File: wathen.c

package info (click to toggle)
suitesparse 1%3A5.8.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 152,716 kB
  • sloc: ansic: 774,385; cpp: 24,213; makefile: 6,310; fortran: 1,927; java: 1,826; csh: 1,686; ruby: 725; sh: 535; perl: 225; python: 209; sed: 164; awk: 60
file content (407 lines) | stat: -rw-r--r-- 16,075 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/wathen.c: a finite-element matrix on a regular mesh
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com   See GraphBLAS/Doc/License.txt for license.

//------------------------------------------------------------------------------

// Create a finite-element matrix on an nx-by-ny 2D mesh, as computed by
// wathen.m in MATLAB.  To view the wathen.m file, use this command in MATLAB:
//
//      type private/wathen

#include "GraphBLAS.h"
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"

//------------------------------------------------------------------------------
// scale by rho
//------------------------------------------------------------------------------

double r = 0 ;
void rho_scale (double *f, const double *e)
{
    (*f) = r * (*e) ;
}

//------------------------------------------------------------------------------
// Wathen function
//------------------------------------------------------------------------------

GB_PUBLIC
GrB_Info wathen             // construct a random Wathen matrix
(
    GrB_Matrix *A_output,   // output matrix
    int64_t nx,             // grid dimension nx
    int64_t ny,             // grid dimension ny
    bool scale,             // if true, scale the rows
    int method,             // 0 to 3
    double *rho_given       // nx-by-ny dense matrix, if NULL use random rho
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    if (nx < 0 || ny < 0 || A_output == NULL || method < 0 || method > 3)
    {
        return (GrB_INVALID_VALUE) ;
    }

    // macro to free all workspace.  Not every method uses every object
    #define FREE_ALL                    \
        GrB_Matrix_free (&A) ;                 \
        GrB_Matrix_free (&F) ;                 \
        GrB_Matrix_free (&D) ;                 \
        GrB_Matrix_free (&E) ;                 \
        GrB_UnaryOp_free (&rho_op) ;            \
        if (rho_rand != NULL) free (rho_rand) ;   \
        if (I != NULL) free (I) ;       \
        if (J != NULL) free (J) ;       \
        if (X != NULL) free (X) ;

    GrB_Info info ;
    GrB_Matrix A = NULL, F = NULL, E = NULL, D = NULL ;
    GrB_UnaryOp rho_op = NULL ;
    double *rho_rand = NULL, *X = NULL, *rho ;
    GrB_Index *I = NULL, *J = NULL ;

    //--------------------------------------------------------------------------
    // construct the coefficients
    //--------------------------------------------------------------------------

    #define d ((double) 45),
    static const double e [8][8] = {
        {  6/d   -6/d    2/d   -8/d    3/d   -8/d    2/d   -6/d   },
        { -6/d   32/d   -6/d   20/d   -8/d   16/d   -8/d   20/d   },
        {  2/d   -6/d    6/d   -6/d    2/d   -8/d    3/d   -8/d   },
        { -8/d   20/d   -6/d   32/d   -6/d   20/d   -8/d   16/d   },
        {  3/d   -8/d    2/d   -6/d    6/d   -6/d    2/d   -8/d   },
        { -8/d   16/d   -8/d   20/d   -6/d   32/d   -6/d   20/d   },
        {  2/d   -8/d    3/d   -8/d    2/d   -6/d    6/d   -6/d   },
        { -6/d   20/d   -8/d   16/d   -8/d   20/d   -6/d   32/d   } } ;

    //--------------------------------------------------------------------------
    // A = sparse (n,n) ;
    //--------------------------------------------------------------------------

    int64_t n = 3*nx*ny + 2*nx + 2*ny +1 ;
    OK (GrB_Matrix_new (&A, GrB_FP64, n, n)) ;

    //--------------------------------------------------------------------------
    // RHO = 100 * rand (nx,ny) ;
    //--------------------------------------------------------------------------

    // i and j are 1-based, so the same index computations from wathen.m
    // can be used
    #define RHO(i,j) rho [(i-1)+((j-1)*nx)]

    if (rho_given == NULL)
    {
        // compute a random RHO matrix
        rho_rand = (double *) malloc (nx * ny * sizeof (double)) ;
        if (rho_rand == NULL)
        {   // out of memory
            FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }
        rho = rho_rand ;
        for (int j = 1 ; j <= ny ; j++)
        {
            for (int i = 1 ; i <= nx ; i++)
            {
                RHO (i,j) = 100 * simple_rand_x ( ) ;
            }
        }
    }
    else
    {
        // use rho_given on input
        rho = rho_given ;
    }

    #define em(krow,kcol) (e [krow][kcol] * RHO (i,j))

    //--------------------------------------------------------------------------
    // nn = zeros (8,1) ;
    //--------------------------------------------------------------------------

    GrB_Index nn [8] ;

    //--------------------------------------------------------------------------
    // construct the Wathen matrix, using one of four equivalent methods
    //--------------------------------------------------------------------------

    switch (method)
    {

        //----------------------------------------------------------------------
        // create tuples and use build, just like wathen.m
        //----------------------------------------------------------------------

        case 0:
        {
            // This method is fastest, but only 20% faster than methods 2 and
            // 3.  It is about 15% to 20% faster than the MATLAB wathen
            // function, and uses the identical algorithm.  The code here is
            // nearly identical to the wathen.m M-file, except that here an
            // adjustment to the indices must be made since GraphBLAS matrices
            // are indexed starting at row and column 0, not 1.

            // allocate the tuples
            int64_t ntriplets = nx*ny*64 ;
            I = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
            J = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
            X = (double *) malloc (ntriplets * sizeof (double )) ;
            if (I == NULL || J == NULL || X == NULL)
            {   // out of memory
                FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }

            ntriplets = 0 ;

            for (int j = 1 ; j <= ny ; j++)
            {
                for (int i = 1 ; i <= nx ; i++)
                {
                    nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
                    nn [1] = nn [0] - 1 ;
                    nn [2] = nn [1] - 1 ;
                    nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
                    nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
                    nn [5] = nn [4] + 1 ;
                    nn [6] = nn [5] + 1 ;
                    nn [7] = nn [3] + 1 ;
                    for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

                    for (int krow = 0 ; krow < 8 ; krow++)
                    {
                        for (int kcol = 0 ; kcol < 8 ; kcol++)
                        {
                            I [ntriplets] = nn [krow] ;
                            J [ntriplets] = nn [kcol] ;
                            X [ntriplets] = em (krow,kcol) ;
                            ntriplets++ ;
                        }
                    }
                }
            }

            // A = sparse (I,J,X,n,n) ;
            OK (GrB_Matrix_build_FP64 (A, I, J, X, ntriplets, GrB_PLUS_FP64)) ;

        }
        break ;

        //----------------------------------------------------------------------
        // scalar assignment
        //----------------------------------------------------------------------

        case 1:
        {

            // This method takes about 1.8x the time as other three methods,
            // for both small and large problems.  The difference in
            // performance is likely because GrB_Matrix_assign_FP64 is
            // expecting to write its double scalar to a submatrix of A, not a
            // single scalar.  It has some extra overhead as a result, which is
            // not needed.  GrB_Matrix_setElement cannot be used because that
            // method does not allow for an accumulator function to be
            // specified; its implicit accum operator is SECOND, not PLUS.
            // Future versions of SuiteSparse:GraphBLAS may correct this
            // performance discrepancy, so that this method is just as fast as
            // the other three methods here.

            // This method is the same as the older version of wathen.m, before
            // it was updated to use the sparse function in MATLAB.  That older
            // wathen.m function was asymptotically slower, and 300x slower in
            // practice for moderate sized problems.  The performance
            // difference increases greatly as the problem gets larger, as
            // well.  By contrast, this method is asympotically just as fast as
            // the other methods here, it's just a constant times slower (by a
            // uniform factor of just under 2).

            for (int j = 1 ; j <= ny ; j++)
            {
                for (int i = 1 ; i <= nx ; i++)
                {
                    nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
                    nn [1] = nn [0] - 1 ;
                    nn [2] = nn [1] - 1 ;
                    nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
                    nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
                    nn [5] = nn [4] + 1 ;
                    nn [6] = nn [5] + 1 ;
                    nn [7] = nn [3] + 1 ;
                    for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

                    for (int krow = 0 ; krow < 8 ; krow++)
                    {
                        for (int kcol = 0 ; kcol < 8 ; kcol++)
                        {
                            // A (nn[krow],nn[kcol]) += em (krow,kcol)
                            OK (GrB_Matrix_assign_FP64 (A, NULL,
                                GrB_PLUS_FP64, em (krow,kcol),
                                (&nn [krow]), 1, (&nn [kcol]), 1, NULL)) ;
                        }
                    }
                }
            }
        }
        break ;

        //----------------------------------------------------------------------
        // matrix assignment, create F one entry at a time
        //----------------------------------------------------------------------

        case 2:
        {
            // This method is about 20% slower than method 0, but it has
            // the advantage of not requiring the number of tuples to be
            // known in advance.  Method 3 is just as fast as this method.
            // This method is uniformaly about 5% to 10% slower than the
            // MATLAB wathen.m regardless of the problem size.

            // create a single 8-by-8 finite-element matrix F
            OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;

            for (int j = 1 ; j <= ny ; j++)
            {
                for (int i = 1 ; i <= nx ; i++)
                {
                    nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
                    nn [1] = nn [0] - 1 ;
                    nn [2] = nn [1] - 1 ;
                    nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
                    nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
                    nn [5] = nn [4] + 1 ;
                    nn [6] = nn [5] + 1 ;
                    nn [7] = nn [3] + 1 ;
                    for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

                    for (int krow = 0 ; krow < 8 ; krow++)
                    {
                        for (int kcol = 0 ; kcol < 8 ; kcol++)
                        {
                            // F (krow,kcol) = em (krow, kcol)
                            OK (GrB_Matrix_setElement_FP64 (F,
                                em (krow,kcol), krow, kcol)) ;
                        }
                    }

                    // A (nn,nn) += F
                    OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
                        F, nn, 8, nn, 8, NULL)) ;
                }
            }
        }
        break ;

        //----------------------------------------------------------------------
        // matrix assignment, create F all at once
        //----------------------------------------------------------------------

        case 3:
        {
            // This method is as fast as method 2.  It is very flexible
            // since any method can be used to construct the finite-element
            // matrix.  Then A(nn,nn)+=F is very efficient when F is a matrix.
            // This method is uniformaly about 5% to 10% slower than the
            // MATLAB wathen.m regardless of the problem size.

            // create a single 8-by-8 finite-element matrix F
            OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;

            // create a single 8-by-8 coefficient matrix E
            OK (GrB_Matrix_new (&E, GrB_FP64, 8, 8)) ;
            for (int krow = 0 ; krow < 8 ; krow++)
            {
                for (int kcol = 0 ; kcol < 8 ; kcol++)
                {
                    double ex = e [krow][kcol] ;
                    OK (GrB_Matrix_setElement_FP64 (E, ex, krow, kcol)) ;
                }
            }

            // create a unary operator to scale by RHO(i,j)
            OK (GrB_UnaryOp_new (&rho_op, 
                (GxB_unary_function) rho_scale, GrB_FP64, GrB_FP64)) ;

            for (int j = 1 ; j <= ny ; j++)
            {
                for (int i = 1 ; i <= nx ; i++)
                {
                    nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
                    nn [1] = nn [0] - 1 ;
                    nn [2] = nn [1] - 1 ;
                    nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
                    nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
                    nn [5] = nn [4] + 1 ;
                    nn [6] = nn [5] + 1 ;
                    nn [7] = nn [3] + 1 ;
                    for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

                    // F = E * RHO(i,j)
                    // note that this computation on F does not force
                    // A to be assembled.
                    r = RHO (i,j) ;
                    OK (GrB_Matrix_apply (F, NULL, NULL, rho_op, E, NULL)) ;

                    // A (nn,nn) += F
                    OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
                        F, nn, 8, nn, 8, NULL)) ;
                }
            }
        }
        break ;

        default:
            CHECK (false, GrB_INVALID_VALUE) ;
            break ;
    }

    //--------------------------------------------------------------------------
    // scale the matrix, if requested
    //--------------------------------------------------------------------------

    // An alternative to multiplying by the inverse of the diagonal would be to
    // compute A=A/D using the PLUS_DIV_FP64 semiring, which scales the columns
    // instead of the rows, and then transposing the result, since A is
    // symmetric but D\A and A/D are not.  Alternatively, a user-defined
    // operator z=f(x,y) that computes z=y/x could be used, along with a
    // user-defined semiring.

    if (scale)
    {
        // D = sparse (n,n)
        OK (GrB_Matrix_new (&D, GrB_FP64, n, n)) ;
        for (int64_t i = 0 ; i < n ; i++)
        {
            // D (i,i) = 1 / A (i,i) ;
            double di ;
            OK (GrB_Matrix_extractElement_FP64 (&di, A, i, i)) ;
            OK (GrB_Matrix_setElement_FP64 (D, 1/di, i, i)) ;
        }
        // A = D*A
        OK (GrB_mxm (A, NULL, NULL, GxB_PLUS_TIMES_FP64, D, A, NULL)) ;
    }

    // force completion
    GrB_Index nvals ;
    OK (GrB_Matrix_nvals (&nvals, A)) ;

    //--------------------------------------------------------------------------
    // free workspace and return the result
    //--------------------------------------------------------------------------

    *A_output = A ;
    A = NULL ;
    FREE_ALL ;
    return (GrB_SUCCESS) ;
}