
OK (GrB_Monoid_new_UDT (&Complex_times_monoid, Complex_times, &C_1)) ;
#endif
}
//----------------------------------------------------------------------
// create the Complex plus-times semiring
//----------------------------------------------------------------------
if (builtin_complex)
{
// use the built-in versions
Complex_plus_times = GxB_PLUS_TIMES_FC64 ;
}
else
{
// more could be created, but this suffices for testing GraphBLAS
OK (GrB_Semiring_new (&Complex_plus_times, Complex_plus_monoid,
Complex_times)) ;
}
return (GrB_SUCCESS) ;
}
//------------------------------------------------------------------------------
// Complex_finalize: free all complex types, operators, monoids, and semiring
//------------------------------------------------------------------------------
// These may be built-in types and operators. They are safe to free; the
// GrB_*_free functions silently do nothing if asked to free bulit-in objects.
GB_PUBLIC
GrB_Info Complex_finalize ( )
{
//--------------------------------------------------------------------------
// free the Complex plus-times semiring
//--------------------------------------------------------------------------
GrB_Semiring_free (&Complex_plus_times) ;
//--------------------------------------------------------------------------
// free the Complex monoids
//--------------------------------------------------------------------------
GrB_Monoid_free (&Complex_plus_monoid ) ;
GrB_Monoid_free (&Complex_times_monoid) ;
//--------------------------------------------------------------------------
// free the Complex binary operators, CxC->C
//--------------------------------------------------------------------------
GrB_BinaryOp_free (&Complex_first ) ;
GrB_BinaryOp_free (&Complex_second) ;
GrB_BinaryOp_free (&Complex_pair ) ;
GrB_BinaryOp_free (&Complex_min ) ;
GrB_BinaryOp_free (&Complex_max ) ;
GrB_BinaryOp_free (&Complex_plus ) ;
GrB_BinaryOp_free (&Complex_minus ) ;
GrB_BinaryOp_free (&Complex_rminus) ;
GrB_BinaryOp_free (&Complex_times ) ;
GrB_BinaryOp_free (&Complex_div ) ;
GrB_BinaryOp_free (&Complex_rdiv ) ;
GrB_BinaryOp_free (&Complex_iseq) ;
GrB_BinaryOp_free (&Complex_isne) ;
GrB_BinaryOp_free (&Complex_isgt) ;
GrB_BinaryOp_free (&Complex_islt) ;
GrB_BinaryOp_free (&Complex_isge) ;
GrB_BinaryOp_free (&Complex_isle) ;
GrB_BinaryOp_free (&Complex_or) ;
GrB_BinaryOp_free (&Complex_and) ;
GrB_BinaryOp_free (&Complex_xor) ;
//--------------------------------------------------------------------------
// free the Complex binary operators, CxC -> bool
//--------------------------------------------------------------------------
GrB_BinaryOp_free (&Complex_eq) ;
GrB_BinaryOp_free (&Complex_ne) ;
GrB_BinaryOp_free (&Complex_gt) ;
GrB_BinaryOp_free (&Complex_lt) ;
GrB_BinaryOp_free (&Complex_ge) ;
GrB_BinaryOp_free (&Complex_le) ;
//--------------------------------------------------------------------------
// free the Complex binary operator, double x double -> complex
//--------------------------------------------------------------------------
GrB_BinaryOp_free (&Complex_complex) ;
//--------------------------------------------------------------------------
// free the Complex unary operators, C->C
//--------------------------------------------------------------------------
GrB_UnaryOp_free (&Complex_one ) ;
GrB_UnaryOp_free (&Complex_identity) ;
GrB_UnaryOp_free (&Complex_ainv ) ;
GrB_UnaryOp_free (&Complex_abs ) ;
GrB_UnaryOp_free (&Complex_minv ) ;
GrB_UnaryOp_free (&Complex_not ) ;
GrB_UnaryOp_free (&Complex_conj ) ;
//--------------------------------------------------------------------------
// free the unary functions, C -> double
//--------------------------------------------------------------------------
GrB_UnaryOp_free (&Complex_real ) ;
GrB_UnaryOp_free (&Complex_imag ) ;
GrB_UnaryOp_free (&Complex_cabs ) ;
GrB_UnaryOp_free (&Complex_angle) ;
//--------------------------------------------------------------------------
// free the unary functions, double -> C
//--------------------------------------------------------------------------
GrB_UnaryOp_free (&Complex_complex_real) ;
GrB_UnaryOp_free (&Complex_complex_imag) ;
//--------------------------------------------------------------------------
// free the Complex type
//--------------------------------------------------------------------------
GrB_Type_free (&Complex) ;
return (GrB_SUCCESS) ;
}
|