1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
@inproceedings{BulucGilbert08,
author={Bulu\c{c}, A. and Gilbert, J.},
booktitle={IPDPS'80: 2008 IEEE Intl. Symp. on Parallel and Distributed Processing},
title={On the representation and multiplication of hypersparse matrices},
year={2008},
volume={},
number={},
pages={1-11},
note={\href{https://dx.doi.org/10.1109/IPDPS.2008.4536313}{https://dx.doi.org/10.1109/IPDPS.2008.4536313}},
month={April},
}
@article{BulucGilbert12,
author = {Bulu\c{c}, A. and Gilbert, J.},
title = {Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments},
journal = {SIAM Journal on Scientific Computing},
volume = {34},
number = {4},
pages = {C170-C191},
year = {2012},
doi = {10.1137/110848244},
note ={\href{https://dx.doi.org/10.1137/110848244}{https://dx.doi.org/10.1137/110848244}},
}
@book{Davis06book,
author={Davis, T. A.},
title={Direct Methods for Sparse Linear Systems},
publisher={SIAM},
year={2006},
address={Philadelphia, PA},
annotate={\footnotesize
Provides a basic overview of many sparse matrix algorithms
and a simple sparse matrix data structure. The sparse data structure
used in the book is much like the one in both MATLAB and
SuiteSparse:GraphBLAS. A series of 42 lectures are available on
YouTube; see the link at
\href{http://faculty.cse.tamu.edu/davis/publications.html}
{http://faculty.cse.tamu.edu/davis/publications.html}
For the book, see
\href{https://dx.doi.org/10.1137/1.9780898718881}{https://dx.doi.org/10.1137/1.9780898718881}},
}
@article{DavisRajamanickamSidLakhdar16,
author={Davis, T. A. and Rajamanickam, S. and Sid-Lakhdar, W. M.},
title={A survey of direct methods for sparse linear systems},
journal={Acta Numerica},
volume={25},
year={2016},
pages={383--566},
numpages = {184},
annotate = {\footnotesize
Abstract: Wilkinson defined a sparse matrix as one with
enough zeros that it pays to take advantage of them. This informal yet
practical definition captures the essence of the goal of direct methods
for solving sparse matrix problems. They exploit the sparsity of a
matrix to solve problems economically: much faster and using far less
memory than if all the entries of a matrix were stored and took part in
explicit computations. These methods form the backbone of a wide range
of problems in computational science. A glimpse of the breadth of
applications relying on sparse solvers can be seen in the origins of
matrices in published matrix benchmark collections (Duff and Reid
1979a, Duff, Grimes and Lewis 1989a, Davis and Hu 2011). The goal of
this survey article is to impart a working knowledge of the underlying
theory and practice of sparse direct methods for solving linear systems
and least-squares problems, and to provide an overview of the
algorithms, data structures, and software available to solve these
problems, so that the reader can both understand the methods and know
how best to use them.
DOI:
\href{https://dx.doi.org/10.1017/S0962492916000076}{https://dx.doi.org/10.1017/S0962492916000076}
}
}
@techreport{spec,
author={Bulu\c{c}, A. and Mattson, T. and McMillan, S. and Moreira, J. and Yang, C.},
title={The {GraphBLAS} {C} {API} Specification},
year={2017},
note={\href{http://graphblas.org/}{http://graphblas.org/}},
}
@techreport{Kepner2017,
author={Kepner, J.},
title={{GraphBLAS} Mathematics},
year={2017},
note={
\href{http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf}{http://www.mit.edu/$\sim$kepner/GraphBLAS/GraphBLAS-Math-release.pdf}
}
}
@book{KepnerGilbert2011,
author={Kepner, J. and Gilbert, J.},
title={Graph Algorithms in the Language of Linear Algebra},
publisher={SIAM},
year={2011},
address={Philadelphia, PA},
annotate={\footnotesize
From the preface: Graphs are among the most important
abstract data types in computer science, and the algorithms that
operate on them are critical to modern life. Graphs have been shown to
be powerful tools for modeling complex problems because of their
simplicity and generality. Graph algorithms are one of the pillars of
mathematics, informing research in such diverse areas as combinatorial
optimization, complexity theory, and topology. Algorithms on graphs are
applied in many ways in today's world—from Web rankings to metabolic
networks, from finite element meshes to semantic graphs.
The current exponential growth in graph data has forced a shift to
parallel computing for executing graph algorithms. Implementing
parallel graph algorithms and achieving good parallel performance have
proven difficult. This book addresses these challenges by exploiting
the well-known duality between a canonical representation of graphs as
abstract collections of vertices and edges and a sparse adjacency
matrix representation. This linear algebraic approach is widely
accessible to scientists and engineers who may not be formally trained
in computer science. The authors show how to leverage existing parallel
matrix computation techniques and the large amount of software
infrastructure that exists for these computations to implement
efficient and scalable parallel graph algorithms. The benefits of this
approach are reduced algorithmic complexity, ease of implementation,
and improved performance.
DOI:
\href{https://dx.doi.org/10.1137/1.9780898719918}{https://dx.doi.org/10.1137/1.9780898719918}},
}
@article{Davis07,
author={Davis, T. A},
title={Creating Sparse Finite-Element Matrices in {MATLAB}},
year={2007},
month={Mar.},
note={Loren Shure, editor. Published by {The MathWorks}, Natick, MA.
\href{http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/}{http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/}},
editor={Shure, L.},
journal={Loren on the Art of {MATLAB}},
publisher={The {MathWorks}, Inc.},
address={Natick, MA}
}
@article{Luby86,
author={Luby, M.},
title={A simple parallel algorithm for the maximal independent set problem},
year={1986},
journal={SIAM J. Comput.},
volume={15},
number={4},
note={\href{https://dx.doi.org/10.1137/0215074}{https://dx.doi.org/10.1137/0215074}}
}
@article{DavisHu11,
author={Davis, T. A. and Hu, Y.},
title={The {University} of {Florida} sparse matrix collection},
journal={ACM Trans. on Math. Software},
volume={38},
number={1},
month=dec,
year={2011},
pages={1:1--1:25},
note={
\href{https://dx.doi.org/10.1145/2049662.2049663}{https://dx.doi.org/10.1145/2049662.2049663}.
Now called the SuiteSparse Matrix Collection, at
\href{https:sparse.tamu.edu}{https:sparse.tamu.edu}},
publisher={ACM},
address={New York, NY, USA},
keywords={Graph drawing, multilevel algorithms, performance
evaluation, sparse matrices},
}
@article{Davis18,
author={Davis, T. A.},
title={Algorithm 9XX: {SuiteSparse:GraphBLAS}:
graph algorithms in the language of sparse linear algebra},
journal={ACM Trans. on Math. Software},
volume={(to appear)},
number={},
year={2019},
note={\href{http://faculty.cse.tamu.edu/davis/publications.html}{http://faculty.cse.tamu.edu/davis/publications.html}},
}
@book{Higham,
author={Higham, N.},
title={Accuracy and Stability of Numerical Algorithms},
edition={2nd},
year={2002},
publisher={SIAM},
note={\href{https://dx.doi.org/10.1137/1.9780898718027}{https://dx.doi.org/10.1137/1.9780898718027}}
}
@article{Wathen,
author={Wathen, A. J.},
title={Realistic eigenvalue bounds for the {Galerkin} mass matrix},
journal={{IMA} J. Numer. Anal.},
volume=7,
year={1987},
pages={449--457},
note={\href{https://dx.doi.org/10.1093/imanum/7.4.449}{https://dx.doi.org/10.1093/imanum/7.4.449} }}
@inproceedings{WolfBerryStark15,
author={Wolf, M. M. and Berry, J. W. and Stark, D. T.},
title={A task-based linear algebra building blocks approach for scalable graph analytics},
year={2015},
booktitle={IEEE HPEC'15},
publisher={IEEE},
pages={1--6}
}
@inproceedings{Davis18b,
author={Davis, T. A.},
title={Graph algorithms via {SuiteSparse:GraphBLAS}: triangle counting and {K}-truss},
year={2018},
booktitle={IEEE HPEC'18},
note={Grand Challenge Innovation Award.
See \href{http://www.ieee-hpec.org/}{http://www.ieee-hpec.org/}.},
publisher={IEEE},
}
@inproceedings{DavisAznavehKolodziej19,
author={Davis, T. A. and Aznaveh, M. and Kolodziej, S.},
title={Write Quick, Run Fast: Sparse Deep Neural Network in 20 Minutes of
Development Time via {SuiteSparse:GraphBLAS}},
year={2019},
note={Grand Challenge Champion, for high performance.
See \href{http://www.ieee-hpec.org/}{http://www.ieee-hpec.org/}.},
booktitle={IEEE HPEC'19},
publisher={IEEE},
}
@inproceedings{Mattson19,
author={Mattson, T. and Davis, T. A. and Kumar, M. and Bulu\c{c}, A. and McMillan, S. and
Moreira, J. and Yang, C.},
title={{LAGraph}: a community effort to collect graph algorithms built on top of the {GraphBLAS}},
year={2019},
booktitle={GrAPL'19: Workshop on Graphs, Architectures, Programming, and Learning},
note={\href{https://hpc.pnl.gov/grapl/previous/2019}{https://hpc.pnl.gov/grapl/previous/2019},
part of IPDPS'19, at \href{http://www.ipdps.org/ipdps2019} {http://www.ipdps.org/ipdps2019}},
month={May},
publisher={IEEE},
}
@inproceedings{Davis20,
author = {Mohsen Aznaveh and
Jinhao Chen and
Timothy A. Davis and
B{\'{a}}lint Hegyi and
Scott P. Kolodziej and
Timothy G. Mattson and
G{\'{a}}bor Sz{\'{a}}rnyas},
title = {Parallel {GraphBLAS} with {OpenMP}},
year = {2020},
booktitle = {CSC20, SIAM Workshop on Combinatorial Scientific Computing},
note = {(accepted) \href{https://www.siam.org/conferences/cm/conference/csc20}{https://www.siam.org/conferences/cm/conference/csc20}},
publisher = {{SIAM}},
}
@article{Burkhardt16,
author={Burkhardt, P.},
title={Graphing trillions of triangles},
journal={Information Visualization},
volume={16},
pages={157--166},
year={2016},
note={
\href{https://dx.doi.org/10.1177/1473871616666393}{https://dx.doi.org/10.1177/1473871616666393} }
}
@inproceedings{AzadBulucGilbert15,
author={Azad, A. and Bulu\c{c}, A. and Gilbert, J.},
title={Parallel triangle counting and enumeration using matrix algebra},
booktitle={2015 IEEE International Parallel and Distributed Processing Symposium Workshop, IPDPSW ’15},
pages={804--811},
year={2015},
publisher={IEEE Computer Society},
}
@article{Cohen09,
author={Cohen, J.},
title={Graph twiddling in a mapreduce world},
journal={Computing in Science and Engineering},
volume={11},
number={4},
pages={29--41},
month={July},
year={2009}
}
@INPROCEEDINGS{WolfDeveciBerryHammondRajamanickam17,
author={Wolf, M. M. and Deveci, M. and Berry, J. W. and Hammond, S. D. and Rajamanickam, S.},
booktitle={2017 IEEE High Performance Extreme Computing Conference (HPEC)},
title={Fast linear algebra-based triangle counting with {KokkosKernels}},
year={2017},
volume={},
number={},
pages={1-7},
annotate={\footnotesize
Triangle counting serves as a key building block for a set of
important graph algorithms in network science. In this paper, we address
the IEEE HPEC Static Graph Challenge problem of triangle counting, focusing
on obtaining the best parallel performance on a single multicore node. Our
implementation uses a linear algebra-based approach to triangle counting
that has grown out of work related to our miniTri data analytics
miniapplication and our efforts to pose graph algorithms in the
language of linear algebra. We leverage KokkosKernels to implement this
approach efficiently on multicore architectures. Our performance results
are competitive with the fastest known graph traversal-based approaches and
are significantly faster than the Graph Challenge reference
implementations, up to 670,000 times faster than the C++ reference and
10,000 times faster than the Python reference on a single Intel Haswell
node.},
keywords={Algorithm design and analysis;C++ languages;Computer
architecture;Kernel;Libraries;Linear algebra;Sparse matrices},
note={
\href{https://dx.doi.org/10.1109/HPEC.2017.8091043}{https://dx.doi.org/10.1109/HPEC.2017.8091043}
},
ISSN={},
month={Sept},
}
@INPROCEEDINGS{BulucMattsonMcMillanMoreiraYang17,
author={A. Bulu\c{c} and T. Mattson and S. McMillan and J. Moreira and C. Yang},
booktitle={2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)},
title={Design of the {GraphBLAS} {API} for {C}},
year={2017},
volume={},
number={},
pages={643-652},
keywords={C language;application program interfaces;formal
specification;graph theory;linear algebra;C language specification
subcommittee;GraphBLAS API;GraphBLAS Forum;application programming
interface;betweenness centrality algorithm;design;graph
computations;linear-algebraic building blocks;mathematical
specification;Additives;Linear algebra;Programming;Semantics;Sparse
matrices},
note={\href{https://dx.doi.org/10.1109/IPDPSW.2017.117}{https://dx.doi.org/10.1109/IPDPSW.2017.117} },
month={May},
}
@article{Gustavson78,
author={Gustavson, F. G.},
year={1978},
title={Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition},
journal=TOMS,
volume={4},
number={3},
pages={250--269},
note={
\href{https://dx.doi.org/10.1145/355791.355796}{https://dx.doi.org/10.1145/355791.355796}},
}
@article{GilbertMolerSchreiber92,
author={Gilbert, J. R. and Moler, C. and Schreiber, R.},
title={Sparse matrices in {MATLAB}: design and implementation},
journal=SIMAX,
year={1992},
volume={13},
number={1},
pages={333-356},
url={ http://dx.doi.org/10.1137/0613024 },
}
@inproceedings{Beamer:2012:DOB,
title={Direction-optimizing Breadth-First Search},
author={Beamer, Scott and Asanovic, Krste and Patterson, David},
booktitle={International Conference for High Performance Computing, Networking, Storage and Analysis (SC)},
pages={1--10},
year={2012},
}
@inproceedings{Yang:2018:IPE,
title = {Implementing Push-Pull Efficiently in {GraphBLAS}},
author = {Carl Yang and Ayd\i{}n Bulu\c{c} and John D. Owens},
booktitle = {Proceedings of the International Conference on
Parallel Processing},
series = {ICPP 2018},
month = aug,
year = 2018,
pages = {89:1--89:11},
doi = {10.1145/3225058.3225122},
code = {https://github.com/owensgroup/push-pull}
}
@inproceedings{10.1145/3229710.3229720,
author = {Nagasaka, Yusuke and Matsuoka, Satoshi and Azad, Ariful and Bulu\c{c}, Ayd\i{}n},
title = {High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore Architectures},
year = {2018},
isbn = {9781450365239},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3229710.3229720},
doi = {10.1145/3229710.3229720},
booktitle = {Proceedings of the 47th International Conference on Parallel Processing Companion},
articleno = {Article 34},
numpages = {10},
keywords = {Intel KNL, SpGEMM, Sparse matrix},
location = {Eugene, OR, USA},
series = {ICPP ’18}
}
% [2] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2018.
% High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore
% Architectures. In Proc. 47th Intl. Conf. on Parallel Processing (ICPP '18).
% Association for Computing Machinery, New York, NY, USA, Article 34, 1–10.
% DOI:https://doi.org/10.1145/3229710.3229720
|