1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Source/wathen.c: a finite-element matrix on a regular mesh
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2020, All Rights Reserved.
// http://suitesparse.com See GraphBLAS/Doc/License.txt for license.
//------------------------------------------------------------------------------
// Create a finite-element matrix on an nx-by-ny 2D mesh, as computed by
// wathen.m in MATLAB. To view the wathen.m file, use this command in MATLAB:
//
// type private/wathen
#include "GraphBLAS.h"
#undef GB_PUBLIC
#define GB_LIBRARY
#include "graphblas_demos.h"
//------------------------------------------------------------------------------
// scale by rho
//------------------------------------------------------------------------------
double r = 0 ;
void rho_scale (double *f, const double *e)
{
(*f) = r * (*e) ;
}
//------------------------------------------------------------------------------
// Wathen function
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info wathen // construct a random Wathen matrix
(
GrB_Matrix *A_output, // output matrix
int64_t nx, // grid dimension nx
int64_t ny, // grid dimension ny
bool scale, // if true, scale the rows
int method, // 0 to 3
double *rho_given // nx-by-ny dense matrix, if NULL use random rho
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
if (nx < 0 || ny < 0 || A_output == NULL || method < 0 || method > 3)
{
return (GrB_INVALID_VALUE) ;
}
// macro to free all workspace. Not every method uses every object
#define FREE_ALL \
GrB_Matrix_free (&A) ; \
GrB_Matrix_free (&F) ; \
GrB_Matrix_free (&D) ; \
GrB_Matrix_free (&E) ; \
GrB_UnaryOp_free (&rho_op) ; \
if (rho_rand != NULL) free (rho_rand) ; \
if (I != NULL) free (I) ; \
if (J != NULL) free (J) ; \
if (X != NULL) free (X) ;
GrB_Info info ;
GrB_Matrix A = NULL, F = NULL, E = NULL, D = NULL ;
GrB_UnaryOp rho_op = NULL ;
double *rho_rand = NULL, *X = NULL, *rho ;
GrB_Index *I = NULL, *J = NULL ;
//--------------------------------------------------------------------------
// construct the coefficients
//--------------------------------------------------------------------------
#define d ((double) 45),
static const double e [8][8] = {
{ 6/d -6/d 2/d -8/d 3/d -8/d 2/d -6/d },
{ -6/d 32/d -6/d 20/d -8/d 16/d -8/d 20/d },
{ 2/d -6/d 6/d -6/d 2/d -8/d 3/d -8/d },
{ -8/d 20/d -6/d 32/d -6/d 20/d -8/d 16/d },
{ 3/d -8/d 2/d -6/d 6/d -6/d 2/d -8/d },
{ -8/d 16/d -8/d 20/d -6/d 32/d -6/d 20/d },
{ 2/d -8/d 3/d -8/d 2/d -6/d 6/d -6/d },
{ -6/d 20/d -8/d 16/d -8/d 20/d -6/d 32/d } } ;
//--------------------------------------------------------------------------
// A = sparse (n,n) ;
//--------------------------------------------------------------------------
int64_t n = 3*nx*ny + 2*nx + 2*ny +1 ;
OK (GrB_Matrix_new (&A, GrB_FP64, n, n)) ;
//--------------------------------------------------------------------------
// RHO = 100 * rand (nx,ny) ;
//--------------------------------------------------------------------------
// i and j are 1-based, so the same index computations from wathen.m
// can be used
#define RHO(i,j) rho [(i-1)+((j-1)*nx)]
if (rho_given == NULL)
{
// compute a random RHO matrix
rho_rand = (double *) malloc (nx * ny * sizeof (double)) ;
if (rho_rand == NULL)
{ // out of memory
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
rho = rho_rand ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
RHO (i,j) = 100 * simple_rand_x ( ) ;
}
}
}
else
{
// use rho_given on input
rho = rho_given ;
}
#define em(krow,kcol) (e [krow][kcol] * RHO (i,j))
//--------------------------------------------------------------------------
// nn = zeros (8,1) ;
//--------------------------------------------------------------------------
GrB_Index nn [8] ;
//--------------------------------------------------------------------------
// construct the Wathen matrix, using one of four equivalent methods
//--------------------------------------------------------------------------
switch (method)
{
//----------------------------------------------------------------------
// create tuples and use build, just like wathen.m
//----------------------------------------------------------------------
case 0:
{
// This method is fastest, but only 20% faster than methods 2 and
// 3. It is about 15% to 20% faster than the MATLAB wathen
// function, and uses the identical algorithm. The code here is
// nearly identical to the wathen.m M-file, except that here an
// adjustment to the indices must be made since GraphBLAS matrices
// are indexed starting at row and column 0, not 1.
// allocate the tuples
int64_t ntriplets = nx*ny*64 ;
I = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
J = (GrB_Index *) malloc (ntriplets * sizeof (GrB_Index)) ;
X = (double *) malloc (ntriplets * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{ // out of memory
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
ntriplets = 0 ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
I [ntriplets] = nn [krow] ;
J [ntriplets] = nn [kcol] ;
X [ntriplets] = em (krow,kcol) ;
ntriplets++ ;
}
}
}
}
// A = sparse (I,J,X,n,n) ;
OK (GrB_Matrix_build_FP64 (A, I, J, X, ntriplets, GrB_PLUS_FP64)) ;
}
break ;
//----------------------------------------------------------------------
// scalar assignment
//----------------------------------------------------------------------
case 1:
{
// This method takes about 1.8x the time as other three methods,
// for both small and large problems. The difference in
// performance is likely because GrB_Matrix_assign_FP64 is
// expecting to write its double scalar to a submatrix of A, not a
// single scalar. It has some extra overhead as a result, which is
// not needed. GrB_Matrix_setElement cannot be used because that
// method does not allow for an accumulator function to be
// specified; its implicit accum operator is SECOND, not PLUS.
// Future versions of SuiteSparse:GraphBLAS may correct this
// performance discrepancy, so that this method is just as fast as
// the other three methods here.
// This method is the same as the older version of wathen.m, before
// it was updated to use the sparse function in MATLAB. That older
// wathen.m function was asymptotically slower, and 300x slower in
// practice for moderate sized problems. The performance
// difference increases greatly as the problem gets larger, as
// well. By contrast, this method is asympotically just as fast as
// the other methods here, it's just a constant times slower (by a
// uniform factor of just under 2).
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// A (nn[krow],nn[kcol]) += em (krow,kcol)
OK (GrB_Matrix_assign_FP64 (A, NULL,
GrB_PLUS_FP64, em (krow,kcol),
(&nn [krow]), 1, (&nn [kcol]), 1, NULL)) ;
}
}
}
}
}
break ;
//----------------------------------------------------------------------
// matrix assignment, create F one entry at a time
//----------------------------------------------------------------------
case 2:
{
// This method is about 20% slower than method 0, but it has
// the advantage of not requiring the number of tuples to be
// known in advance. Method 3 is just as fast as this method.
// This method is uniformaly about 5% to 10% slower than the
// MATLAB wathen.m regardless of the problem size.
// create a single 8-by-8 finite-element matrix F
OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// F (krow,kcol) = em (krow, kcol)
OK (GrB_Matrix_setElement_FP64 (F,
em (krow,kcol), krow, kcol)) ;
}
}
// A (nn,nn) += F
OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
F, nn, 8, nn, 8, NULL)) ;
}
}
}
break ;
//----------------------------------------------------------------------
// matrix assignment, create F all at once
//----------------------------------------------------------------------
case 3:
{
// This method is as fast as method 2. It is very flexible
// since any method can be used to construct the finite-element
// matrix. Then A(nn,nn)+=F is very efficient when F is a matrix.
// This method is uniformaly about 5% to 10% slower than the
// MATLAB wathen.m regardless of the problem size.
// create a single 8-by-8 finite-element matrix F
OK (GrB_Matrix_new (&F, GrB_FP64, 8, 8)) ;
// create a single 8-by-8 coefficient matrix E
OK (GrB_Matrix_new (&E, GrB_FP64, 8, 8)) ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
double ex = e [krow][kcol] ;
OK (GrB_Matrix_setElement_FP64 (E, ex, krow, kcol)) ;
}
}
// create a unary operator to scale by RHO(i,j)
OK (GrB_UnaryOp_new (&rho_op,
(GxB_unary_function) rho_scale, GrB_FP64, GrB_FP64)) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
// F = E * RHO(i,j)
// note that this computation on F does not force
// A to be assembled.
r = RHO (i,j) ;
OK (GrB_Matrix_apply (F, NULL, NULL, rho_op, E, NULL)) ;
// A (nn,nn) += F
OK (GrB_Matrix_assign (A, NULL, GrB_PLUS_FP64,
F, nn, 8, nn, 8, NULL)) ;
}
}
}
break ;
default:
CHECK (false, GrB_INVALID_VALUE) ;
break ;
}
//--------------------------------------------------------------------------
// scale the matrix, if requested
//--------------------------------------------------------------------------
// An alternative to multiplying by the inverse of the diagonal would be to
// compute A=A/D using the PLUS_DIV_FP64 semiring, which scales the columns
// instead of the rows, and then transposing the result, since A is
// symmetric but D\A and A/D are not. Alternatively, a user-defined
// operator z=f(x,y) that computes z=y/x could be used, along with a
// user-defined semiring.
if (scale)
{
// D = sparse (n,n)
OK (GrB_Matrix_new (&D, GrB_FP64, n, n)) ;
for (int64_t i = 0 ; i < n ; i++)
{
// D (i,i) = 1 / A (i,i) ;
double di ;
OK (GrB_Matrix_extractElement_FP64 (&di, A, i, i)) ;
OK (GrB_Matrix_setElement_FP64 (D, 1/di, i, i)) ;
}
// A = D*A
OK (GrB_mxm (A, NULL, NULL, GxB_PLUS_TIMES_FP64, D, A, NULL)) ;
}
// force completion
GrB_Index nvals ;
OK (GrB_Matrix_nvals (&nvals, A)) ;
//--------------------------------------------------------------------------
// free workspace and return the result
//--------------------------------------------------------------------------
*A_output = A ;
A = NULL ;
FREE_ALL ;
return (GrB_SUCCESS) ;
}
|