1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575
|
\documentclass[12pt]{article}
\usepackage{url}
\urlstyle{sf}
\usepackage[svgnames]{xcolor}
\usepackage[colorlinks,linkcolor=Blue,citecolor=Blue,urlcolor=Blue]{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{framed}
\usepackage{mdframed}
% \usepackage{geometry}
% \usepackage{pdflscape}
\newmdenv[backgroundcolor=white]{spec}
\newmdenv[backgroundcolor=yellow]{specbeta}
\hyphenation{Suite-Sparse}
\hyphenation{Graph-BLAS}
\hyphenation{Suite-Sparse-Graph-BLAS}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arcCot}
\DeclareMathOperator{\arccsc}{arcCsc}
\DeclareMathOperator{\arccosh}{arcCosh}
\DeclareMathOperator{\arcsinh}{arcsinh}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsech}{arcsech}
\DeclareMathOperator{\arccsch}{arcCsch}
\DeclareMathOperator{\arccoth}{arcCoth}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}
\newenvironment{packed_itemize}{
\begin{itemize}
\setlength{\itemsep}{1pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
}{\end{itemize}}
\title{User Guide for SuiteSparse:GraphBLAS}
\author{Timothy A. Davis \\
\small
davis@tamu.edu, Texas A\&M University. \\
\small
http://suitesparse.com and http://aldenmath.com
}
% version and date are set by cmake (see GraphBLAS/CMakeLists.txt)
\input{GraphBLAS_version.tex}
%-------------------------------------------------------------------------------
\begin{document}
%-------------------------------------------------------------------------------
\maketitle
\begin{abstract}
SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard,
which defines a set of sparse matrix operations on an extended algebra of
semirings using an almost unlimited variety of operators and types. When
applied to sparse adjacency matrices, these algebraic operations are equivalent
to computations on graphs. GraphBLAS provides a powerful and expressive
framework for creating graph algorithms based on the elegant mathematics of
sparse matrix operations on a semiring.
\end{abstract}
\newpage
{\small
\tableofcontents
}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{intro}
The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.
For example, consider the matrix-matrix multiplication, ${\bf C=AB}$. Suppose
${\bf A}$ and ${\bf B}$ are sparse $n$-by-$n$ Boolean adjacency matrices of two
undirected graphs. If the matrix multiplication is redefined to use logical
AND instead of scalar multiply, and if it uses the logical OR instead of add,
then the matrix ${\bf C}$ is the sparse Boolean adjacency matrix of a graph
that has an edge $(i,j)$ if node $i$ in ${\bf A}$ and node $j$ in ${\bf B}$
share any neighbor in common. The OR-AND pair forms an algebraic semiring, and
many graph operations like this one can be succinctly represented by matrix
operations with different semirings and different numerical types. GraphBLAS
provides a wide range of built-in types and operators, and allows the user
application to create new types and operators without needing to recompile the
GraphBLAS library.
% API version and date are set by cmake (see GraphBLAS/CMakeLists.txt)
For more details on SuiteSparse:GraphBLAS, and its use in LAGraph, see
\cite{Davis18,Davis18b,DavisAznavehKolodziej19,Davis20,Mattson19}.
A full and precise
definition of the GraphBLAS specification is provided in {\em The GraphBLAS C
API Specification} by {Ayd\i n Bulu\c{c}, Timothy Mattson, Scott McMillan,
Jos\'e Moreira, and Carl Yang} \cite{BulucMattsonMcMillanMoreiraYang17,spec},
based on {\em GraphBLAS Mathematics} by Jeremy Kepner \cite{Kepner2017}. The
GraphBLAS C API Specification is available at \url{http://graphblas.org}. This
version of SuiteSparse:GraphBLAS conforms to Version
\input{GraphBLAS_API_version.tex}
of {\em The GraphBLAS C API specification}, with one exception:
% TODO in 4.0: Remove when GrB_wait() is removed:
the single-input polymorphic function \verb'GrB_wait(&object)' does not appear
in this version, since it conflicts with the no-input \verb'GrB_wait()'. Use
the non-polymorphic versions instead (\verb'GrB_Matrix_wait(&C)' for example).
In this User Guide, aspects of the GraphBLAS specification that would be true
for any GraphBLAS implementation are simply called ``GraphBLAS.'' Details
unique to this particular implementation are referred to as
SuiteSparse:GraphBLAS.
\begin{spec}
{\bf SPEC:} See the tag {\bf SPEC:} for SuiteSparse extensions to the spec.
They are also placed in text boxes like this one. All functions, objects, and
macros with a name of the form \verb'GxB_*' are extensions to the spec.
\end{spec}
\newpage
\subsection{Future plans:}
\begin{itemize}
\item Version 4.0.0 (likely in July, 2020), will follow the V2.0 of the C API.
The following changes are tentative, and depend on the final release of the
V2.0 C API.
% TODO in 4.0: revise this as needed:
\verb'GrB_wait()', with no inputs: will be removed.
\verb'GrB_wait(&object)': polymorphic function will be added.
\verb'GrB_*_nvals' and related functions:
will no longer guarantee completion
(per the v1.3 C API);
use \verb'GrB_wait(&object)'
or non-polymorphic \verb'GrB_*_wait(&object)' instead.
\verb'GrB_error' will change; it will take two parameters,
\verb'GrB_error(&s,C)' where \verb's' is the error string generated
when \verb'C' was last operated on.
V4.0 will otherwise be identical to V3.3.1.
\end{itemize}
\subsection{Release Notes:}
\begin{itemize}
\item Version 3.3.1 (June 30, 2020). Bug fix to \verb'GrB_assign' and
\verb'GxB_subassign' when the assignment is simple (\verb'C=A') but
with typecasting.
\item Version 3.3.0 (June 26, 2020). Compliant with V1.3 of the C API
(except that the polymorphic \verb'GrB_wait(&object)' doesn't appear yet;
it will appear in V4.0).
Added complex types (\verb'GxB_FC32' and \verb'GxB_FC64'), many unary
operators, binary operators, monoids, and semirings. Added bitwise
operators, and their monoids and semirings. Added the predefined monoids
and semirings from the v1.3 spec. MATLAB interface: added complex matrices
and operators, and changed behavior of integer operations to more closely
match the behavior on MATLAB integer matrices. The rules for typecasting
large floating point values to integers has changed. The specific
object-based \verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', etc, functions
have been added. The no-argument \verb'GrB_wait()' is deprecated. Added
\verb'GrB_getVersion', \verb'GrB_Matrix_resize', \verb'GrB_Vector_resize',
\verb'GrB_kronecker', \verb'GrB_*_wait', scalar binding with binary
operators for \verb'GrB_apply', \verb'GrB_Matrix_removeElement', and
\verb'GrB_Vector_removeElement'.
\item Version 3.2.0 (Feb 20, 2020). Faster \verb'GrB_mxm', \verb'GrB_mxv', and
\verb'GrB_vxm', and faster operations on dense matrices/vectors. Removed
compile-time user objects (\verb'GxB_*_define'), since these were not
compatible with the faster matrix operations. Added the \verb'ANY' and
\verb'PAIR' operators. Added the predefined descriptor, \verb'GrB_DESC_*'.
Added the structural mask option. Changed default chunk size to 65,536.
Note that v3.2.0 is not compatible with the MS Visual Studio compiler; use
v3.1.2 instead.
MATLAB interface modified: \verb'GrB.init' is now optional.
\item Version 3.1.2 (Dec, 2019). Changes to allow SuiteSparse:GraphBLAS
to be compiled with the Microsoft Visual Studio compiler. This compiler
does not support the \verb'_Generic' keyword, so the polymorphic functions
are not available. Use the equivalent non-polymorphic functions instead,
when compiling GraphBLAS with MS Visual Studio. In addition,
variable-length arrays are not supported, so user-defined types are limited
to 128 bytes in size. These changes have no effect if you have an ANSI C11
compliant compiler.
MATLAB interface modified: \verb'GrB.init' is now required.
\item Version 3.1.0 (Oct 1, 2019). MATLAB interface added. See the \newline
\verb'GraphBLAS/GraphBLAS' folder for details and documentation,
and Section~\ref{matlab}.
\item Version 3.0 (July 26, 2019), with OpenMP parallelism.
The version number is increased to 3.0, since
this version is not backward compatible with V2.x. The \verb'GxB_select'
operation changes; the \verb'Thunk' parameter was formerly a
\verb'const void *' pointer, and is now a \verb'GxB_Scalar'. A new parameter
is added to \verb'GxB_SelectOp_new', to define the expected type of
\verb'Thunk'. A new parameter is added to \verb'GxB_init', to specify whether
or not the user-provided memory management functions are thread safe.
The remaining changes add new features, and are upward compatible with V2.x.
The major change is the addition of OpenMP parallelism. This addition has no
effect on the API, except that round-off errors can differ with the number of
threads used, for floating-point types. \verb'GxB_set' can optionally define
the number of threads to use (the default is \verb'omp_get_max_threads'). The
number of threads can also defined globally, and/or in the
\verb'GrB_Descriptor'. The \verb'RDIV' and \verb'RMINUS' operators are added,
which are defined as $f(x,y)=y/x$ and $f(x,y)=y-x$, respectively. Additional
options are added to \verb'GxB_get'.
\item Version 2.3.3 (May 2019): Collected Algorithm of the ACM.
No changes from V2.3.2 other than the documentation.
\item Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for monoids. These changes have a
significant impact on breadth-first-search (a performance bug was also fixed in
the two BFS \verb'Demo' codes). The matrix and vector import/export functions
were added (Section~\ref{import_export}), in support of the new LAGraph project
(\url{https://github.com/GraphBLAS/LAGraph}, see also Section~\ref{lagraph}).
LAGraph includes a push-pull BFS in GraphBLAS that is faster than two versions
in the \verb'Demo' folder. \verb'GxB_init' was added to allow the memory
manager functions (\verb'malloc', etc) to be specified.
\item
Version 2.2 (Nov 2018)
adds user-defined objects at compile-time, via user \verb'*.m4' files placed in
\verb'GraphBLAS/User', which use the \verb'GxB_*_define' macros
(NOTE: feature removed in v3.2).
The default matrix format is now \verb'GxB_BY_ROW'.
% If you want the default format to be by column (the default in Version 2.1 and
% earlier), just compile with \verb'-DBYCOL', or add \newline
% \verb'GxB_set (GxB_FORMAT, GxB_BY_COL) ;'
% after calling \verb'GrB_init'.
Also added are the \verb'GxB_*print' methods for printing the contents of each
GraphBLAS object (Section~\ref{fprint}). PageRank demos have been added to
the \verb'Demos' folder.
Prior versions required GraphBLAS to be compiled with OpenMP, for it to be
thread-safe. It can now be compiled with POSIX pthreads. The \verb'cmake'
script automatically detects if OpenMP and/or POSIX pthreads are available.
Demos have been added to show how GraphBLAS can be called from a multi-threaded
user application.
\item
Version 2.1 (Oct 2018) was
a major update with support for new matrix formats
(by row or column, and hypersparse matrices), and MATLAB-like colon notation
(\verb'I=begin:end' or \verb'I=begin:inc:end'). Some graph algorithms are more
naturally expressed with matrices stored by row, and this version includes the
new \verb'GxB_BY_ROW' format. The default format in Version 2.1 and
prior versions is by column.
New extensions to GraphBLAS in this version include \verb'GxB_get',
\verb'GxB_set', and \verb'GxB_AxB_METHOD', \verb'GxB_RANGE', \verb'GxB_STRIDE',
and \verb'GxB_BACKWARDS', and their related definitions, described in
Sections~\ref{descriptor},~\ref{options},~and~\ref{colon}.
\item
Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added \verb'GxB_kron' and \verb'GxB_resize'.
\item
Version 1.1 (Dec 2017) primarily improved the performance.
\item
Version 1.0 was released on Nov 25, 2017.
\end{itemize}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Basic Concepts} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{basic}
Since the {\em GraphBLAS C API Specification} provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the {\em GraphBLAS C API Specification}.
However, including them here is not essential and the additional information on
the page might detract from a clearer view of the essential features of the
GraphBLAS functions.
This User Guide also assumes the reader is familiar with the MATLAB language,
created by Cleve
Moler. MATLAB supports only the conventional plus-times semiring on sparse
double and complex matrices, but a MATLAB-like notation easily extends to the
arbitrary semirings used in GraphBLAS. The matrix multiplication in the
example in the Introduction can be written in MATLAB notation as \verb'C=A*B',
if the Boolean \verb'OR-AND' semiring is understood. Relying on a MATLAB-like
notation allows the description in this User Guide to be expressive, easy to
understand, and terse at the same time. {\em The GraphBLAS C API
Specification} also makes use of some MATLAB-like language, such as the colon
notation.
MATLAB notation will always appear here in fixed-width font, such as
\verb'C=A*B(:,j)'. In standard mathematical notation it would be written as
the matrix-vector multiplication ${\bf C = A b}_j$ where ${\bf b}_j$ is the
$j$th column of the matrix ${\bf B}$. The GraphBLAS standard is a C API and
SuiteSparse:GraphBLAS is written in C, and so a great deal of C syntax appears
here as well, also in fixed-width font. This User Guide alternates between all
three styles as needed.
%===============================================================================
\subsection{Graphs and sparse matrices} %=======================================
%===============================================================================
\label{sparse}
Graphs can be huge, with many nodes and edges. A dense adjacency matrix ${\bf
A}$ for a graph of $n$ nodes takes $O(n^2)$ memory, which is impossible if $n$
is, say, a million. Most graphs arising in practice are sparse, however, with
only $|{\bf A}|=O(n)$ edges, where $|{\bf A}|$ denotes the number of edges in
the graph, or the number of explicit entries present in the data structure for
the matrix ${\bf A}$. Sparse graphs with millions of nodes and edges can
easily be created by representing them as sparse matrices, where only explicit
values need to be stored. Some graphs are {\em hypersparse}, with ${|\bf A}|
<< n$. SuiteSparse:GraphBLAS supports two kinds of sparse matrix formats: a
regular sparse format, taking $O(n+|{\bf A}|)$ space, and a hypersparse format
taking only $O(|{\bf A}|)$ space. As a result, creating a sparse matrix of
size $n$-by-$n$ where $n=2^{60}$ (about $10^{18}$) can be done on quite easily
on a commodity laptop, limited only by $|{\bf A}|$.
A sparse matrix data structure only stores a subset of the possible $n^2$
entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it
differs with different semirings. Explicit values are called {\em entries} and
they appear in the data structure. The {\em pattern} of a matrix defines
where its explicit entries appear. It will be referenced in one of two
equivalent ways. It can be viewed as a set of indices $(i,j)$, where $(i,j)$
is in the pattern of a matrix ${\bf A}$ if ${\bf A}(i,j)$ is an explicit value.
It can also be viewed as a Boolean matrix ${\bf S}$ where ${\bf S}(i,j)$ is
true if $(i,j)$ is an explicit entry and false otherwise. In MATLAB notation,
\verb'S=spones(A)' or \verb'S=(A~=0)', if the implicit value is zero. The
\verb'(i,j)' pairs, and their values, can also be extracted from the matrix via
the MATLAB expression \verb'[I,J,X]=find(A)', where the \verb'k'th tuple
\verb'(I(k),J(k),X(k))' represents the explicit entry \verb'A(I(k),J(k))', with
numerical value \verb'X(k)' equal to $a_{ij}$, with row index $i$=\verb'I(k)'
and column index $j$=\verb'J(k)'.
The entries in the pattern of ${\bf A}$ can take on any value, including the
implicit value, whatever it happens to be. This differs slightly from MATLAB,
which always drops all explicit zeros from its sparse matrices. This is a
minor difference but it cannot be done in GraphBLAS. For example, in the
max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that no
explicit entries are ever dropped because their explicit value happens to match
the implicit value.
{\em Graph Algorithms in the Language on Linear Algebra}, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations \cite{KepnerGilbert2011}. For additional
background on sparse matrix algorithms, see also \cite{Davis06book} and
\cite{DavisRajamanickamSidLakhdar16}.
%===============================================================================
\subsection{Overview of GraphBLAS methods and operations} %=====================
%===============================================================================
\label{overview}
GraphBLAS provides a collection of {\em methods} to create, query, and free its
of objects: sparse matrices, sparse vectors, sparse scalars, types, operators,
monoids, semirings, and a descriptor object used for parameter settings.
Details are given in Section~\ref{objects}. Once these objects are created
they can be used in mathematical {\em operations} (not to be confused with the
how the term {\em operator} is used in GraphBLAS). A short summary of these
operations and their nearest MATLAB analog is given in the table below.
% \vspace{0.1in}
\begin{tabular}{ll}
operation & approximate MATLAB analog \\
\hline
matrix multiplication & \verb'C=A*B' \\
element-wise operations & \verb'C=A+B' and \verb'C=A.*B' \\
reduction to a vector or scalar & \verb's=sum(A)' \\
apply unary operator & \verb'C=-A' \\
transpose & \verb"C=A'" \\
submatrix extraction & \verb'C=A(I,J)' \\
submatrix assignment & \verb'C(I,J)=A' \\
\hline
\end{tabular}
\vspace{0.1in}
GraphBLAS can do far more than what MATLAB can do in these rough analogs, but
the list provides a first step in describing what GraphBLAS can do. Details of
each GraphBLAS operation are given in Section~\ref{operations}. With this
brief overview, the full scope of GraphBLAS extensions of these operations can
now be described.
GraphBLAS has 13 built-in scalar types: Boolean, single and double precision
floating-point (real and complex), and 8, 16, 32, and 64-bit signed and
unsigned integers. In addition, user-defined scalar types can be created from
nearly any C \verb'typedef', as long as the entire type fits in a fixed-size
contiguous block of memory (of arbitrary size). All of these types can be used
to create GraphBLAS sparse matrices, vectors, or scalars.
The scalar addition of conventional matrix multiplication is replaced with a
{\em monoid}. A monoid is an associative and commutative binary operator
\verb'z=f(x,y)' where all three domains are the same (the types of \verb'x',
\verb'y', and \verb'z'), and where the operator has an identity value \verb'id'
such that \verb'f(x,id)=f(id,x)=x'. Performing matrix multiplication with a
semiring uses a monoid in place of the ``add'' operator, scalar addition being
just one of many possible monoids. The identity value of addition is zero,
since $x+0=0+x=x$. GraphBLAS includes many built-in operators suitable for
use as a monoid: min (with an identity value of positive infinity), max (whose
identity is negative infinity), add (identity is zero), multiply (with an
identity of one), four logical operators: AND, OR, exclusive-OR, and
Boolean equality (XNOR), four bitwise operators (AND, OR, XOR, and XNOR),
and the ANY operator.
User-created monoids can be defined with any associative and
commutative operator that has an identity value.
Finally, a semiring can use any built-in or user-defined binary operator
\verb'z=f(x,y)' as its ``multiply'' operator, as long as the type of its
output, \verb'z' matches the type of the semiring's monoid.
The user application can create any semiring based on any types, monoids,
and multiply operators, as long these few rules are followed.
Just considering built-in types and operators, GraphBLAS can perform
\verb'C=A*B' in 2,438 unique semirings. With typecasting, any of these 2,438
semirings can be applied to matrices \verb'C', \verb'A', and \verb'B'
of 13 predefined types, in any combination. This gives over 5 million possible
kinds of sparse matrix multiplication supported by GraphBLAS, and this is
counting just built-in types and operators. By contrast, MATLAB provides just
two semirings for its sparse matrix multiplication \verb'C=A*B':
plus-times-double and plus-times-complex, not counting the typecasting that
MATLAB does when multiplying a real matrix times a complex matrix.
A monoid can also be used in a reduction operation, like \verb's=sum(A)' in
MATLAB. MATLAB provides the plus, times, min, and max reductions of a real or
complex sparse matrix as \verb's=sum(A)', \verb's=prod(A)', \verb's=min(A)',
and \verb's=max(A)', respectively. In GraphBLAS, any monoid can be used (min,
max, plus, times, AND, OR, exclusive-OR, equality, bitwise operators,
or any user-defined monoid on any user-defined type).
Element-wise operations are also expanded from what can be done in MATLAB.
Consider matrix addition, \verb'C=A+B' in MATLAB. The pattern of the result is
the set union of the pattern of \verb'A' and \verb'B'. In GraphBLAS, any
binary operator can be used in this set-union ``addition.'' The operator is
applied to entries in the intersection. Entries in \verb'A' but not \verb'B',
or visa-versa, are copied directly into \verb'C', without any application of
the binary operator. The accumulator operation for ${\bf Z = C \odot T}$
described in Section~\ref{accummask} is one example of this set-union
application of an arbitrary binary operator.
Consider element-wise multiplication, \verb'C=A.*B' in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of \verb'C' just this set intersection. Entries in \verb'A' but not
\verb'B', or visa-versa, do not appear in \verb'C'. In GraphBLAS, any binary
operator can be used in this manner, not just scalar multiplication. The
difference between element-wise ``add'' and ``multiply'' is not the operators,
but whether or not the pattern of the result is the set union or the set
intersection. In both cases, the operator is only applied to the set
intersection.
Finally, GraphBLAS includes a {\em non-blocking} mode where operations can be
left pending, and saved for later. This is very useful for submatrix
assignment (\verb'C(I,J)=A' where \verb'I' and \verb'J' are integer vectors),
or scalar assignment (\verb'C(i,j)=x' where \verb'i' and \verb'j' are scalar
integers). Because of how MATLAB stores its matrices, adding and deleting
individual entries is very costly. For example, this is very slow in MATLAB,
taking $O(nz^2)$ time:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
A = sparse (m,n) ; % an empty sparse matrix
for k = 1:nz
compute a value x, row index i, and column index j
A (i,j) = x ;
end\end{verbatim}}\end{mdframed}
The above code is very easy read and simple to write, but exceedingly slow. In
MATLAB, the method below is preferred and is far faster, taking at most
$O(|{\bf A}| \log |{\bf A}| +n)$ time. It can easily be a million times faster
than the method above. Unfortunately the second method below is a little
harder to read and a little less natural to write:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
I = zeros (nz,1) ;
J = zeros (nz,1) ;
X = zeros (nz,1) ;
for k = 1:nz
compute a value x, row index i, and column index j
I (k) = i ;
J (k) = j ;
X (k) = x ;
end
A = sparse (I,J,X,m,n) ; \end{verbatim}} \end{mdframed}
GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its matrices in a
format that allows for pending computations, which are done later in bulk, and
as a result it can do both methods above equally as fast as the MATLAB
\verb'sparse' function, allowing the user to write simpler code.
%===============================================================================
\subsection{The accumulator and the mask} %=====================================
%===============================================================================
\label{accummask}
Most GraphBLAS operations can be modified via transposing input matrices, using
an accumulator operator, applying a mask or its complement, and by clearing all
entries the matrix \verb'C' after using it in the accumulator operator but
before the final results are written back into it. All of these steps are
optional, and are controlled by a descriptor object that holds parameter
settings (see Section~\ref{descriptor}) that control the following options:
\begin{itemize}
\item the input matrices \verb'A' and/or \verb'B' can be transposed first.
\item an accumulator operator can be used, like the plus in the statement
\verb'C=C+A*B'. The accumulator operator can be any binary operator, and
an element-wise ``add'' (set union) is performed using the operator.
\item an optional {\em mask} can be used to selectively write the results to
the output. The mask is a sparse Boolean matrix \verb'Mask' whose size is
the same size as the result. If \verb'Mask(i,j)' is true, then the
corresponding entry in the output can be modified by the computation. If
\verb'Mask(i,j)' is false, then the corresponding in the output is
protected and cannot be modified by the computation. The \verb'Mask'
matrix acts exactly like logical matrix indexing in MATLAB, with one
minor difference: in GraphBLAS notation, the mask operation is $\bf C
\langle M \rangle = Z$, where the mask $\bf M$ appears only on the
left-hand side. In MATLAB, it would appear on both sides as
\verb'C(Mask)=Z(Mask)'. If no mask is provided, the \verb'Mask' matrix is
implicitly all true. This is indicated by passing the value
\verb'GrB_NULL' in place of the \verb'Mask' argument in GraphBLAS
operations.
\end{itemize}
\noindent
This process can be described in mathematical notation as:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> ${\bf A = A}^{\sf T}$, if requested via descriptor (first input option) \\
\> ${\bf B = B}^{\sf T}$, if requested via descriptor (second input option) \\
\> ${\bf T}$ is computed according to the specific operation \\
\> ${\bf C \langle M \rangle = C \odot T}$,
accumulating and writing the results back via the mask
\end{tabbing} }
\noindent
The application of the mask and the accumulator operator is written as
${\bf C \langle M \rangle = C \odot T}$ where ${\bf Z = C \odot T}$ denotes the
application of the accumulator operator, and
${\bf C \langle M \rangle = Z}$
denotes the mask operator via the Boolean matrix ${\bf M}$. The Accumulator
Phase, ${\bf Z = C \odot T}$, is performed as follows:
\vspace{-0.2in}
% accum: Z = C odot T
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> {\bf Accumulator Phase}: compute ${\bf Z = C \odot T}$: \\
\> \> if \verb'accum' is \verb'NULL' \\
\> \>\> ${\bf Z = T}$ \\
\> \> else \\
\> \>\> ${\bf Z = C \odot T}$
\end{tabbing}}
The accumulator operator is $\odot$ in GraphBLAS notation, or \verb'accum'
in the code. The pattern of ${\bf C \odot T}$ is the set union of the
patterns of ${\bf C}$ and ${\bf T}$, and the operator is applied only on the
set intersection of ${\bf C}$ and ${\bf T}$. Entries in neither the pattern
of ${\bf C}$ nor ${\bf T}$ do not appear in the pattern of ${\bf Z}$. That is:
\newpage % \vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf C \cap T}$
(that is, entries in both ${\bf C}$ and ${\bf T}$) \\
\> \> $z_{ij} = c_{ij} \odot t_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf C \setminus T}$
(that is, entries in ${\bf C}$ but not ${\bf T}$) \\
\> \> $z_{ij} = c_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf T \setminus C}$
(that is, entries in ${\bf T}$ but not ${\bf C}$) \\
\> \> $z_{ij} = t_{ij}$
\end{tabbing} }
The Accumulator Phase is followed by the Mask/Replace Phase, ${\bf C \langle M \rangle = Z}$
as controlled by the \verb'GrB_REPLACE' and \verb'GrB_COMP' descriptor options:
\vspace{-0.2in}
% mask/replace/scmp: C<M> = Z
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\>{\bf Mask/Replace Phase}: compute ${\bf C \langle M \rangle = Z}$: \\
\> \> if (\verb'GrB_REPLACE') delete all entries in ${\bf C}$ \\
\> \> if \verb'Mask' is \verb'NULL' \\
\> \>\> if (\verb'GrB_COMP') \\
\> \>\>\> ${\bf C}$ is not modified \\
\> \>\> else \\
\> \>\>\> ${\bf C = Z}$ \\
\> \> else \\
\> \>\> if (\verb'GrB_COMP') \\
\> \>\>\> ${\bf C \langle \neg M \rangle = Z}$ \\
\> \>\> else \\
\> \>\>\> ${\bf C \langle M \rangle = Z}$
\end{tabbing} }
Both phases of the accum/mask process are illustrated in MATLAB notation in
Figure~\ref{fig_accummask}. A GraphBLAS operation starts with its primary
computation, producing a result \verb'T'; for matrix multiply, \verb'T=A*B', or
if \verb'A' is transposed first, \verb"T=A'*B", for example. Applying the
accumulator, mask (or its complement) to obtain the final result matrix
\verb'C' can be expressed in the MATLAB \verb'accum_mask' function shown in the
figure. This function is an exact, fully functional, and nearly-complete
description of the GraphBLAS accumulator/mask operation. The only aspects it
does not consider are typecasting (see Section~\ref{typecasting}), and the
value of the implicit identity (for those, see another version in the
\verb'Test' folder).
\begin{figure}
\begin{mdframed}[leftmargin=-0.4in,userdefinedwidth=5.8in]
{\footnotesize
\begin{verbatim}
function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)
[m n] = size (C.matrix) ;
Z.matrix = zeros (m, n) ;
Z.pattern = false (m, n) ;
if (isempty (accum))
Z = T ; % no accum operator
else
% Z = accum (C,T), like Z=C+T but with an binary operator, accum
p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));
p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;
p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;
Z.pattern = C.pattern | T.pattern ;
end
% apply the mask to the values and pattern
C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;
C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;
end
function C = mask (C, Mask, Z, C_replace, Mask_complement)
% replace C if requested
if (C_replace)
C (:,:) = 0 ;
end
if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)
% implicitly, Mask = ones (size (C))
if (~Mask_complement)
C = Z ; % this is the default
else
C = C ; % Z need never have been computed
end
else
% apply the mask
if (~Mask_complement)
C (Mask) = Z (Mask) ;
else
C (~Mask) = Z (~Mask) ;
end
end
end \end{verbatim} }
\end{mdframed}
\caption{Applying the mask and accumulator, ${\bf C \langle M \rangle = C \odot T}$\label{fig_accummask}}
\end{figure}
One aspect of GraphBLAS cannot be as easily expressed in a MATLAB sparse
matrix: namely, what is the implicit value of entries not in the pattern? To
accommodate this difference in the \verb'accum_mask' MATLAB function, each
sparse matrix \verb'A' is represented with its values \verb'A.matrix' and its
pattern, \verb'A.pattern'. The latter could be expressed as the sparse matrix
\verb'A.pattern=spones(A)' or \verb'A.pattern=(A~=0)' in MATLAB, if the
implicit value is zero. With different semirings, entries not in the pattern
can be \verb'1', \verb'+Inf', \verb'-Inf', or whatever is the identity value of
the monoid. As a result, Figure~\ref{fig_accummask} performs its computations
on two MATLAB matrices: the values in \verb'A.matrix' and the pattern in the
logical matrix \verb'A.pattern'. Implicit values are untouched.
The final computation in Figure~\ref{fig_accummask} with a complemented
\verb'Mask' is easily expressed in MATLAB as \verb'C(~Mask)=Z(~Mask)' but this
is costly if \verb'Mask' is very sparse (the typical case). It can be computed
much faster in MATLAB without complementing the sparse \verb'Mask' via:
{\footnotesize
\begin{verbatim}
R = Z ; R (Mask) = C (Mask) ; C = R ; \end{verbatim} }
A set of MATLAB functions that precisely compute the ${\bf C \langle M \rangle
= C \odot T}$ operation according to the full GraphBLAS specification is
provided in SuiteSparse:GraphBLAS as \verb'GB_spec_accum.m', which computes
${\bf Z=C\odot T}$, and \verb'GB_spec_mask.m', which computes ${\bf C \langle M
\rangle = Z}$. SuiteSparse:GraphBLAS includes a complete list of
\verb'GB_spec_*' functions that illustrate every GraphBLAS operation;
these are discussed in the \verb'GraphBLAS_Test.pdf' document in
the \verb'GraphBLAS/Test' folder.
The methods in Figure~\ref{fig_accummask} rely heavily on MATLAB's logical
matrix indexing. For those unfamiliar with logical indexing in MATLAB, here is
short summary. Logical matrix indexing in MATLAB is written as \verb'A(Mask)'
where \verb'A' is any matrix and \verb'Mask' is a logical matrix the same size
as \verb'A'. The expression \verb'x=A(Mask)' produces a column vector \verb'x'
consisting of the entries of \verb'A' where \verb'Mask' is true. On the
left-hand side, logical submatrix assignment \verb'A(Mask)=x' does the
opposite, copying the components of the vector \verb'x' into the places in
\verb'A' where \verb'Mask' is true. For example, to negate all values greater
than 10 using logical indexing in MATLAB:
\begin{mdframed}
{\footnotesize
\begin{verbatim}
>> A = magic (4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A (A>10) = - A (A>10)
A =
-16 2 3 -13
5 -11 10 8
9 7 6 -12
4 -14 -15 1 \end{verbatim} } \end{mdframed}
In MATLAB, logical indexing with a sparse matrix \verb'A' and sparse logical
matrix \verb'Mask' is a built-in method. The Mask operator in GraphBLAS works
identically as sparse logical indexing in MATLAB, but is typically far faster
in SuiteSparse:GraphBLAS than the same operation using MATLAB sparse matrices.
%===============================================================================
\subsection{Typecasting} %======================================================
%===============================================================================
\label{typecasting}
If an operator \verb'z=f(x)' or \verb'z=f(x,y)' is used with inputs that do not
match its inputs \verb'x' or \verb'y', or if its result \verb'z' does not match
the type of the matrix it is being stored into, then the values are typecasted.
Typecasting in GraphBLAS extends beyond just operators. Almost all GraphBLAS
methods and operations are able to typecast their results, as needed.
If one type can be typecasted into the other, they are said to be {\em
compatible}. All built-in types are compatible with each other. GraphBLAS
cannot typecast user-defined types thus any user-defined type is only
compatible with itself. When GraphBLAS requires inputs of a specific type, or
when one type cannot be typecast to another, the GraphBLAS function returns an
error code, \verb'GrB_DOMAIN_MISMATCH' (refer to Section~\ref{error} for a
complete list of error codes). Typecasting can only be done between built-in
types, and it follows the rules of the ANSI C language (not MATLAB) wherever
the rules of ANSI C are well-defined.
However, unlike MATLAB, the ANSI C11 language specification states that the
results of typecasting a \verb'float' or \verb'double' to an integer type is
not always defined. In SuiteSparse:GraphBLAS, whenever C leaves the result
undefined the rules used in MATLAB are followed. In particular \verb'+Inf'
converts to the largest integer value, \verb'-Inf' converts to the smallest
(zero for unsigned integers), and \verb'NaN' converts to zero. Positive values
outside the range of the integer are converted to the largest positive integer,
and negative values less than the most negative integer are converted to that
most negative integer. Other than these special cases, SuiteSparse:GraphBLAS
trusts the C compiler for the rest of its typecasting.
Typecasting to \verb'bool' is fully defined in the C language specification,
even for \verb'NaN'. The result is \verb'false' if the value compares equal to
zero, and true otherwise. Thus \verb'NaN' converts to \verb'true'. This is
unlike MATLAB, which does not allow a typecast of a \verb'NaN' to the MATLAB
logical type.
\begin{spec}
{\bf SPEC:} the GraphBLAS API states that typecasting follows the rules of ANSI
C. Yet C leaves some typecasting undefined. SuiteSparse:GraphBLAS provides a
precise definition for all typecasting as an extension to the spec.
\end{spec}
%===============================================================================
\subsection{Notation and list of GraphBLAS operations} %========================
%===============================================================================
\label{list}
As a summary of what GraphBLAS can do, the following table lists all GraphBLAS
operations (where \verb'GxB_*' are in SuiteSparse:GraphBLAS only). Upper case
letters denote a matrix, lower case letters are vectors, and ${\bf AB}$
denote the multiplication of two matrices over a semiring.
\vspace{0.05in}
{\footnotesize
\begin{tabular}{lll}
\hline
\verb'GrB_mxm' & matrix-matrix multiply & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm' & vector-matrix multiply & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv' & matrix-vector multiply & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
& set intersection & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GrB_extract' & extract submatrix & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
& & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
& (with submask for ${\bf C(I,J)}$)
& ${\bf w (i) \langle m \rangle = w(i) \odot u}$ \\
\hline
\verb'GrB_assign' & assign submatrix & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
& (with mask for ${\bf C}$)
& ${\bf w \langle m \rangle (i) = w(i) \odot u}$ \\
\hline
\verb'GrB_apply' & apply unary operator & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
& & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
& apply binary operator & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
& & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
& & ${\bf w \langle m \rangle = w \odot} f(x,{\bf u})$ \\
\hline
\verb'GxB_select' & apply select operator & ${\bf C \langle M \rangle = C \odot} f({\bf A},k)$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},k)$ \\
\hline
\verb'GrB_reduce' & reduce to vector & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
& reduce to scalar & $s = s \odot [{\oplus}_{ij} {\bf A}(i,j)]$ \\
\hline
\verb'GrB_transpose' & transpose & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.15in}
Each operation takes an optional \verb'GrB_Descriptor' argument that modifies
the operation. The input matrices ${\bf A}$ and ${\bf B}$ can be optionally
transposed, the mask ${\bf M}$ can be complemented, and ${\bf C}$ can be
cleared of its entries after it is used in ${\bf Z = C \odot T}$ but before
the ${\bf C \langle M \rangle = Z}$ assignment.
Vectors are never transposed via the descriptor.
Let ${\bf A \oplus B}$ denote the element-wise operator that produces a set
union pattern (like \verb'A+B' in MATLAB). Any binary operator can be used
this way in GraphBLAS, not just plus. Let ${\bf A \otimes B}$ denote the
element-wise operator that produces a set intersection pattern (like
\verb'A.*B' in MATLAB); any binary operator can be used this way, not just
times.
Reduction of a matrix ${\bf A}$ to a vector reduces the $i$th row of ${\bf A}$
to a scalar $w_i$. This is like \verb"w=sum(A')" since by default, MATLAB
reduces down the columns, not across the rows.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Interfaces to MATLAB, Python, Julia, Java} %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The MATLAB interface to SuiteSparse:GraphBLAS is included with this
distribution, described in Section~\ref{matlab}.
It is fully polished, and fully tested, but does have
some limitations that will be addressed in future releases.
A beta version of a Python interface is now available, as is a
Julia interface. These are not part of the SuiteSparse:GraphBLAS distribution.
See the links below (see Sections \ref{python} and \ref{julia}).
\subsection{MATLAB Interface}
\label{matlab}
As of Version 3.1, a MATLAB interface is now available. Refer to the
documentation in the \verb'GraphBLAS/GraphBLAS' folder for details. Start with
the \verb'README.md' file in that directory. An easy-to-read output of the
MATLAB demos can be found in \verb'GraphBLAS/GraphBLAS/demo/html'.
The MATLAB interface adds the \verb'GrB' class, which is an opaque MATLAB
object that contains a GraphBLAS matrix, either double or single precision
(real or complex), boolean, or any of the built-in integer types. MATLAB
sparse and full matrices can be arbitrarily mixed with GraphBLAS matrices. The
following overloaded operators and methods all work as you would expect for any
matrix. The matrix multiplication \verb'A*B' uses the conventional
\verb'PLUS_TIMES' semiring.
{\footnotesize
\begin{verbatim}
A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)
-A +A ~A A' A.' A&B A|B b\A C(I,J)=A
A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B] A(1:end,1:end) \end{verbatim}}
For a list of overloaded operations and static methods, type
\verb'methods GrB' in MATLAB, or \verb'help GrB' for more details.
{\bf Limitations:}
Some features for MATLAB sparse matrices are not yet available for
GraphBLAS matrices. Some of these may be added in future releases.
\begin{packed_itemize}
\item Saving a GrB matrix object from MATLAB can be done, but the
resulting \verb'*.mat' file must be read in by the same version
of GraphBLAS.
\item \verb'GrB' matrices with dimension larger than \verb'2^53' do not
display properly in the MATLAB \verb'whos' command. MATLAB gets this
information from \verb'size(A)', which returns a correct result, but
MATLAB rounds it to double before displaying it. The size is displayed
correctly with \verb'disp' or \verb'display'.
\item Non-blocking mode is not exploited; this would require
a MATLAB mexFunction to modify its inputs, which is
technically possible but not permitted by the MATLAB API.
This can have significant impact on performance, if a MATLAB
m-file makes many repeated tiny changes to a matrix. This kind of
computation can often be done with good performance in the C API,
but will be very slow in MATLAB.
\item Linear indexing, or \verb'A(:)' for a 2D matrix, and
a single output of \verb'I=find(A)'.
\item The second output for \verb'min' and \verb'max',
and the \verb'includenan' option.
\item Singleton expansion.
\item Dynamically growing arrays, where \verb'C(i)=x' can increase
the size of \verb'C'.
\item Saturating element-wise binary and unary operators for integers.
For \verb'C=A+B' with MATLAB \verb'uint8' matrices, results
saturate if they exceed 255. This is not compatible with
a monoid for \verb'C=A*B', and thus MATLAB does not support
matrix-matrix multiplication with \verb'uint8' matrices.
In GraphBLAS, \verb'uint8' addition acts in a modulo fashion.
Saturating binary operators could be added in the future,
so that \verb"GrB.eadd (A, '+saturate', B)" could return the
MATLAB result.
\item Solvers, so that \verb'x=A\b' could return a GF(2) solution,
for example.
\item Sparse matrices with dimension higher than 2. It would be
possible to map an N-dimensional matrix to a large 2D
hypersparse GraphBLAS matrix.
\end{packed_itemize}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Python Interface} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{python}
See Michel Pelletier's Python interface at
\href{https://github.com/michelp/pygraphblas}{https://github.com/michelp/pygraphblas}.
Anaconda is also developing a Python interface to SuiteSparse:GraphBLAS.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Julia Interface} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{julia}
See Abhinav Mehndiratta's Julia interface at \\
\href{https://github.com/abhinavmehndiratta/SuiteSparseGraphBLAS.jl}{https://github.com/abhinavmehndiratta/SuiteSparseGraphBLAS.jl}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Java Interface} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{java}
Fabian Murariu is working on a Java interface.
See \newline
\href{https://github.com/fabianmurariu/graphblas-java-native}{https://github.com/fabianmurariu/graphblas-java-native}.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Context and Sequence} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{context}
A user application that directly relies on GraphBLAS must include the
\verb'GraphBLAS.h' header file:
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#include "GraphBLAS.h"
\end{verbatim}
} \end{mdframed}
The \verb'GraphBLAS.h' file defines functions, types, and macros prefixed with
\verb'GrB_' and \verb'GxB_' that may be used in user applications. The prefix
\verb'GrB_' denote items that appear in the official {\em GraphBLAS C API
Specification}. The prefix \verb'GxB_' refers to SuiteSparse-specific
extensions to the GraphBLAS API. Both may be used in user applications but be
aware that items with prefixes \verb'GxB_' will not appear in other
implementations of the GraphBLAS standard.
\begin{spec}
{\bf SPEC:} The following macros are extensions to the spec.
\end{spec}
The \verb'GraphBLAS.h' file includes all the definitions required to use
GraphBLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.
There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the {\em GraphBLAS C API Specification} it
conforms to, and the version of the implementation itself. These can
be used in the following manner in a user application:
{\footnotesize
\begin{verbatim}
#if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)
... use features in GraphBLAS specification 2.0.3 ...
#else
... only use features in early specifications
#endif
#if GxB_IMPLEMENTATION > GxB_VERSION (1,4,0)
... use features from version 1.4.0 of a specific GraphBLAS implementation
#endif \end{verbatim}}
SuiteSparse:GraphBLAS also defines the following strings with \verb'#define'.
Refer to the \verb'GraphBLAS.h' file for details.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
Macro & purpose \\
\hline
\verb'GxB_IMPLEMENTATION_ABOUT'
& this particular implementation, copyright, and URL \\
\verb'GxB_IMPLEMENTATION_DATE'
& the date of this implementation \\
\verb'GxB_SPEC_ABOUT'
& the GraphBLAS specification for this implementation \\
\verb'GxB_SPEC_DATE'
& the date of the GraphBLAS specification \\
\verb'GxB_IMPLEMENTATION_LICENSE'
& the license for this particular implementation \\
\hline
\end{tabular}
}
\vspace{0.2in}
Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
\verb'GxB_SUITESPARSE_GRAPHBLAS' that the user application can use in
\verb'#ifdef' tests. This is helpful in case a particular implementation
provides non-standard features that extend the GraphBLAS specification, such as
additional predefined built-in operators, or if a GraphBLAS implementation does
not yet fully implement all of the GraphBLAS specification. The
SuiteSparse:GraphBLAS name is provided in its \verb'GraphBLAS.h' file as:
{\footnotesize
\begin{verbatim}
#define GxB_SUITESPARSE_GRAPHBLAS \end{verbatim}}
For example, SuiteSparse:GraphBLAS predefines additional built-in operators not
in the specification. If the user application wishes to use these in any
GraphBLAS implementation, an \verb'#ifdef' can control when they are used.
Refer to the examples in the \verb'GraphBLAS/Demo' folder.
As another example, the GraphBLAS API states that an
implementation need not define the order in which \verb'GrB_Matrix_build'
assembles duplicate tuples in its \verb'[I,J,X]' input arrays. As a result, no
particular ordering should be relied upon in general. However,
SuiteSparse:GraphBLAS does guarantee an ordering, and this guarantee will be
kept in future versions of SuiteSparse:GraphBLAS as well. Since not all
implementations will ensure a particular ordering, the following can be used to
exploit the ordering returned by SuiteSparse:GraphBLAS.
{\footnotesize
\begin{verbatim}
#ifdef GxB_SUITESPARSE_GRAPHBLAS
// duplicates in I, J, X assembled in a specific order;
// results are well-defined even if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;
#else
// duplicates in I, J, X assembled in no particular order;
// results are undefined if op is not associative.
GrB_Matrix_build (C, I, J, X, nvals, op) ;
#endif \end{verbatim}}
The remainder of this section describes GraphBLAS functions that create,
modify, and destroy the GraphBLAS context, or provide utility methods for
dealing with errors:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_init' & start up GraphBLAS & \ref{init} \\
\verb'GrB_getVersion'& C API supported by the library & \ref{getVersion} \\
\verb'GxB_init' & start up GraphBLAS with different \verb'malloc' & \ref{xinit} \\
\verb'GrB_Info' & status code returned by GraphBLAS functions & \ref{info} \\
\verb'GrB_error' & get more details on the last error & \ref{error} \\
\verb'GrB_finalize' & finish GraphBLAS & \ref{finalize} \\
\hline
\end{tabular}
}
\vspace{0.2in}
%===============================================================================
\subsection{{\sf GrB\_init:} initialize GraphBLAS} %============================
%===============================================================================
\label{init}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
typedef enum
{
GrB_NONBLOCKING = 0, // methods may return with pending computations
GrB_BLOCKING = 1 // no computations are ever left pending
}
GrB_Mode ;
\end{verbatim}
}\end{mdframed}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_init // start up GraphBLAS
(
GrB_Mode mode // blocking or non-blocking mode
) ;
\end{verbatim}
}\end{mdframed}
\hypertarget{link:init}{\mbox{ }}%
\verb'GrB_init' must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user application.
With non-blocking mode, operations can be left pending, and are computed only
when needed. Non-blocking mode can be much faster than blocking mode, by many
orders of magnitude in extreme cases. Blocking mode should be used only when
debugging a user application. The mode cannot be changed once it is set by
\verb'GrB_init'.
GraphBLAS objects are opaque to the user application. This allows GraphBLAS to
postpone operations and then do them later in a more efficient manner by
rearranging them and grouping them together. In non-blocking mode, the
computations required to construct an opaque GraphBLAS object might not be
finished when the GraphBLAS method or operation returns to the user. However,
user-provided arrays are not opaque, and GraphBLAS methods and operations that
read them (such as \verb'GrB_Matrix_build') or write to them (such as
\verb'GrB_Matrix_extractTuples') always finish reading them, or creating them,
when the method or operation returns to the user application.
% TODO in 4.0: Revise for v4.0:
In addition, all methods and operations that extract values from a GraphBLAS
object and return them into non-opaque user arrays always ensure that the
computations for that object are completed when the method returns, namely:
\verb'GrB_*_nvals', \verb'GrB_*_extractElement', \verb'GrB_*_extractTuples',
and \verb'GrB_*_reduce' (to scalar).
{\bf NOTE: this behavior will change in SuiteSparse:GraphBLAS v4.0. These
functions will only guarantee that the user-visible arrays are fully populated;
they will not guarantee completion. Use \verb'GrB_*_wait(&object)' instead.}
SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and it is also
safe to use in a multithreaded user application. See Section~\ref{sec:install}
for details.
User threads must not operate on the same matrices at the same time, with one
exception. Multiple user threads can use the same matrices or vectors as
read-only inputs to GraphBLAS operations or methods, but only if they have no
pending operations (use \verb'GrB_Matrix_wait' or \verb'GrB_Vector_wait'
first). User threads cannot simultaneously modify a matrix or vector via any
GraphBLAS operation or method.
It is safe to use the internal parallelism in SuiteSparse:GraphBLAS on
matrices, vectors, and scalars that are not yet completed. The library
handles this on its own. The \verb'GrB_*_wait(&object)' function is only
needed when a user application makes multiple calls to GraphBLAS in parallel,
from multiple user threads.
With multiple user threads, exactly one user thread must call \verb'GrB_init'
before any user thread may call any \verb'GrB_*' or \verb'GxB_*' function.
When the user application is finished, exactly one user thread must call
\verb'GrB_finalize', after which no user thread may call any \verb'GrB_*' or
\verb'GxB_*' function.
You can query the mode of a GraphBLAS session with the following
(see Section~\ref{options}), which returns the \verb'mode' passed to
\verb'GrB_init':
{\footnotesize
\begin{verbatim}
GrB_mode mode ;
GxB_get (GxB_MODE, &mode) ; \end{verbatim} }
\newpage
%===============================================================================
\subsection{{\sf GrB\_getVersion:} determine the C API Version} %===============
%===============================================================================
\label{getVersion}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_getVersion // runtime access to C API version number
(
unsigned int *version, // returns GRB_VERSION
unsigned int *subversion // returns GRB_SUBVERSION
) ;
\end{verbatim}
}\end{mdframed}
GraphBLAS defines two compile-time constants that
define the version of the C API Specification
that is implemented by the library:
\verb'GRB_VERSION' and \verb'GRB_SUBVERSION'.
If the user program was compiled with one
version of the library but linked with a different one later on, the
compile-time version check with \verb'GRB_VERSION' would be stale.
\verb'GrB_getVersion' thus provides a runtime access of the version of the C
API Specification supported by the library.
This version of SuiteSparse:GraphBLAS supports
\input{GraphBLAS_API_version.tex}
of the C API Specification,
% TODO in 4.0: Remove when GrB_wait(no inputs) is removed;
except for the polymorphic \verb'GrB_wait(&object)' with one input.
That method will appear in SuiteSparse:GraphBLAS V4.0.0. In the meantime, use
the non-polymorphic methods \verb'GrB_Matrix_wait(&C)',
\verb'GrB_Vector_wait(&v)', and so on.
%===============================================================================
\subsection{{\sf GxB\_init:} initialize with alternate malloc} %======
%===============================================================================
\label{xinit}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_init // start up GraphBLAS and also define malloc, etc
(
GrB_Mode mode, // blocking or non-blocking mode
// pointers to memory management functions.
void * (* user_malloc_function ) (size_t),
void * (* user_calloc_function ) (size_t, size_t),
void * (* user_realloc_function ) (void *, size_t),
void (* user_free_function ) (void *),
bool user_malloc_is_thread_safe
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_init' is identical to \verb'GrB_init', except that it also redefines
the memory management functions that SuiteSparse:GraphBLAS will use. Giving
the user application control over this is particularly important when using the
\verb'GxB_*import' and \verb'GxB_*export' functions described in
Section~\ref{import_export}, since they require the user application and
GraphBLAS to use the same memory manager.
These
functions can only be set once, when GraphBLAS starts. Either \verb'GrB_init'
or \verb'GxB_init' must be called before any other GraphBLAS operation, but
not both. The last argument to \verb'GxB_init' informs GraphBLAS as to
whether or not the functions are thread-safe. The ANSI C and Intel TBB
functions are thread-safe, but the MATLAB \verb'mxMalloc' and related
functions are not thread-safe. If not thread-safe, GraphBLAS calls
the functions from inside an OpenMP critical section.
The following usage is identical to \verb'GrB_init(mode)':
{\footnotesize
\begin{verbatim}
GxB_init (mode, malloc, calloc, realloc, free, true) ; \end{verbatim}}
SuiteSparse:GraphBLAS can be compiled as normal (outside of MATLAB) and then
linked into a MATLAB \verb'mexFunction'. However, a \verb'mexFunction' should
use the MATLAB memory managers. To do this, use the following instead of
\verb'GrB_init(mode)' in a MATLAB \verb'mexFunction', with the flag
\verb'false' since these functions are not thread-safe:
{\footnotesize
\begin{verbatim}
#include "mex.h"
#include "GraphBLAS.h"
...
GxB_init (mode, mxMalloc, mxCalloc, mxRealloc, mxFree, false) ; \end{verbatim}}
Passing in the last parameter as \verb'false' requires that GraphBLAS be
compiled with OpenMP. Internally, SuiteSparse:GraphBLAS never calls any memory
management function inside a parallel region. Results are undefined if all
three of the following conditions hold: (1) the user application calls
GraphBLAS in parallel from multiple user-level threads, (2) the memory
functions are not thread-safe, and (3) GraphBLAS is not compiled with OpenMP.
Safety is guaranteed if at least one of those conditions is false.
To use the scalable Intel TBB memory manager:
{\footnotesize
\begin{verbatim}
#include "tbb/scalable_allocator.h"
#include "GraphBLAS.h"
...
GxB_init (mode, scalable_malloc, scalable_calloc, scalable_realloc,
scalable_free, true) ; \end{verbatim}}
\begin{spec}
{\bf SPEC:} \verb'GxB_init' is an extension to the spec.
\end{spec}
\newpage
%===============================================================================
\subsection{{\sf GrB\_Info:} status code returned by GraphBLAS} %===============
%===============================================================================
\label{info}
Each GraphBLAS method and operation returns its status to the caller as its
return value, an enumerated type (an \verb'enum') called \verb'GrB_Info'. The
first two values in the following table denote a successful status, the rest
are error codes.
\vspace{0.2in}
\noindent
{\small
\begin{tabular}{llp{2.8in}}
\hline
\verb'GrB_SUCCESS' & 0 & the method or operation was successful \\
\verb'GrB_NO_VALUE' & 1 & the method was successful, but the entry \\
& & does not appear in the matrix or vector. \\
& & Its value is implicit. \\
\hline
\hline
\verb'GrB_UNINITIALIZED_OBJECT' & 2 & object has not been initialized \\
\verb'GrB_INVALID_OBJECT' & 3 & object is corrupted \\
\verb'GrB_NULL_POINTER' & 4 & input pointer is \verb'NULL' \\
\verb'GrB_INVALID_VALUE' & 5 & generic error code; some value is bad \\
\verb'GrB_INVALID_INDEX' & 6 & a row or column index is out of bounds;
for indices passed as scalars, not in a list. \\
\verb'GrB_DOMAIN_MISMATCH' & 7 & object domains are not compatible \\
\verb'GrB_DIMENSION_MISMATCH' & 8 & matrix dimensions do not match \\
\verb'GrB_OUTPUT_NOT_EMPTY' & 9 & output matrix already has values in it \\
\hline
\verb'GrB_OUT_OF_MEMORY' & 10 & out of memory \\
\verb'GrB_INSUFFICIENT_SPACE' & 11 & output array not large enough \\
\verb'GrB_INDEX_OUT_OF_BOUNDS' & 12 & a row or column index is out of bounds;
for indices in a list of indices. \\
\hline
\verb'GrB_PANIC' & 13 & unrecoverable error.
\\
\hline
\end{tabular}
\vspace{0.2in}
}
Not all GraphBLAS methods or operations can return all status codes. Any
GraphBLAS method or operation can return an out-of-memory condition,
\verb'GrB_OUT_OF_MEMORY', or a panic, \verb'GrB_PANIC'. These two errors, and
the \verb'GrB_INDEX_OUT_OF_BOUNDS' error, are called {\em execution errors}.
The other errors are called {\em API} errors. An API error is detecting
immediately, regardless of the blocking mode. The detection of an execution
error may be deferred until the pending operations complete.
In the discussions of each method and operation in this User Guide, most of the
obvious error code returns are not discussed. For example, if a required input
is a \verb'NULL' pointer, then \verb'GrB_NULL_POINTER' is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to {\em The GraphBLAS C API Specification} \cite{spec}.
\newpage
%===============================================================================
\subsection{{\sf GrB\_error:} get more details on the last error} %=============
%===============================================================================
\label{error}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
const char *GrB_error ( ) ; // return a string describing the last error
\end{verbatim}
}\end{mdframed}
Each GraphBLAS method and operation returns a \verb'GrB_Info' error code. The
\verb'GrB_error' function returns additional information on the error in a
thread-safe null-terminated string. The string returned by \verb'GrB_error' is
allocated in thread local storage and must not be freed or modified. Each user
thread has its own error status. The simplest way to use it is just to print
it out, such as:
{\footnotesize
\begin{verbatim}
info = GrB_some_method_here (...) ;
if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))
{
printf ("info: %d error: %s\n", info, GrB_error ( )) ;
} \end{verbatim}}
SuiteSparse:GraphBLAS reports many helpful details via \verb'GrB_error'. For
example, if a row or column index is out of bounds, the report will state what
those bounds are. If a matrix dimension is incorrect, the mismatching
dimensions will be provided. \verb'GrB_BinaryOp_new', \verb'GrB_UnaryOp_new',
and \verb'GxB_SelectOp_new' record the name the function passed to them, and
\verb'GrB_Type_new' records the name of its type parameter, and these are
printed if the user-defined types and operators are used incorrectly. Refer to
the output of the example programs in the \verb'Demo' folder, which
intentionally generate errors to illustrate the use of \verb'GrB_error'.
Successful GraphBLAS methods do not modify the last error message recorded. If
a GraphBLAS method fails and then subsequent GraphBLAS method succeeds, the
error message is not modified from the last failure. A subsequent failure
will cause \verb'GrB_error' to return a different error message.
Note that \verb'GrB_NO_VALUE' is an not error, but an informational status.
\verb'GrB_*_extractElment(&x,A,i,j)', which does \verb'x=A(i,j)', returns this
value to indicate that \verb'A(i,j)' is not present in the matrix.
In SuiteSparse:GraphBLAS, some failures cannot be safely recorded for
\verb'GrB_error' to print. These include \verb'GrB_PANIC' and errors in
\verb'GrB_init' and \verb'GxB_init'.
% TODO in 4.0: revise this statement when the change to the API is finalized:
{\bf NOTE:} \verb'GrB_error' may change in the future. It may have the signature
\verb'GrB_error(&s,C)' where \verb's' is the error string that describes the
error when \verb'C' is the output object of a GraphBLAS method. This change to
the C API is tentative. If this change is made, it will be reflected in
SuiteSparse:GraphBLAS v4.0.
\newpage
%===============================================================================
\subsection{{\sf GrB\_finalize:} finish GraphBLAS} %============================
%===============================================================================
\label{finalize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_finalize ( ) ; // finish GraphBLAS
\end{verbatim}
}\end{mdframed}
\verb'GrB_finalize' must be called as the last GraphBLAS operation, even after
all calls to \verb'GrB_free'. All GraphBLAS objects created by the user
application should be freed first, before calling \verb'GrB_finalize' since
\verb'GrB_finalize' will not free those objects. In non-blocking mode,
GraphBLAS may leave some computations as pending. These computations can be
safely abandoned if the user application frees all GraphBLAS objects it has
created and then calls \verb'GrB_finalize'. When the user application is
finished, exactly one user thread must call \verb'GrB_finalize'.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Objects and their Methods} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{objects}
GraphBLAS defines eight different objects to represent matrices and vectors,
their scalar data type (or domain), binary and unary operators on scalar types,
monoids, semirings, and a {\em descriptor} object used to specify optional
parameters that modify the behavior of a GraphBLAS operation.
SuiteSparse:GraphBLAS adds two additional objects: a sparse scalar
(\verb'GxB_Scalar'), and an operator for selecting entries from a matrix or
vector (\verb'GxB_SelectOp').
The GraphBLAS API makes a distinction between {\em methods} and {\em
operations}. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.
\vspace{0.1in}
\noindent
{\small
\begin{tabular}{ll}
\hline
\verb'GrB_Type' & a scalar data type \\
\verb'GrB_UnaryOp' & a unary operator $z=f(x)$, where $z$ and $x$ are scalars\\
\verb'GrB_BinaryOp' & a binary operator $z=f(x,y)$, where $z$, $x$, and $y$ are scalars\\
\verb'GxB_SelectOp' & a select operator \\
\verb'GrB_Monoid' & an associative and commutative binary operator \\
& and its identity value \\
\verb'GrB_Semiring' & a monoid that defines the ``plus'' and a binary operator\\
& that defines the ``multiply'' for an algebraic semiring \\
\verb'GrB_Matrix' & a 2D sparse matrix of any type \\
\verb'GrB_Vector' & a 1D sparse column vector of any type \\
\verb'GxB_Scalar' & a sparse scalar of any type \\
\verb'GrB_Descriptor'& a collection of parameters that modify an operation \\
\hline
\end{tabular}
}
\vspace{0.1in}
Each of these objects is implemented in C as an opaque handle, which is a
pointer to a data structure held by GraphBLAS. User applications may not
examine the content of the object directly; instead, they can pass the handle
back to GraphBLAS which will do the work. Assigning one handle to another
is valid but it does not make a copy of the underlying object.
\begin{spec}
{\bf SPEC:} \verb'GxB_SelectOp' and \verb'GxB_Scalar' are extensions to
GraphBLAS.
\end{spec}
\newpage
%===============================================================================
\subsection{The GraphBLAS type: {\sf GrB\_Type}} %==============================
%===============================================================================
\label{type}
A GraphBLAS \verb'GrB_Type' defines the type of scalar values that a matrix or
vector contains, and the type of scalar operands for a unary or binary
operator. There are 13 built-in types, and a user application can define
any types of its own as well. The built-in types correspond to built-in types
in C (\verb'#include <stdbool.h>' and \verb'#include <stdint.h>'), and the
classes in MATLAB, as listed in the following table.
MATLAB allows for \verb'double complex' sparse matrices, but the
\verb'class(A)' for such a matrix is just \verb'double'. MATLAB treats
the complex types as properties of a class.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lllll}
\hline
GraphBLAS & C type & MATLAB & description & range \\
type & & class & & \\
\hline
\verb'GrB_BOOL' & \verb'bool' & \verb'logical' & Boolean & true (1), false (0) \\
\hline
\verb'GrB_INT8' & \verb'int8_t' & \verb'int8' & 8-bit signed integer & -128 to 127 \\
\verb'GrB_INT16' & \verb'int16_t' & \verb'int16' & 16-bit integer & $-2^{15}$ to $2^{15}-1$ \\
\verb'GrB_INT32' & \verb'int32_t' & \verb'int32' & 32-bit integer & $-2^{31}$ to $2^{31}-1$ \\
\verb'GrB_INT64' & \verb'int64_t' & \verb'int64' & 64-bit integer & $-2^{63}$ to $2^{63}-1$ \\
\hline
\verb'GrB_UINT8' & \verb'uint8_t' & \verb'uint8' & 8-bit unsigned integer & 0 to 255 \\
\verb'GrB_UINT16' & \verb'uint16_t' & \verb'uint16' & 16-bit unsigned integer & 0 to $2^{16}-1$ \\
\verb'GrB_UINT32' & \verb'uint32_t' & \verb'uint32' & 32-bit unsigned integer & 0 to $2^{32}-1$ \\
\verb'GrB_UINT64' & \verb'uint64_t' & \verb'uint64' & 64-bit unsigned integer & 0 to $2^{64}-1$ \\
\hline
\verb'GrB_FP32' & \verb'float' & \verb'single' & 32-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
\verb'GrB_FP64' & \verb'double' & \verb'double' & 64-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
\hline
\verb'GxB_FC32' & \verb'float complex' & \verb'single' & 32-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
& & \verb'~isreal(.)' & complex & \\
\hline
\verb'GxB_FC64' & \verb'double complex' & \verb'double' & 64-bit IEEE 754 & \verb'-Inf' to \verb'+Inf'\\
& & \verb'~isreal(.)' & complex & \\
\hline
\end{tabular}
}
\vspace{0.2in}
The ANSI C11 definitions of \verb'float complex' and \verb'double complex'
are not always available. The \verb'GraphBLAS.h' header defines them as
\verb'GxB_FC32_t' and \verb'GxB_FC64_t', respectively.
The user application can also define new types based on any \verb'typedef' in
the C language whose values are held in a contiguous region of memory. For
example, a user-defined \verb'GrB_Type' could be created to hold any C
\verb'struct' whose content is self-contained. A C \verb'struct' containing
pointers might be problematic because GraphBLAS would not know to dereference
the pointers to traverse the entire ``scalar'' entry, but this can be done if
the objects referenced by these pointers are not moved. A user-defined complex
type with real and imaginary types can be defined, or even a ``scalar'' type
containing a fixed-sized dense matrix (see Section~\ref{type_new}). The
possibilities are endless. GraphBLAS can create and operate on sparse matrices
and vectors in any of these types, including any user-defined ones. For
user-defined types, GraphBLAS simply moves the data around itself (via
\verb'memcpy'), and then passes the values back to user-defined functions when
it needs to do any computations on the type. The next sections describe the
methods for the \verb'GrB_Type' object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_Type_new' & create a user-defined type \\
\verb'GrB_Type_wait' & wait for a user-defined type \\
\verb'GxB_Type_size' & return the size of a type \\
\verb'GrB_Type_free' & free a user-defined type \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_new:} create a user-defined type}
%-------------------------------------------------------------------------------
\label{type_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Type_new // create a new GraphBLAS type
(
GrB_Type *type, // handle of user type to create
size_t sizeof_ctype // size = sizeof (ctype) of the C type
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_Type_new' creates a new user-defined type. The \verb'type' is a
handle, or a pointer to an opaque object. The handle itself must not be
\verb'NULL' on input, but the content of the handle can be undefined. On
output, the handle contains a pointer to a newly created type.
The \verb'ctype' is the type in C that will be used to construct the new
GraphBLAS type. It can be either a built-in C type, or defined by a
\verb'typedef'.
The second parameter should be passed as \verb'sizeof(ctype)'. The only
requirement on the C type is that \verb'sizeof(ctype)' is valid in C, and
that the type reside in a contiguous block of memory so that it can be moved
with \verb'memcpy'. For example, to create a user-defined type called
\verb'Complex' for double-precision complex values using the ANSI C11
\verb'double complex' type, the following can be used. A complete example can
be found in the \verb'usercomplex.c' and \verb'usercomplex.h' files in the
\verb'Demo' folder.
{\footnotesize
\begin{verbatim}
#include <math.h>
#include <complex.h>
GrB_Type Complex ;
GrB_Type_new (&Complex, sizeof (double complex)) ; \end{verbatim} }
To demonstrate the flexibility of the \verb'GrB_Type', consider a ``scalar''
consisting of 4-by-4 floating-point matrix and a string. This type might be
useful for the 4-by-4 translation/rotation/scaling matrices that arise in
computer graphics, along with a string containing a description or even a
regular expression that can be parsed and executed in a user-defined operator.
All that is required is a fixed-size type, where \verb'sizeof(ctype)' is
a constant.
{\footnotesize
\begin{verbatim}
typedef struct
{
float stuff [4][4] ;
char whatstuff [64] ;
}
wildtype ;
GrB_Type WildType ;
GrB_Type_new (&WildType, sizeof (wildtype)) ; \end{verbatim} }
With this type a sparse matrix can be created in which each entry consists of a
4-by-4 dense matrix \verb'stuff' and a 64-character string \verb'whatstuff'.
GraphBLAS treats this 4-by-4 as a ``scalar.'' Any GraphBLAS method or operation
that simply moves data can be used with this type without any further
information from the user application. For example, entries of this type can
be assigned to and extracted from a matrix or vector, and matrices containing
this type can be transposed. A working example (\verb'wildtype.c'
in the \verb'Demo' folder) creates matrices and multiplies them with
a user-defined semiring with this type.
Performing arithmetic on matrices and vectors with user-defined types requires
operators to be defined. For example, the user application can define its own
type for complex numbers, but then transposing the matrix with GraphBLAS will
not compute the complex conjugate transpose. This corresponds to the array
transpose in MATLAB (\verb"C=A.'") instead of the complex conjugate transpose
(\verb"C=A'"). To compute the complex conjugate transpose, the application
would need to create a user-defined unary operator to conjugate a user-defined
complex scalar, and then apply it to the matrix before or after the transpose,
via \verb'GrB_apply'. An extensive set of complex operators are provided in
the \verb'usercomplex.c' example in the \verb'Demo' folder, along with an
include file, \verb'usercomplex.h', that is suitable for inclusion in any user
application. GraphBLAS does not include any complex types or operators,
SuiteSparse:GraphBLAS provides them in two simple ``user'' files in the
\verb'Demo' folder, as user-defined types. They also now appear as built-in
types, \verb'GxB_FC32' and \verb'GxB_FC64'. Refer to Section~\ref{user} for
more details on these example user-defined types.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_wait:} wait for a type}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Type_wait // wait for a user-defined type
(
GrB_Type *type // type to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined type, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation. \verb'GrB_Type_wait(&type)' ensures
the \verb'type' is completed. SuiteSparse:GraphBLAS currently does nothing for
\verb'GrB_Type_wait(&type)', except to ensure that \verb'type' is valid.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Type\_size:} return the size of a type}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_size // determine the size of the type
(
size_t *size, // the sizeof the type
GrB_Type type // type to determine the sizeof
) ;
\end{verbatim}
}\end{mdframed}
This function acts just like \verb'sizeof(type)' in the C language. For
example \verb'GxB_Type_size (&s, GrB_INT32)' sets \verb's' to 4, the same as
\verb'sizeof(int32_t)'.
\begin{spec}
{\bf SPEC:} \verb'GxB_Type_size' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Type\_free:} free a user-defined type}
%-------------------------------------------------------------------------------
\label{type_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-defined type
(
GrB_Type *type // handle of user-defined type to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_Type_free' frees a user-defined type.
Either usage:
{\small
\begin{verbatim}
GrB_Type_free (&type) ;
GrB_free (&type) ; \end{verbatim}}
\noindent
frees the user-defined \verb'type' and
sets \verb'type' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'type == NULL' on input.
It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS silently
ignores the request and returns \verb'GrB_SUCCESS'. A user-defined type should
not be freed until all operations using the type are completed.
SuiteSparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended.
Operations on such objects whose type has been freed leads to undefined
behavior.
It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.
The function signature of \verb'GrB_Type_free' uses the generic name
\verb'GrB_free', which can free any GraphBLAS object. See Section~\ref{free}
details. GraphBLAS includes many such generic functions. When describing a
specific variation, a function is described with its specific name in this User
Guide (such as \verb'GrB_Type_free'). When discussing features applicable to
all specific forms, the generic name is used instead (such as \verb'GrB_free').
\newpage
%===============================================================================
\subsection{GraphBLAS unary operators: {\sf GrB\_UnaryOp}, $z=f(x)$} %==========
%===============================================================================
\label{unaryop}
A unary operator is a scalar function of the form $z=f(x)$. The domain (type)
of $z$ and $x$ need not be the same.
In the notation in the tables
below, $T$ is any of the 13 built-in types and is a place-holder for
\verb'BOOL', \verb'INT8', \verb'UINT8', ...
\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'.
For example, \verb'GrB_AINV_INT32' is a unary operator that computes
\verb'z=-x' for two values \verb'x' and \verb'z' of type \verb'GrB_INT32'.
The notation $R$ refers to any real type (all but \verb'FC32' and \verb'FC64'),
$I$ refers to any integer type (\verb'INT*' and \verb'UINT*'),
$F$ refers to any real or complex floating point type
(\verb'FP32', \verb'FP64', \verb'FC32', or \verb'FC64'),
and $Z$ refers to any complex floating point type
(\verb'FC32' or \verb'FC64').
The logical negation operator \verb'GrB_LNOT' only works on Boolean types. The
\verb'GxB_LNOT_'$R$ functions operate on inputs of type $R$, implicitly
typecasting their input to Boolean and returning result of type $R$, with a
value 1 for true and 0 for false. The operators \verb'GxB_LNOT_BOOL' and
\verb'GrB_LNOT' are identical.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for all types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_ONE_'$T$ & $T \rightarrow T$ & $z = 1$ & one \\
\verb'GrB_IDENTITY_'$T$ & $T \rightarrow T$ & $z = x$ & identity \\
\verb'GrB_AINV_'$T$ & $T \rightarrow T$ & $z = -x$ & additive inverse \\
\verb'GrB_MINV_'$T$ & $T \rightarrow T$ & $z = 1/x$ & multiplicative inverse \\
\hline
\end{tabular}
\vspace{0.2in}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for real and integer types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GrB_ABS_'$T$ & $R \rightarrow R$ & $z = |x|$ & absolute value \\
\verb'GrB_LNOT' & \verb'bool'
$\rightarrow$
\verb'bool' & $z = \lnot x$ & logical negation \\
\verb'GxB_LNOT_'$R$ & $R \rightarrow R$ & $z = \lnot (x \ne 0)$ & logical negation \\
\verb'GrB_BNOT_'$I$ & $I \rightarrow I$ & $z = \lnot x$ & bitwise negation \\
\hline
\end{tabular}
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for floating-point types (real and complex)} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_SQRT_'$F$ & $F \rightarrow F$ & $z = \sqrt(x)$ & square root \\
\verb'GxB_LOG_'$F$ & $F \rightarrow F$ & $z = \log_e(x)$ & natural logarithm \\
\verb'GxB_EXP_'$F$ & $F \rightarrow F$ & $z = e^x$ & natural exponent \\
\hline
\verb'GxB_LOG10_'$F$ & $F \rightarrow F$ & $z = \log_{10}(x)$ & base-10 logarithm \\
\verb'GxB_LOG2_'$F$ & $F \rightarrow F$ & $z = \log_2(x)$ & base-2 logarithm \\
\verb'GxB_EXP2_'$F$ & $F \rightarrow F$ & $z = 2^x$ & base-2 exponent \\
\hline
\verb'GxB_EXPM1_'$F$ & $F \rightarrow F$ & $z = e^x - 1$ & natural exponent - 1 \\
\verb'GxB_LOG1P_'$F$ & $F \rightarrow F$ & $z = \log(x+1)$ & natural log of $x+1$ \\
\hline
\verb'GxB_SIN_'$F$ & $F \rightarrow F$ & $z = \sin(x)$ & sine \\
\verb'GxB_COS_'$F$ & $F \rightarrow F$ & $z = \cos(x)$ & cosine \\
\verb'GxB_TAN_'$F$ & $F \rightarrow F$ & $z = \tan(x)$ & tangent \\
\hline
\verb'GxB_ASIN_'$F$ & $F \rightarrow F$ & $z = \sin^{-1}(x)$ & inverse sine \\
\verb'GxB_ACOS_'$F$ & $F \rightarrow F$ & $z = \cos^{-1}(x)$ & inverse cosine \\
\verb'GxB_ATAN_'$F$ & $F \rightarrow F$ & $z = \tan^{-1}(x)$ & inverse tangent \\
\hline
\verb'GxB_SINH_'$F$ & $F \rightarrow F$ & $z = \sinh(x)$ & hyperbolic sine \\
\verb'GxB_COSH_'$F$ & $F \rightarrow F$ & $z = \cosh(x)$ & hyperbolic cosine \\
\verb'GxB_TANH_'$F$ & $F \rightarrow F$ & $z = \tanh(x)$ & hyperbolic tangent \\
\hline
\verb'GxB_ASINH_'$F$ & $F \rightarrow F$ & $z = \sinh^{-1}(x)$ & inverse hyperbolic sine \\
\verb'GxB_ACOSH_'$F$ & $F \rightarrow F$ & $z = \cosh^{-1}(x)$ & inverse hyperbolic cosine \\
\verb'GxB_ATANH_'$F$ & $F \rightarrow F$ & $z = \tanh^{-1}(x)$ & inverse hyperbolic tangent \\
\hline
\verb'GxB_SIGNUM_'$F$ & $F \rightarrow F$ & $z = \sgn(x)$ & sign, or signum function \\
\verb'GxB_CEIL_'$F$ & $F \rightarrow F$ & $z = \lceil x \rceil $ & ceiling function \\
\verb'GxB_FLOOR_'$F$ & $F \rightarrow F$ & $z = \lfloor x \rfloor $ & floor function \\
\verb'GxB_ROUND_'$F$ & $F \rightarrow F$ & $z = \mbox{round}(x)$ & round to nearest \\
\verb'GxB_TRUNC_'$F$ & $F \rightarrow F$ & $z = \mbox{trunc}(x)$ & round towards zero \\
\hline
\verb'GxB_LGAMMA_'$F$ & $F \rightarrow F$ & $z = \log(|\Gamma (x)|)$ & log of gamma function \\
\verb'GxB_TGAMMA_'$F$ & $F \rightarrow F$ & $z = \Gamma(x)$ & gamma function \\
\verb'GxB_ERF_'$F$ & $F \rightarrow F$ & $z = \erf(x)$ & error function \\
\verb'GxB_ERFC_'$F$ & $F \rightarrow F$ & $z = \erfc(x)$ & complimentary error function \\
\hline
\verb'GxB_FREXPX_'$F$ & $F \rightarrow F$ & $z = \mbox{frexpx}(x)$ & normalized fraction \\
\verb'GxB_FREXPE_'$F$ & $F \rightarrow F$ & $z = \mbox{frexpe}(x)$ & normalized exponent \\
\hline
\verb'GxB_ISINF_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isinf}(x)$ & true if $\pm \infty$ \\
\verb'GxB_ISNAN_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isnan}(x)$ & true if \verb'NaN' \\
\verb'GxB_ISFINITE_'$F$ & $F \rightarrow $ \verb'bool' & $z = \mbox{isfinite}(x)$ & true if finite \\
\hline
\end{tabular}
\vspace{0.2in}
\verb'GxB_FREXPX' \verb'GxB_FREXPE' return the mantissa and exponent, respectively,
from the ANSI C11 \verb'frexp' function. The exponent is returned as a
floating-point value, not an integer.
The functions \verb'casin', \verb'casinf', \verb'casinh', and \verb'casinhf'
provided by Microsoft Visual Studio for computing $\sin^{-1}(x)$ and
$\sinh^{-1}(x)$ when $x$ is complex do not compute the correct result. Thus,
the unary operators \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
\verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly if the MS
Visual Studio compiler is used. These functions work properly if the gcc, icc,
or clang compilers are used on Linux or MacOS.
\vspace{0.2in}
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Unary operators for complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x)$ & description \\
\hline
\verb'GxB_CONJ_'$Z$ & $Z \rightarrow Z$ & $z = \overline{x}$ & complex conjugate \\
\verb'GxB_ABS_'$Z$ & $Z \rightarrow F$ & $z = |x|$ & absolute value \\
\verb'GxB_CREAL_'$Z$ & $Z \rightarrow F$ & $z = \mbox{real}(x)$ & real part \\
\verb'GxB_CIMAG_'$Z$ & $Z \rightarrow F$ & $z = \mbox{imag}(x)$ & imaginary part \\
\verb'GxB_CARG_'$Z$ & $Z \rightarrow F$ & $z = \mbox{carg}(x)$ & angle \\
\hline
\end{tabular}
}
\vspace{0.2in}
Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary
\verb'GrB_DIV_'$T$ operators.
\begin{spec}
{\bf SPEC:} The definition of integer division by zero is an extension to the spec.
\end{spec}
The next sections define the following methods for the \verb'GrB_UnaryOp'
object:
\vspace{0.1in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_UnaryOp_new' & create a user-defined unary operator \\
\verb'GrB_UnaryOp_wait' & wait for a user-defined unary operator \\
\verb'GxB_UnaryOp_ztype' & return the type of the output $z$ for $z=f(x)$\\
\verb'GxB_UnaryOp_xtype' & return the type of the input $x$ for $z=f(x)$\\
\verb'GrB_UnaryOp_free' & free a user-defined unary operator \\
\hline
\end{tabular}
}
\vspace{0.1in}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_new:} create a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator
(
GrB_UnaryOp *unaryop, // handle for the new unary operator
void *function, // pointer to the unary function
GrB_Type ztype, // type of output z
GrB_Type xtype // type of input x
) ;
\end{verbatim} }\end{mdframed}
\verb'GrB_UnaryOp_new' creates a new unary operator. The new operator is
returned in the \verb'unaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new unary operator.
The two types \verb'xtype' and \verb'ztype' are the GraphBLAS types of the
input $x$ and output $z$ of the user-defined function $z=f(x)$. These types
may be built-in types or user-defined types, in any combination. The two types
need not be the same, but they must be previously defined before passing them
to \verb'GrB_UnaryOp_new'.
The \verb'function' argument to \verb'GrB_UnaryOp_new' is a pointer to a
user-defined function with the following signature:
{\footnotesize
\begin{verbatim}
void (*f) (void *z, const void *x) ; \end{verbatim} }
When the function \verb'f' is called, the arguments \verb'z' and \verb'x' are
passed as \verb'(void *)' pointers, but they will be pointers to values of the
correct type, defined by \verb'ztype' and \verb'xtype', respectively, when the
operator was created.
% V2.1 and later:
{\bf NOTE:}
The pointers may not be unique. That is, the user function may be
called with multiple pointers that point to the same space, such as when
\verb'z=f(z,y)' is to be computed by a binary operator, or \verb'z=f(z)' for a
unary operator. Any parameters passed to the user-callable function may be
aliased to each other.
% SPEC: the spec is silent on aliasing in user-defined functions
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_wait:} wait for a unary operator}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_UnaryOp_wait // wait for a user-defined unary operator
(
GrB_UnaryOp *unaryop // unary operator to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined unary operator, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.
\verb'GrB_UnaryOp_wait(&unaryop)' ensures the \verb'op' is completed.
SuiteSparse:GraphBLAS currently does nothing for
\verb'GrB_UnaryOp_wait(&unaryop)', except to ensure that the \verb'unaryop' is
valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_ztype:} return the type of $z$}
%-------------------------------------------------------------------------------
\label{unaryop_ztype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_ztype // return the type of z
(
GrB_Type *ztype, // return type of output z
GrB_UnaryOp unaryop // unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_UnaryOp_ztype' returns the \verb'ztype' of the unary operator, which
is the type of $z$ in the function $z=f(x)$.
\begin{spec}
{\bf SPEC:} \verb'GxB_UnaryOp_ztype' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_UnaryOp\_xtype:} return the type of $x$}
%-------------------------------------------------------------------------------
\label{unaryop_xtype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_xtype // return the type of x
(
GrB_Type *xtype, // return type of input x
GrB_UnaryOp unaryop // unary operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_UnaryOp_xtype' returns the \verb'xtype' of the unary operator, which
is the type of $x$ in the function $z=f(x)$.
\begin{spec}
{\bf SPEC:} \verb'GxB_UnaryOp_xtype' is an extension to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_UnaryOp\_free:} free a user-defined unary operator}
%-------------------------------------------------------------------------------
\label{unaryop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created unary operator
(
GrB_UnaryOp *unaryop // handle of unary operator to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_UnaryOp_free' frees a user-defined unary operator.
Either usage:
{\small
\begin{verbatim}
GrB_UnaryOp_free (&unaryop) ;
GrB_free (&unaryop) ; \end{verbatim}}
\noindent
frees the \verb'unaryop' and sets \verb'unaryop' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'unaryop == NULL' on input.
It does nothing at all if passed a built-in unary operator.
\newpage
%===============================================================================
\subsection{GraphBLAS binary operators: {\sf GrB\_BinaryOp}, $z=f(x,y)$} %======
%===============================================================================
\label{binaryop}
A binary operator is a scalar function of the form $z=f(x,y)$. The types of
$z$, $x$, and $y$ need not be the same. The built-in binary operators are
listed in the tables below. The notation $T$ refers to any of the 13
built-in types, but two of those types are SuiteSparse extensions
(\verb'GxB_FC32' and \verb'GxB_FC64'). For those types, the operator name
always starts with \verb'GxB', not \verb'GrB').
The six \verb'GxB_IS*' comparison operators and the \verb'GxB_*' logical operators all
return a result one for true and zero for false, in the same domain $T$ or $R$ as
their inputs. These six comparison operators are useful as ``multiply''
operators for creating semirings with non-Boolean monoids.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all 13 types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% numeric TxT->T
\verb'GrB_FIRST_'$T$ & $T \times T \rightarrow T$ & $z = x$ & first argument \\
\verb'GrB_SECOND_'$T$ & $T \times T \rightarrow T$ & $z = y$ & second argument \\
\verb'GxB_ANY_'$T$ & $T \times T \rightarrow T$ & $z = x$ or $y$ & pick $x$ or $y$ arbitrarily \\
\verb'GxB_PAIR_'$T$ & $T \times T \rightarrow T$ & $z = 1$ & one \\
\verb'GrB_PLUS_'$T$ & $T \times T \rightarrow T$ & $z = x+y$ & addition \\
\verb'GrB_MINUS_'$T$ & $T \times T \rightarrow T$ & $z = x-y$ & subtraction \\
\verb'GxB_RMINUS_'$T$ & $T \times T \rightarrow T$ & $z = y-x$ & reverse subtraction \\
\verb'GrB_TIMES_'$T$ & $T \times T \rightarrow T$ & $z = xy$ & multiplication \\
\verb'GrB_DIV_'$T$ & $T \times T \rightarrow T$ & $z = x/y$ & division \\
\verb'GxB_RDIV_'$T$ & $T \times T \rightarrow T$ & $z = y/x$ & reverse division \\
\verb'GxB_POW_'$T$ & $T \times T \rightarrow T$ & $z = x^y$ & power \\
\hline
% TxT->T comparison
\verb'GxB_ISEQ_'$T$ & $T \times T \rightarrow T$ & $z = (x == y)$ & equal \\
\verb'GxB_ISNE_'$T$ & $T \times T \rightarrow T$ & $z = (x \ne y)$ & not equal \\
\hline
\end{tabular}
}
\vspace{0.2in}
The \verb'GxB_POW_*' operators for real types do not return a complex result,
and thus $z = f(x,y) = x^y$ is undefined if $x$ is negative and $y$ is not an
integer. To compute a complex result, use \verb'GxB_POW_FC32' or
\verb'GxB_POW_FC64'.
Operators that require the domain to be ordered (\verb'MIN', \verb'MAX', and
relative comparisons less-than, greater-than, and so on) are not defined for
complex types. These are listed in the following table:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for all non-complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% numeric RxR->R
\verb'GrB_MIN_'$R$ & $R \times R \rightarrow R$ & $z = \min(x,y)$ & minimum \\
\verb'GrB_MAX_'$R$ & $R \times R \rightarrow R$ & $z = \max(x,y)$ & maximum \\
\hline
% RxR->R comparison
\verb'GxB_ISGT_'$R$ & $R \times R \rightarrow R$ & $z = (x > y)$ & greater than \\
\verb'GxB_ISLT_'$R$ & $R \times R \rightarrow R$ & $z = (x < y)$ & less than \\
\verb'GxB_ISGE_'$R$ & $R \times R \rightarrow R$ & $z = (x \ge y)$ & greater than or equal \\
\verb'GxB_ISLE_'$R$ & $R \times R \rightarrow R$ & $z = (x \le y)$ & less than or equal \\
\hline
% RxR->R logical
\verb'GxB_LOR_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \vee (y \ne 0) $ & logical OR \\
\verb'GxB_LAND_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \wedge (y \ne 0) $ & logical AND \\
\verb'GxB_LXOR_'$R$ & $R \times R \rightarrow R$ & $z = (x \ne 0) \veebar (y \ne 0) $ & logical XOR \\
\hline
\end{tabular}
}
\vspace{0.2in}
Another set of six kinds of built-in comparison operators have the form $T
\times T \rightarrow $\verb'bool'. Note that when $T$ is \verb'bool', the six
operators give the same results as the six \verb'GxB_IS*_BOOL' operators in the
table above. These six comparison operators are useful as ``multiply''
operators for creating semirings with Boolean monoids.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary comparison operators for all 13 types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% 6 TxT->bool comparison
\verb'GrB_EQ_'$T$ & $T \times T \rightarrow $\verb'bool' & $z = (x == y)$ & equal \\
\verb'GrB_NE_'$T$ & $T \times T \rightarrow $\verb'bool' & $z = (x \ne y)$ & not equal \\
\hline
\multicolumn{4}{ }{\mbox{ }} \\
\hline
\multicolumn{4}{|c|}{Binary comparison operators for non-complex types} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GrB_GT_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x > y)$ & greater than \\
\verb'GrB_LT_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x < y)$ & less than \\
\verb'GrB_GE_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x \ge y)$ & greater than or equal \\
\verb'GrB_LE_'$R$ & $R \times R \rightarrow $\verb'bool' & $z = (x \le y)$ & less than or equal \\
\hline
\end{tabular}
}
\vspace{0.2in}
GraphBLAS has four built-in binary operators that operate purely in
the Boolean domain. The first three are identical to the \verb'GxB_L*_BOOL'
operators described above, just with a shorter name. The \verb'GrB_LXNOR'
operator is the same as \verb'GrB_EQ_BOOL'.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the boolean type only} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
% 3 bool x bool -> bool
\verb'GrB_LOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \vee y $ & logical OR \\
\verb'GrB_LAND' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \wedge y $ & logical AND \\
\verb'GrB_LXOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = x \veebar y $ & logical XOR \\
\verb'GrB_LXNOR' & \verb'bool'
$\times$ \verb'bool'
$\rightarrow$ \verb'bool' & $z = \lnot (x \veebar y) $ & logical XNOR \\
\hline
\end{tabular}
}
\vspace{0.2in}
The following operators are defined for real floating-point types only (\verb'GrB_FP32' and \verb'GrB_FP64').
They are identical to the ANSI C11 functions of the same name. The last one in the table constructs
the corresponding complex type.
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for the real floating-point types only} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GxB_ATAN2_'$F$ & $F \times F \rightarrow F$ & $z = \tan^{-1}(y/x)$ & 4-quadrant arc tangent \\
\verb'GxB_HYPOT_'$F$ & $F \times F \rightarrow F$ & $z = \sqrt{x^2+y^2}$ & hypotenuse \\
\verb'GxB_FMOD_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'fmod' \\
\verb'GxB_REMAINDER_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'remainder' \\
\verb'GxB_LDEXP_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'ldexp' \\
\verb'GxB_COPYSIGN_'$F$ & $F \times F \rightarrow F$ & & ANSI C11 \verb'copysign' \\
\hline
\verb'GxB_CMPLX_'$F$ & $F \times F \rightarrow Z$ & $z = x + y \times i$ & complex from real \& imag \\
\hline
\end{tabular}
}
\vspace{0.2in}
Finally, eight bitwise operators are predefined for signed and unsigned integers.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{|llll|}
\hline
\multicolumn{4}{|c|}{Binary operators for signed and unsigned integers} \\
\hline
GraphBLAS name & types (domains) & $z=f(x,y)$ & description \\
\hline
\verb'GrB_BOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=x|y' & bitwise logical OR \\
\verb'GrB_BAND_'$I$ & $I \times I \rightarrow I$ & \verb'z=x&y' & bitwise logical AND \\
\verb'GrB_BXOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=x^y' & bitwise logical XOR \\
\verb'GrB_BXNOR_'$I$ & $I \times I \rightarrow I$ & \verb'z=~(x^y)' & bitwise logical XNOR \\
\hline
\verb'GxB_BGET_'$I$ & $I \times I \rightarrow I$ & & get bit y of x \\
\verb'GxB_BSET_'$I$ & $I \times I \rightarrow I$ & & set bit y of x \\
\verb'GxB_BCLR_'$I$ & $I \times I \rightarrow I$ & & clear bit y of x \\
\verb'GxB_BSHIFT_'$I$ & $I \times $\verb'int8'$ \rightarrow I$ & & bit shift \\
\hline
\end{tabular}
}
\vspace{0.2in}
There are two sets of built-in comparison operators in SuiteSparse:Graph\-BLAS,
but they are not redundant. They are identical except for the type (domain) of
their output, $z$. The \verb'GrB_EQ_'$T$ and related operators compare their
inputs of type $T$ and produce a Boolean result of true or false. The
\verb'GxB_ISEQ_'$T$ and related operators do the same comparison and produce a
result with same type $T$ as their input operands, returning one for true or
zero for false. The \verb'IS*' comparison operators are useful when combining
comparisons with other non-Boolean operators. For example, a \verb'PLUS-ISEQ'
semiring counts how many terms of the comparison are true. With this semiring,
matrix multiplication ${\bf C=AB}$ for two weighted undirected graphs ${\bf A}$
and ${\bf B}$ computes $c_{ij}$ as the number of edges node $i$ and $j$ have in
common that have identical edge weights. Since the output type of the
``multiplier'' operator in a semiring must match the type of its monoid, the
Boolean \verb'EQ' cannot be combined with a non-Boolean \verb'PLUS' monoid to
perform this operation.
Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and XOR
operators. Without the \verb'_'$T$ suffix, the three operators \verb'GrB_LOR',
\verb'GrB_LAND', and \verb'GrB_LXOR' operate purely in the Boolean domain,
where all input and output types are \verb'GrB_BOOL'. The second set
(\verb'GxB_LOR_'$T$ \verb'GxB_LAND_'$T$ and \verb'GxB_LXOR_'$T$) provides
Boolean operators to all 11 real domains, implicitly typecasting their inputs from
type $T$ to Boolean and returning a value of type $T$ that is 1 for true or
zero for false. The set of \verb'GxB_L*_'$T$ operators are useful since they
can be combined with non-Boolean monoids in a semiring.
\begin{spec}
{\bf SPEC:} The definition of integer division by zero is an extension to the spec.
\end{spec}
Floating-point operations follow the IEEE 754 standard. Thus, computing $x/0$
for a floating-point $x$ results in \verb'+Inf' if $x$ is positive, \verb'-Inf'
if $x$ is negative, and \verb'NaN' if $x$ is zero. The application is not
terminated. However, integer division by zero normally terminates an
application. SuiteSparse:GraphBLAS avoids this by adopting the same rules as
MATLAB, which are analogous to how the IEEE standard handles floating-point
division by zero. For integers, when $x$ is positive, $x/0$ is the largest
positive integer, for negative $x$ it is the minimum integer, and 0/0 results
in zero. For example, for an integer $x$ of type \verb'GrB_INT32', 1/0 is
$2^{31}-1$ and (-1)/0 is $-2^{31}$. Refer to Section~\ref{type} for a list of
integer ranges.
The next sections define the following methods for the \verb'GrB_BinaryOp'
object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_BinaryOp_new' & create a user-defined binary operator \\
\verb'GrB_BinaryOp_wait' & wait for a user-defined binary operator \\
\verb'GxB_BinaryOp_ztype' & return the type of the output $z$ for $z=f(x,y)$\\
\verb'GxB_BinaryOp_xtype' & return the type of the input $x$ for $z=f(x,y)$\\
\verb'GxB_BinaryOp_ytype' & return the type of the input $y$ for $z=f(x,y)$\\
\verb'GrB_BinaryOp_free' & free a user-defined binary operator \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_new:} create a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_BinaryOp_new
(
GrB_BinaryOp *binaryop, // handle for the new binary operator
void *function, // pointer to the binary function
GrB_Type ztype, // type of output z
GrB_Type xtype, // type of input x
GrB_Type ytype // type of input y
) ;
\end{verbatim}
}\end{mdframed}
\verb'GrB_BinaryOp_new' creates a new binary operator. The new operator is
returned in the \verb'binaryop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new binary operator.
The three types \verb'xtype', \verb'ytype', and \verb'ztype' are the GraphBLAS
types of the inputs $x$ and $y$, and output $z$ of the user-defined function
$z=f(x,y)$. These types may be built-in types or user-defined types, in any
combination. The three types need not be the same, but they must be previously
defined before passing them to \verb'GrB_BinaryOp_new'.
The final argument to \verb'GrB_BinaryOp_new' is a pointer to a user-defined
function with the following signature:
{\footnotesize
\begin{verbatim}
void (*f) (void *z, const void *x, const void *y) ; \end{verbatim} }
When the function \verb'f' is called, the arguments \verb'z', \verb'x', and
\verb'y' are passed as \verb'(void *)' pointers, but they will be pointers to
values of the correct type, defined by \verb'ztype', \verb'xtype', and
\verb'ytype', respectively, when the operator was created.
% V2.1 and later:
{\bf NOTE:} SuiteSparse:GraphBLAS may call the function with the pointers
\verb'z' and \verb'x' equal to one another, in which case \verb'z=f(z,y)'
should be computed. Future versions may use additional pointer aliasing.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_wait:} wait for a binary operator}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_BinaryOp_wait // wait for a user-defined binary operator
(
GrB_BinaryOp *binaryop // binary operator to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined binary operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation.
\verb'GrB_BinaryOp_wait(&binaryop)' ensures the \verb'binaryop' is completed.
SuiteSparse:GraphBLAS currently does nothing for
\verb'GrB_BinaryOp_wait(&binaryop)', except to ensure that the \verb'binaryop'
is valid.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ztype:} return the type of $z$}
%-------------------------------------------------------------------------------
\label{binaryop_ztype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ztype // return the type of z
(
GrB_Type *ztype, // return type of output z
GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_BinaryOp_ztype'
returns the \verb'ztype' of the binary operator, which is the
type of $z$ in the function $z=f(x,y)$.
\begin{spec}
{\bf SPEC:} \verb'GxB_BinaryOp_ztype' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_xtype:} return the type of $x$}
%-------------------------------------------------------------------------------
\label{binaryop_xtype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_xtype // return the type of x
(
GrB_Type *xtype, // return type of input x
GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_BinaryOp_xtype'
returns the \verb'xtype' of the binary operator, which is the
type of $x$ in the function $z=f(x,y)$.
\begin{spec}
{\bf SPEC:} \verb'GxB_BinaryOp_xtype' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_BinaryOp\_ytype:} return the type of $y$}
%-------------------------------------------------------------------------------
\label{binaryop_ytype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_ytype // return the type of y
(
GrB_Type *ytype, // return type of input y
GrB_BinaryOp binaryop // binary operator to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_BinaryOp_ytype'
returns the \verb'ytype' of the binary operator, which is the
type of $y$ in the function $z=f(x,y)$.
\begin{spec}
{\bf SPEC:} \verb'GxB_BinaryOp_ytype' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_BinaryOp\_free:} free a user-defined binary operator}
%-------------------------------------------------------------------------------
\label{binaryop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created binary operator
(
GrB_BinaryOp *binaryop // handle of binary operator to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_BinaryOp_free' frees a user-defined binary operator.
Either usage:
{\small
\begin{verbatim}
GrB_BinaryOp_free (&op) ;
GrB_free (&op) ; \end{verbatim}}
\noindent
frees the \verb'op' and sets \verb'op' to \verb'NULL'.
It safely does nothing if passed a \verb'NULL'
handle, or if \verb'op == NULL' on input.
It does nothing at all if passed a built-in binary operator.
%-------------------------------------------------------------------------------
\subsubsection{{\sf ANY} and {\sf PAIR} operators}
%-------------------------------------------------------------------------------
\label{any_pair}
SuiteSparse:GraphBLAS v3.2.0 adds two new operators, \verb'ANY' and
\verb'PAIR'.
The \verb'PAIR' operator is simple to describe: just $f(x,y)=1$. It is called
the \verb'PAIR' operator since it returns 1 in a semiring when a pair of
entries $a_{ik}$ and $b_{kj}$ is found in the matrix multiply. This operator
is simple yet very useful. It allows purely symbolic computations to be
performed on matrices of any type, without having to typecast them to Boolean
with all values being true. Typecasting need not be performed on the inputs to
the \verb'PAIR' operator, and the \verb'PAIR' operator does not have to access
the values of the matrix, so it is a very fast operator to use.
The \verb'ANY' operator is very unusual, but very powerful. It is the function
$f(x,y)=x$, or $y$, where GraphBLAS has to freedom to select either $x$, or
$y$, at its own discretion. Do not confuse the \verb'ANY' operator with the
\verb'any' function in MATLAB, which computes a reduction using the logical OR
operator.
The \verb'ANY' function is associative and commutative, and can thus serve as
an operator for a monoid. The selection of $x$ are $y$ is not randomized.
Instead, SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible. When used in a dot product, \[ c_{ij} = \sum_k a_{ik} b_{kj} \] for
example, the computation can terminate as soon as any matching pair of entries
is found. When used in a parallel saxpy-style computation, the \verb'ANY'
operator allows for a relaxed form of synchronization to be used, resulting
in a fast benign race condition.
The result of the \verb'ANY' monoid is non-deterministic, unless it is
coupled with the \verb'PAIR' multiplicative operator. In this case,
the \verb'ANY_PAIR' semiring will return a deterministic result,
since $f(1,1)$ is always 1, for the \verb'ANY' operator $f(x,y)$.
When paired with a different operator, the results are non-deterministic. This
gives a powerful method when computing results for which any value selected by
the \verb'ANY' operator is valid. One such example is the breadth-first-search
tree. Suppose node $j$ is at level $v$, and there are multiple nodes $i$ at
level $v-1$ for which the edge $(i,j)$ exists in the graph. Any of these nodes
$i$ can serve as a valid parent in the BFS tree. Using the \verb'ANY'
operator, GraphBLAS can quickly compute a valid BFS tree; if it used again on
the same inputs, it might return a different, yet still valid, BFS tree, due to
the non-deterministic nature of intra-thread synchronization.
\newpage
%===============================================================================
\subsection{SuiteSparse:GraphBLAS select operators: {\sf GxB\_SelectOp}} %======
%===============================================================================
\label{selectop}
A select operator is a scalar function of the form
$z=f(i,j,m,n,a_{ij},\mbox{thunk})$ that is applied to the entries $a_{ij}$ of
an $m$-by-$n$ matrix. The domain (type) of $z$ is always boolean. The domain
(type) of $a_{ij}$ can be any built-in or user-defined type, or it can be
\verb'GrB_NULL' if the operator is type-generic.
The \verb'GxB_SelectOp' operator is used by \verb'GxB_select' (see Section
\ref{select}) to select entries from a matrix. Each entry \verb'A(i,j)' is
evaluated with the operator, which returns true if the entry is to be kept in
the output, or false if it is not to appear in the output. The signature of
the select function \verb'f' is as follows:
{\footnotesize
\begin{verbatim}
bool f // returns true if A(i,j) is kept
(
const GrB_Index i, // row index of A(i,j)
const GrB_Index j, // column index of A(i,j)
const GrB_Index nrows, // number of rows of A
const GrB_Index ncols, // number of columns of A
const void *x, // value of A(i,j), or NULL if f is type-generic
const void *thunk // user-defined auxiliary data
) ; \end{verbatim}}
Operators can be used on any type, including user-defined types, except that
the comparisons \verb'GT', \verb'GE', \verb'LT', and \verb'LE' can only be used
with built-in types. User-defined select operators can also be created.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name & MATLAB & description \\
& analog & \\
\hline
\verb'GxB_TRIL' & \verb'C=tril(A,k)' & true for \verb'A(i,j)' if \verb'(j-i) <= k' \\
\verb'GxB_TRIU' & \verb'C=triu(A,k)' & true for \verb'A(i,j)' if \verb'(j-i) >= k' \\
\verb'GxB_DIAG' & \verb'C=diag(A,k)' & true for \verb'A(i,j)' if \verb'(j-i) == k' \\
\verb'GxB_OFFDIAG' & \verb'C=A-diag(A,k)' & true for \verb'A(i,j)' if \verb'(j-i) != k' \\
\hline
\verb'GxB_NONZERO' & \verb'C=A(A~=0)' & true if \verb'A(i,j)' is nonzero\\
\verb'GxB_EQ_ZERO' & \verb'C=A(A==0)' & true if \verb'A(i,j)' is zero\\
\verb'GxB_GT_ZERO' & \verb'C=A(A>0)' & true if \verb'A(i,j)' is greater than zero \\
\verb'GxB_GE_ZERO' & \verb'C=A(A>=0)' & true if \verb'A(i,j)' is greater than or equal to zero \\
\verb'GxB_LT_ZERO' & \verb'C=A(A<0)' & true if \verb'A(i,j)' is less than zero \\
\verb'GxB_LE_ZERO' & \verb'C=A(A<=0)' & true if \verb'A(i,j)' is less than or equal to zero \\
\hline
\verb'GxB_NE_THUNK' & \verb'C=A(A~=k)' & true if \verb'A(i,j)' is not equal to \verb'k'\\
\verb'GxB_EQ_THUNK' & \verb'C=A(A==k)' & true if \verb'A(i,j)' is equal to \verb'k'\\
\verb'GxB_GT_THUNK' & \verb'C=A(A>k)' & true if \verb'A(i,j)' is greater than \verb'k' \\
\verb'GxB_GE_THUNK' & \verb'C=A(A>=k)' & true if \verb'A(i,j)' is greater than or equal to \verb'k' \\
\verb'GxB_LT_THUNK' & \verb'C=A(A<k)' & true if \verb'A(i,j)' is less than \verb'k' \\
\verb'GxB_LE_THUNK' & \verb'C=A(A<=k)' & true if \verb'A(i,j)' is less than or equal to \verb'k' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}
\begin{spec}
{\bf SPEC:} \verb'GxB_SelectOp' and the table above
are extensions to the spec.
\end{spec}
The following methods operate on the \verb'GxB_SelectOp' object:
\vspace{0.1in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_SelectOp_new' & create a user-defined select operator \\
\verb'GxB_SelectOp_wait' & wait for a user-defined select operator \\
\verb'GxB_SelectOp_xtype' & return the type of the input $x$ \\
\verb'GxB_SelectOp_ttype' & return the type of the input {\em thunk} \\
\verb'GxB_SelectOp_free' & free a user-defined select operator \\
\hline
\end{tabular}
}
\vspace{0.1in}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_SelectOp\_new:} create a user-defined select operator}
%-------------------------------------------------------------------------------
\label{selectop_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_SelectOp_new // create a new user-defined select operator
(
GxB_SelectOp *selectop, // handle for the new select operator
void *function, // pointer to the select function
GrB_Type xtype, // type of input x, or NULL if type-generic
GrB_Type ttype // type of input thunk, or NULL if type-generic
) ;
\end{verbatim} }\end{mdframed}
\verb'GxB_SelectOp_new' creates a new select operator. The new operator is
returned in the \verb'selectop' handle, which must not be \verb'NULL' on input.
On output, its contents contains a pointer to the new select operator.
The \verb'function' argument to \verb'GxB_SelectOp_new' is a pointer to a
user-defined function whose signature is given at the beginning of
Section~\ref{selectop}. Given the properties of an entry $a_{ij}$ in an
$m$-by-$n$ matrix, the \verb'function' should return \verb'true' if the entry
should be kept in the output of \verb'GxB_select', or \verb'false' if it should
not appear in the output.
The type \verb'xtype' is the GraphBLAS type of the input $x$ of the
user-defined function $z=f(i,j,m,n,x,\mbox{thunk})$. The type may be built-in
or user-defined, or it may even be \verb'GrB_NULL'. If the \verb'xtype' is
\verb'GrB_NULL', then the \verb'selectop' is type-generic.
The type \verb'ttype' is the GraphBLAS type of the input {\em thunk} of the
user-defined function $z=f(i,j,m,n,x,\mbox{thunk})$. The type may be built-in
or user-defined, or it may even be \verb'GrB_NULL'. If the \verb'ttype' is
\verb'GrB_NULL', then the \verb'selectop' does not access this parameter.
The \verb'const void *thunk' parameter on input to the user \verb'function'
will be passed as \verb'NULL'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GB\_SelectOp\_wait:} wait for a select operator}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_SelectOp_wait // wait for a user-defined select operator
(
GxB_SelectOp *selectop // select operator to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined select operator, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation.
\verb'GxB_SelectOp_wait(&selectop)' ensures the \verb'selectop' is completed.
SuiteSparse:GraphBLAS currently does nothing for
\verb'GxB_SelectOp_wait(&selectop)', except to ensure that the \verb'selectop'
is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_SelectOp\_xtype:} return the type of $x$}
%-------------------------------------------------------------------------------
\label{selectop_xtype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_SelectOp_xtype // return the type of x
(
GrB_Type *xtype, // return type of input x
GxB_SelectOp selectop // select operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_SelectOp_xtype' returns the \verb'xtype' of the select operator,
which is the type of $x$ in the function $z=f(i,j,m,n,x,\mbox{thunk})$. If the
select operator is type-generic, \verb'xtype' is returned as \verb'GrB_NULL'.
This is not an error condition, but simply indicates that the
\verb'selectop' is type-generic.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_SelectOp\_ttype:} return the type of the {\em thunk}}
%-------------------------------------------------------------------------------
\label{selectop_ttype}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_SelectOp_ttype // return the type of thunk
(
GrB_Type *ttype, // return type of input thunk
GxB_SelectOp selectop // select operator
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_SelectOp_ttype' returns the \verb'ttype' of the select operator,
which is the type of {\em thunk} in the function $z=f(i,j,m,n,x,\mbox{thunk})$.
If the select operator does not use this parameter, \verb'ttype' is returned as
\verb'GrB_NULL'. This is not an error condition, but simply indicates that the
\verb'selectop' does not use this parameter.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_SelectOp\_free:} free a user-defined select operator}
%-------------------------------------------------------------------------------
\label{selectop_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created select operator
(
GxB_SelectOp *selectop // handle of select operator to free
) ;
\end{verbatim}
}\end{mdframed}
\verb'GxB_SelectOp_free' frees a user-defined select operator. Either usage:
{\small
\begin{verbatim}
GxB_SelectOp_free (&selectop) ;
GrB_free (&selectop) ; \end{verbatim}}
\noindent
frees the \verb'selectop' and sets \verb'selectop' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb'selectop == NULL' on
input. It does nothing at all if passed a built-in select operator.
\newpage
%===============================================================================
\subsection{GraphBLAS monoids: {\sf GrB\_Monoid}} %=============================
%===============================================================================
\label{monoid}
A {\em monoid} is defined on a single domain (that is, a single type), $T$. It
consists of an associative binary operator $z=f(x,y)$ whose three operands $x$,
$y$, and $z$ are all in this same domain $T$ (that is $T \times T \rightarrow
T$). The associative operator must also have an identity element, or ``zero''
in this domain, such that $f(x,0)=f(0,x)=x$. Recall that an associative
operator $f(x,y)$ is one for which the condition $f(a, f(b,c)) = f(f (a,b),c)$
always holds. That is, operator can be applied in any order and the results
remain the same.
Predefined binary operators that can be used to form monoids are listed in the
table below. Most of these are the binary operators of predefined monoids,
except that the bitwise monoids are predefined only for the unsigned integer
types, not the signed integers.
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lllll}
\hline
GraphBLAS & types (domains) & expression & identity & terminal \\
operator & & $z=f(x,y)$ & & \\
\hline
% numeric TxT->T
\verb'GrB_PLUS_'$T$ & $T \times T \rightarrow T$ & $z = x+y$ & 0 & none \\
\verb'GrB_TIMES_'$T$ & $T \times T \rightarrow T$ & $z = xy$ & 1 & 0 (not $F$) \\
\verb'GxB_ANY_'$T$ & $T \times T \rightarrow T$ & $z = x$ or $y$ & any & any \\
\hline
\verb'GrB_MIN_'$R$ & $R \times R \rightarrow R$ & $z = \min(x,y)$ & $+\infty$ & $-\infty$ \\
\verb'GrB_MAX_'$R$ & $R \times R \rightarrow R$ & $z = \max(x,y)$ & $-\infty$ & $+\infty$ \\
\hline
% bool x bool -> bool
\verb'GrB_LOR' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \vee y $ & false & true \\
\verb'GrB_LAND' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \wedge y $ & true & false \\
\verb'GrB_LXOR' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \veebar y $ & false & none \\
\verb'GrB_LXNOR' & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z =(x == y)$ & true & none \\
\hline
% bitwise
\verb'GrB_BOR_'$I$ & $I$ $\times$ $I$ $\rightarrow$ $I$ & \verb'z=x|y' & all bits zero & all bits one \\
\verb'GrB_BAND_'$I$ & $I$ $\times$ $I$ $\rightarrow$ $I$ & \verb'z=x&y' & all bits one & all bits zero \\
\verb'GrB_BXOR_'$I$ & $I$ $\times$ $I$ $\rightarrow$ $I$ & \verb'z=x^y' & all bits zero & none \\
\verb'GrB_BXNOR_'$I$ & $I$ $\times$ $I$ $\rightarrow$ $I$ & \verb'z=~(x^y)' & all bits one & none \\
\hline
\end{tabular}
}
\vspace{0.2in}
The above table lists the GraphBLAS operator, its type, expression, identity
value, and {\em terminal} value (if any). For these built-in operators, the
terminal values are the {\em annihilators} of the function, which is the value
$z$ so that $z=f(z,y)$ regardless of the value of $y$. For example
$\min(-\infty,y) = -\infty$ for any $y$. For integer domains, $+\infty$ and
$-\infty$ are the largest and smallest integer in their range. With unsigned
integers, the smallest value is zero, and thus \verb'GrB_MIN_UINT8' has an
identity of 255 and a terminal value of 0.
When computing with a monoid, the computation can terminate early if the
terminal value arises. No further work is needed since the result will not
change. This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator. See Section~\ref{monoid_terminal_new} for an example.
The \verb'GxB_ANY_*' monoid can terminate as soon as it finds any value at all.
The \verb'GrB_TIMES_FP*' operators do not have a terminal value of zero, since
they comply with the IEEE 754 standard, and \verb'0*NaN' is not zero, but
\verb'NaN'. Technically, their terminal value is \verb'NaN', but this value is
rare in practice and thus the terminal condition is not worth checking.
% 40: (min,max,+,*) x (int8,16,32,64, uint8,16,32,64, fp32, fp64)
The C API Specification includes 44 predefined monoids, with the naming
convention \verb'GrB_op_MONOID_type'. Forty monoids are available for the four
operators \verb'MIN', \verb'MAX', \verb'PLUS', and \verb'TIMES', each with the
10 non-boolean real types. Four boolean monoids are predefined:
\verb'GrB_LOR_MONOID_BOOL', \verb'GrB_LAND_MONOID_BOOL',
\verb'GrB_LXOR_MONOID_BOOL', and \verb'GrB_LXNOR_MONOID_BOOL'.
% 13 ANY
% 4 complex (PLUS, TIMES)
% 16 bitwise
% 33 total
These all appear in SuiteSparse:GraphBLAS, which adds 33 additional predefined
\verb'GxB*' monoids, with the naming convention \verb'GxB_op_type_MONOID'. The
\verb'ANY' operator can be used for all 13 types (including complex). The
\verb'PLUS' and \verb'TIMES' operators are provided for both complex types, for
4 additional complex monoids. Sixteen monoids are predefined for four bitwise
operators (\verb'BOR', \verb'BAND', \verb'BXOR', and \verb'BNXOR'), each with
four unsigned integer types (\verb'UINT8', \verb'UINT16', \verb'UINT32', and
\verb'UINT64').
The next sections define the following methods for the \verb'GrB_Monoid'
object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_Monoid_new' & create a user-defined monoid \\
\verb'GrB_Monoid_wait' & wait for a user-defined monoid \\
\verb'GxB_Monoid_terminal_new' & create a monoid that has a terminal value\\
\verb'GxB_Monoid_operator' & return the monoid operator \\
\verb'GxB_Monoid_identity' & return the monoid identity value \\
\verb'GxB_Monoid_terminal' & return the monoid terminal value (if any) \\
\verb'GrB_Monoid_free' & free a monoid \\
\hline
\end{tabular}
}
\vspace{0.2in}
\begin{spec}
{\bf SPEC:} The predefined \verb'GxB*' monoids are an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_new:} create a monoid}
%-------------------------------------------------------------------------------
\label{monoid_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Monoid_new // create a monoid
(
GrB_Monoid *monoid, // handle of monoid to create
GrB_BinaryOp op, // binary operator of the monoid
<type> identity // identity value of the monoid
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Monoid_new' creates a monoid. The operator, \verb'op', must be an
associative binary operator, either built-in or user-defined.
In the definition above, \verb'<type>' is a place-holder for the specific type
of the monoid. For built-in types, it is the C type corresponding to the
built-in type (see Section~\ref{type}), such as \verb'bool', \verb'int32_t',
\verb'float', or \verb'double'. In this case, \verb'identity' is a
scalar value of the particular type, not a pointer. For
user-defined types, \verb'<type>' is \verb'void *', and thus \verb'identity' is
a not a scalar itself but a \verb'void *' pointer to a memory location
containing the identity value of the user-defined operator, \verb'op'.
If \verb'op' is a built-in operator with a known identity value, then the
\verb'identity' parameter is ignored, and its known identity value is used
instead.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_wait:} wait for a monoid}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Monoid_wait // wait for a user-defined monoid
(
GrB_Monoid *monoid // monoid to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined monoid, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation. \verb'GrB_Monoid_wait(&monoid)'
ensures the \verb'monoid' is completed. SuiteSparse:GraphBLAS currently does
nothing for \verb'GrB_Monoid_wait(&monoid)', except to ensure that the
\verb'monoid' is valid.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal\_new:} create a monoid with terminal}
%-------------------------------------------------------------------------------
\label{monoid_terminal_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal_new // create a monoid that has a terminal value
(
GrB_Monoid *monoid, // handle of monoid to create
GrB_BinaryOp op, // binary operator of the monoid
<type> identity, // identity value of the monoid
<type> terminal // terminal value of the monoid
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_terminal_new' is identical to \verb'GrB_Monoid_new', except
that it allows for the specification of a {\em terminal value}. The
\verb'<type>' of the terminal value is the same as the \verb'identity'
parameter; see Section~\ref{monoid_new} for details.
The terminal value of a monoid is the value $z$ for which $z=f(z,y)$ for any
$y$, where $z=f(x,y)$ is the binary operator of the monoid. This is also
called the {\em annihilator}, but the term {\em terminal value} is used here.
This is because all annihilators are terminal values, but a terminal value need
not be an annihilator, as described in the \verb'MIN' example below.
If the terminal value is encountered during computation, the rest of the
computations can be skipped. This can greatly improve the performance of
\verb'GrB_reduce', and matrix multiply in specific cases (when a dot product
method is used). For example, using \verb'GrB_reduce' to compute the sum of
all entries in a \verb'GrB_FP32' matrix with $e$ entries takes $O(e)$ time,
since a monoid based on \verb'GrB_PLUS_FP32' has no terminal value. By
contrast, a reduction using \verb'GrB_LOR' on a \verb'GrB_BOOL' matrix can take
as little as $O(1)$ time, if a \verb'true' value is found in the matrix very
early.
Monoids based on the built-in \verb'GrB_MIN_*' and \verb'GrB_MAX_*' operators
(for any type), the boolean \verb'GrB_LOR', and the boolean \verb'GrB_LAND'
operators all have terminal values. For example, the identity value of
\verb'GrB_LOR' is \verb'false', and its terminal value is \verb'true'. When
computing a reduction of a set of boolean values to a single value, once a
\verb'true' is seen, the computation can exit early since the result is now
known.
If \verb'op' is a built-in operator with known identity and terminal values,
then the \verb'identity' and \verb'terminal' parameters are ignored, and its
known identity and terminal values are used instead.
There may be cases in which the user application needs to use a non-standard
terminal value for a built-in operator. For example, suppose the matrix has
type \verb'GrB_FP32', but all values in the matrix are known to be
non-negative. The annihilator value of \verb'MIN' is \verb'-INFINITY', but
this will never be seen. However, the computation could could terminate when
finding the value zero. This is an example of using a terminal value that is
not actually an annihilator, but it functions like one since the monoid will
operate strictly on non-negative values. In this case, a monoid created with
\verb'GrB_MIN_FP32' will not terminate early. To create a monoid that can
terminate early, create a user-defined operator that computes the same thing as
\verb'GrB_MIN_FP32', and then create a monoid based on this user-defined
operator with a terminal value of zero and an identity of \verb'+INFINITY'.
\begin{spec}
{\bf SPEC:} \verb'GxB_Monoid_terminal_new' is an extension to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_operator:} return the monoid operator}
%-------------------------------------------------------------------------------
\label{monoid_operator}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_operator // return the monoid operator
(
GrB_BinaryOp *op, // returns the binary op of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_operator' returns the binary operator of the monoid.
\begin{spec}
{\bf SPEC:} \verb'GxB_Monoid_operator' is an extension to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_identity:} return the monoid identity}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_identity // return the monoid identity
(
void *identity, // returns the identity of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_identity' returns the identity value of the monoid. The
\verb'void *' pointer, \verb'identity', must be non-\verb'NULL' and must point
to a memory space of size at least equal to the size of the type of the
\verb'monoid'. The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.
\begin{spec}
{\bf SPEC:} \verb'GxB_Monoid_identity' is an extension to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal:} return the monoid terminal value}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal // return the monoid terminal
(
bool *has_terminal, // true if the monoid has a terminal value
void *terminal, // returns the terminal of the monoid
GrB_Monoid monoid // monoid to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Monoid_terminal' returns the terminal value of the monoid (if any).
The \verb'void *' pointer, \verb'terminal', must be non-\verb'NULL' and must
point to a memory space of size at least equal to the size of the type of the
\verb'monoid'. The type size can be obtained via \verb'GxB_Monoid_operator' to
return the monoid additive operator, then \verb'GxB_BinaryOp_ztype' to obtain
the \verb'ztype', followed by \verb'GxB_Type_size' to get its size.
If the monoid has a terminal value, then \verb'has_terminal' is \verb'true',
and its value is returned in the \verb'terminal' parameter. If it has no
terminal value, then \verb'has_terminal' is \verb'false', and the
\verb'terminal' parameter is not modified.
\begin{spec}
{\bf SPEC:} \verb'GxB_Monoid_terminal' is an extension to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_free:} free a monoid}
%-------------------------------------------------------------------------------
\label{monoid_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created monoid
(
GrB_Monoid *monoid // handle of monoid to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Monoid_frees' frees a monoid. Either usage:
{\small
\begin{verbatim}
GrB_Monoid_free (&monoid) ;
GrB_free (&monoid) ; \end{verbatim}}
\noindent
frees the \verb'monoid' and sets \verb'monoid' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'monoid == NULL' on input.
It does nothing at all if passed a built-in monoid.
\newpage
%===============================================================================
\subsection{GraphBLAS semirings: {\sf GrB\_Semiring}} %=========================
%===============================================================================
\label{semiring}
A {\em semiring} defines all the operators required to define the
multiplication of two sparse matrices in GraphBLAS, ${\bf C=AB}$. The ``add''
operator is a commutative and associative monoid, and the binary ``multiply''
operator defines a function $z=fmult(x,y)$ where the type of $z$ matches the
exactly with the monoid type. SuiteSparse:GraphBLAS includes 1,473 predefined
built-in semirings. The next sections define the following methods for the
\verb'GrB_Semiring' object:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_Semiring_new' & create a user-defined semiring \\
\verb'GrB_Semiring_wait' & wait for a user-defined semiring \\
\verb'GxB_Semiring_add' & return the additive monoid of a semiring \\
\verb'GxB_Semiring_multiply' & return the binary operator of a semiring \\
\verb'GrB_Semiring_free' & free a semiring \\
\hline
\end{tabular}
}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_new:} create a semiring}
%-------------------------------------------------------------------------------
\label{semiring_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Semiring_new // create a semiring
(
GrB_Semiring *semiring, // handle of semiring to create
GrB_Monoid add, // add monoid of the semiring
GrB_BinaryOp multiply // multiply operator of the semiring
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Semiring_new' creates a new semiring, with \verb'add' being the
additive monoid and \verb'multiply' being the binary ``multiply'' operator. In
addition to the standard error cases, the function returns
\verb'GrB_DOMAIN_MISMATCH' if the output (\verb'ztype') domain of
\verb'multiply' does not match the domain of the \verb'add' monoid. Using
built-in types and operators, 2,438 semirings can be built. This count
excludes redundant Boolean operators (for example \verb'GrB_TIMES_BOOL' and
\verb'GrB_LAND' are different operators but they are redundant since they
always return the same result).
The v1.3 C API Specification for GraphBLAS includes 124 predefined semirings,
with names of the form \verb'GrB_add_mult_SEMIRING_type', where \verb'add' is
the operator of the additive monoid, \verb'mult' is the multiply operator, and
\verb'type' is the type of the input $x$ to the multiply operator, $f(x,y)$.
The name of the domain for the additive monoid does not appear in the name,
since it always matches the type of the output of the \verb'mult' operator.
Twelve kinds of \verb'GrB*' semirings are available for all 10 real, non-boolean types:
\verb'PLUS_TIMES', \verb'PLUS_MIN',
\verb'MIN_PLUS', \verb'MIN_TIMES', \verb'MIN_FIRST', \verb'MIN_SECOND', \verb'MIN_MAX',
\verb'MAX_PLUS', \verb'MAX_TIMES', \verb'MAX_FIRST', \verb'MAX_SECOND', and \verb'MAX_MIN'.
Four semirings are for boolean types only:
\verb'LOR_LAND', \verb'LAND_LOR', \verb'LXOR_LAND', and \verb'LXNOR_LOR'.
SuiteSparse:GraphBLAS pre-defines 1,473 of the 2,438 unique semirings that can
be constructed from built-in types and operators, listed below, as an extension
to the spec. The naming convention is \verb'GxB_add_mult_type'. The 124
\verb'GrB*' semirings are a subset of the list below, included with two names:
\verb'GrB*' and \verb'GxB*'. If the \verb'GrB*' name is provided, its use is
preferred, for portability to other GraphBLAS implementations.
\vspace{-0.05in}
\begin{itemize}
\item 1000 semirings with a multiplier $T \times T \rightarrow T$ where $T$ is
any of the 10 non-Boolean, real types, from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 add monoids (\verb'MIN', \verb'MAX', \verb'PLUS', \verb'TIMES', \verb'ANY')
\item 20 multiply operators
(\verb'FIRST', \verb'SECOND', \verb'PAIR', \verb'MIN', \verb'MAX',
\verb'PLUS', \verb'MINUS', \verb'RMINUS', \verb'TIMES', \verb'DIV', \verb'RDIV',
\verb'ISEQ', \verb'ISNE', \verb'ISGT',
\verb'ISLT', \verb'ISGE', \verb'ISLE',
\verb'LOR', \verb'LAND', \verb'LXOR').
\item 10 non-Boolean types, $T$
\end{itemize}
\item 300 semirings with a comparison operator $T \times T \rightarrow$
\verb'bool', where $T$ is non-Boolean and real, from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 Boolean add monoids
(\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
\item 6 multiply operators
(\verb'EQ', \verb'NE', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
\item 10 non-Boolean types, $T$
\end{itemize}
\item 55 semirings with purely Boolean types, \verb'bool' $\times$ \verb'bool'
$\rightarrow$ \verb'bool', from the complete cross product of:
\vspace{-0.05in}
\begin{itemize}
\item 5 Boolean add monoids
(\verb'LAND', \verb'LOR', \verb'LXOR', \verb'EQ', \verb'ANY')
\item 11 multiply operators
(\verb'FIRST', \verb'SECOND', \verb'PAIR', \verb'LOR', \verb'LAND', \verb'LXOR',
\verb'EQ', \verb'GT', \verb'LT', \verb'GE', \verb'LE')
\end{itemize}
\item 54 complex semirings, $Z \times Z \rightarrow Z$ where $Z$ is
\verb'GxB_FC32' (single precision complex) or
\verb'GxB_FC64' (double precision complex):
\vspace{-0.05in}
\begin{itemize}
\item 3 complex monoids (\verb'PLUS', \verb'TIMES', \verb'ANY')
\item 9 complex multiply operators:
(\verb'FIRST', \verb'SECOND', \verb'PAIR', \verb'PLUS', \verb'MINUS',
\verb'TIMES', \verb'DIV', \verb'RDIV', \verb'RMINUS')
\item 2 complex types, $Z$
\end{itemize}
\item 64 bitwise semirings, $U \times U \rightarrow U$ where $U$ is
an unsigned integer.
\vspace{-0.05in}
\begin{itemize}
\item 4 bitwise monoids (\verb'BOR', \verb'BAND', \verb'BXOR', \verb'BXNOR')
\item 4 bitwise multiply operators (the same list)
\item 4 unsigned integer types
\end{itemize}
\end{itemize}
\begin{spec}
{\bf SPEC:} Predefined \verb'GxB*' semirings are an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_wait:} wait for a semiring}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Semiring_wait // wait for a user-defined semiring
(
GrB_Semiring *semiring // semiring to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined semiring, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.
\verb'GrB_Semiring_wait(&semiring)' ensures the \verb'semiring' is completed.
SuiteSparse:GraphBLAS currently does nothing for
\verb'GrB_Semiring_wait(&semiring)', except to ensure that the \verb'semiring'
is valid.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_add:} return the additive monoid of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_add}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_add // return the add monoid of a semiring
(
GrB_Monoid *add, // returns add monoid of the semiring
GrB_Semiring semiring // semiring to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Semiring_add' returns the additive monoid of a semiring.
\begin{spec}
{\bf SPEC:} \verb'GxB_Semiring_add' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Semiring\_multiply:} return multiply operator of a semiring}
%-------------------------------------------------------------------------------
\label{semiring_multiply}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring
(
GrB_BinaryOp *multiply, // returns multiply operator of the semiring
GrB_Semiring semiring // semiring to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Semiring_multiply' returns the binary multiplicative operator of a
semiring.
\begin{spec}
{\bf SPEC:} \verb'GxB_Semiring_multiply' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Semiring\_free:} free a semiring}
%-------------------------------------------------------------------------------
\label{semiring_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a user-created semiring
(
GrB_Semiring *semiring // handle of semiring to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Semiring_free' frees a semiring. Either usage:
{\small
\begin{verbatim}
GrB_Semiring_free (&semiring) ;
GrB_free (&semiring) ; \end{verbatim}}
\noindent
frees the \verb'semiring' and sets \verb'semiring' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb'semiring == NULL' on
input. It does nothing at all if passed a built-in semiring.
\newpage
%===============================================================================
\subsection{GraphBLAS scalars: {\sf GxB\_Scalar}} %=============================
%===============================================================================
\label{scalar}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse scalar, \verb'GxB_Scalar':
\begin{spec}
{\bf SPEC:} \verb'GxB_Scalar' is an extension to the spec.
\end{spec}
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_Scalar_new' & create a sparse scalar \\
\verb'GxB_Scalar_wait' & wait for a scalar \\
\verb'GxB_Scalar_dup' & copy a sparse scalar \\
\verb'GxB_Scalar_clear' & clear a sparse scalar of its entry \\
\verb'GxB_Scalar_nvals' & return the number of entries in a
sparse scalar (0 or 1) \\
\verb'GxB_Scalar_type' & return the type of a sparse scalar \\
\verb'GxB_Scalar_setElement' & set the single entry of a sparse scalar \\
\verb'GxB_Scalar_extractElement' & get the single entry from a sparse scalar \\
\verb'GxB_Scalar_free' & free a sparse scalar \\
\hline
\end{tabular}
}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_new:} create a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_new // create a new GxB_Scalar with no entry
(
GxB_Scalar *s, // handle of GxB_Scalar to create
GrB_Type type // type of GxB_Scalar to create
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_new' creates a new sparse scalar with no
entry in it, of the given type. This is analogous to MATLAB statement
\verb's = sparse (0)', except that GraphBLAS can create sparse scalars any
type. The pattern of the new scalar is empty.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_wait:} wait for a scalar}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_wait // wait for a scalar
(
GxB_Scalar *s // scalar to wait for
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GxB_Scalar' may be delayed.
In this case, the scalar is not yet safe to use by multiple independent user
threads. A user application may force completion of a scalar \verb's' via
\verb'GxB_Scalar_wait(&s)'. After this call, different user threads may safely
call GraphBLAS operations that use the scalar \verb's' as an input parameter.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_dup:} copy a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_dup // make an exact copy of a GxB_Scalar
(
GxB_Scalar *s, // handle of output GxB_Scalar to create
const GxB_Scalar t // input GxB_Scalar to copy
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_dup' makes a deep copy of a sparse scalar, like \verb's=t' in
MATLAB. In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GxB_Scalar t, s ;
GxB_Scalar_new (&t, GrB_FP64) ;
s = t ; // s is a shallow copy of t \end{verbatim}}
Then \verb's' and \verb't' can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different sparse scalars are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GxB_Scalar t, s ;
GxB_Scalar_new (&t, GrB_FP64) ;
GxB_Scalar_dup (&s, t) ; // like s = t, but making a deep copy \end{verbatim}}
Then \verb's' and \verb't' are two different sparse scalars that currently have
the same value, but they do not depend on each other. Modifying one has no
effect on the other.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_clear:} clear a sparse scalar of its entry}
%-------------------------------------------------------------------------------
\label{scalar_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_clear // clear a GxB_Scalar of its entry
( // type remains unchanged.
GxB_Scalar s // GxB_Scalar to clear
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_clear' clears the entry from a sparse scalar. The pattern of
\verb's' is empty, just as if it were created fresh with \verb'GxB_Scalar_new'.
Analogous with \verb's = sparse (0)' in MATLAB. The type of \verb's' does not
change. Any pending updates to the sparse scalar are discarded.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_nvals:} return the number of entries in a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_nvals // get the number of entries in a GxB_Scalar
(
GrB_Index *nvals, // GxB_Scalar has nvals entries (0 or 1)
const GxB_Scalar s // GxB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_nvals' returns the number of entries in a sparse scalar, which
is either 0 or 1. Roughly analogous to \verb'nvals = nnz(s)' in MATLAB, except
that the implicit value in GraphBLAS need not be zero and \verb'nnz' (short for
``number of nonzeros'') in MATLAB is better described as ``number of entries''
in GraphBLAS.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_type:} return the type of a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_type}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_type // get the type of a GxB_Scalar
(
GrB_Type *type, // returns the type of the GxB_Scalar
const GxB_Scalar s // GxB_Scalar to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_type' returns the type of a sparse scalar. Analogous to
\verb'type = class (s)' in MATLAB.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_setElement:} set the single entry of a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_setElement // s = x
(
GxB_Scalar s, // GxB_Scalar to modify
<type> x // user scalar to assign to s
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Scalar_setElement' sets the single entry in a sparse scalar, like
\verb's = sparse(x)' in MATLAB notation. For further details of this function,
see \verb'GxB_Matrix_setElement' in Section~\ref{matrix_setElement}.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_extractElement:} get the single entry from a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_extractElement // x = s
(
<type> *x, // user scalar extracted
const GxB_Scalar s // GxB_Sclar to extract an entry from
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Scalar_extractElement' extracts the single entry from a sparse
scalar, like \verb'x = full(s)' in MATLAB. Further details of this method are
discussed in Section~\ref{matrix_extractElement}, which discusses
\verb'GrB_Matrix_extractElement'. {\bf NOTE: } if no entry is present in the
sparse scalar \verb's', then \verb'x' is not modified, and the return value of
\verb'GxB_Scalar_extractElement' is \verb'GrB_NO_VALUE'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Scalar\_free:} free a sparse scalar}
%-------------------------------------------------------------------------------
\label{scalar_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a GxB_Scalar
(
GxB_Scalar *s // handle of GxB_Scalar to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Scalar_free' frees a sparse scalar. Either usage:
{\small
\begin{verbatim}
GxB_Scalar_free (&s) ;
GrB_free (&s) ; \end{verbatim}}
\noindent
frees the sparse scalar \verb's' and sets \verb's' to \verb'NULL'. It safely
does nothing if passed a \verb'NULL' handle, or if \verb's == NULL' on input.
Any pending updates to the sparse scalar are abandoned.
\newpage
%===============================================================================
\subsection{GraphBLAS vectors: {\sf GrB\_Vector}} %=============================
%===============================================================================
\label{vector}
Many of the methods for GraphBLAS vectors require a row index or a size. Many
methods for matrices require both a row and column index, or a row and column
dimension. These are all integers of a specific type, \verb'GrB_Index',
which is defined in \verb'GraphBLAS.h' as
{\footnotesize
\begin{verbatim}
typedef uint64_t GrB_Index ; \end{verbatim}}
Row and column indices of an \verb'nrows'-by-\verb'ncols' matrix range from
zero to the \verb'nrows-1' for the rows, and zero to \verb'ncols-1' for the
columns. Indices are zero-based, like C, and not one-based, like MATLAB. In
SuiteSparse:GraphBLAS, the largest size permitted for any integer of
\verb'GrB_Index' is $2^{60}$. The largest \verb'GrB_Matrix' that
SuiteSparse:GraphBLAS can construct is thus $2^{60}$-by-$2^{60}$. An
$n$-by-$n$ matrix $A$ that size can easily be constructed in practice with
$O(|{\bf A}|)$ memory requirements, where $|{\bf A}|$ denotes the number of
entries that explicitly appear in the pattern of ${\bf A}$. The time and
memory required to construct a matrix that large does not depend on $n$, since
SuiteSparse:GraphBLAS can represent ${\bf A}$ in hypersparse form (see
Section~\ref{hypersparse}). The largest \verb'GrB_Vector' that can be
constructed is $2^{60}$-by-1.
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse vector, \verb'GrB_Vector':
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_Vector_new' & create a vector \\
\verb'GrB_Vector_wait' & wait for a vector \\
\verb'GrB_Vector_dup' & copy a vector \\
\verb'GrB_Vector_clear' & clear a vector of all entries \\
\verb'GrB_Vector_size' & return the size of a vector \\
\verb'GrB_Vector_nvals' & return the number of entries in a vector \\
\verb'GxB_Vector_type' & return the type of a vector \\
\verb'GrB_Vector_build' & build a vector from a set of tuples \\
\verb'GrB_Vector_setElement' & add a single entry to a vector \\
\verb'GrB_Vector_extractElement' & get a single entry from a vector \\
\verb'GrB_Vector_removeElement' & remove a single entry from a vector \\
\verb'GrB_Vector_extractTuples' & get all entries from a vector \\
\verb'GrB_Vector_resize' & resize a vector \\
\verb'GrB_Vector_free' & free a vector \\
\hline
\verb'GxB_Vector_import' & import a vector
(see Section~\ref{import_export})\\
\verb'GxB_Vector_export' & export a vector
(see Section~\ref{import_export})\\
\hline
\end{tabular}
}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_new:} create a vector}
%-------------------------------------------------------------------------------
\label{vector_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_new // create a new vector with no entries
(
GrB_Vector *v, // handle of vector to create
GrB_Type type, // type of vector to create
GrB_Index n // vector dimension is n-by-1
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_new' creates a new \verb'n'-by-\verb'1' sparse vector with no
entries in it, of the given type. This is analogous to MATLAB statement
\verb'v = sparse (n,1)', except that GraphBLAS can create sparse vectors any
type. The pattern of the new vector is empty.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_wait:} wait for a vector}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_wait // wait for a vector
(
GrB_Vector *w // vector to wait for
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Vector' may be delayed.
In this case, the vector is not yet safe to use by multiple independent user
threads. A user application may force completion of a vector \verb'w' via
\verb'GrB_Vector_wait(&w)'. After this call, different user threads may safely
call GraphBLAS operations that use the vector \verb'w' as an input parameter.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_dup:} copy a vector}
%-------------------------------------------------------------------------------
\label{vector_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_dup // make an exact copy of a vector
(
GrB_Vector *w, // handle of output vector to create
const GrB_Vector u // input vector to copy
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_dup' makes a deep copy of a sparse vector, like \verb'w=u' in
MATLAB. In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
w = u ; // w is a shallow copy of u \end{verbatim}}
Then \verb'w' and \verb'u' can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different vectors are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Vector u, w ;
GrB_Vector_new (&u, GrB_FP64, n) ;
GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy \end{verbatim}}
Then \verb'w' and \verb'u' are two different vectors that currently have the
same set of values, but they do not depend on each other. Modifying one has
no effect on the other.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_clear:} clear a vector of all entries}
%-------------------------------------------------------------------------------
\label{vector_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_clear // clear a vector of all entries;
( // type and dimension remain unchanged.
GrB_Vector v // vector to clear
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_clear' clears all entries from a vector. All values
\verb'v(i)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the vector. The pattern of \verb'v' is
empty, just as if it were created fresh with \verb'GrB_Vector_new'. Analogous
with \verb'v (:) = sparse(0)' in MATLAB. The type and dimension of \verb'v' do
not change. Any pending updates to the vector are discarded.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_size:} return the size of a vector}
%-------------------------------------------------------------------------------
\label{vector_size}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_size // get the dimension of a vector
(
GrB_Index *n, // vector dimension is n-by-1
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_size' returns the size of a vector (the number of rows).
Analogous to \verb'n = length(v)' or \verb'n = size(v,1)' in MATLAB.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_nvals:} return the number of entries in a vector}
%-------------------------------------------------------------------------------
\label{vector_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_nvals // get the number of entries in a vector
(
GrB_Index *nvals, // vector has nvals entries
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_nvals' returns the number of entries in a vector. Roughly
analogous to \verb'nvals = nnz(v)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_type:} return the type of a vector}
%-------------------------------------------------------------------------------
\label{vector_type}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_type // get the type of a vector
(
GrB_Type *type, // returns the type of the vector
const GrB_Vector v // vector to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_type' returns the type of a vector. Analogous to
\verb'type = class (v)' in MATLAB.
\begin{spec}
{\bf SPEC:} \verb'GxB_Vector_type' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_build:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build // build a vector from (I,X) tuples
(
GrB_Vector w, // vector to build
const GrB_Index *I, // array of row indices of tuples
const <type> *X, // array of values of tuples
GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_build' constructs a sparse vector \verb'w' from a set of
tuples, \verb'I' and \verb'X', each of length \verb'nvals'. The vector
\verb'w' must have already been initialized with \verb'GrB_Vector_new', and it
must have no entries in it before calling \verb'GrB_Vector_build'.
This function is just like \verb'GrB_Matrix_build' (see
Section~\ref{matrix_build}), except that it builds a sparse vector instead of a
sparse matrix. For a description of what \verb'GrB_Vector_build' does, refer
to \verb'GrB_Matrix_build'. For a vector, the list of column indices \verb'J'
in \verb'GrB_Matrix_build' is implicitly a vector of length \verb'nvals' all
equal to zero. Otherwise the methods are identical.
\begin{spec}
{\bf SPEC:} As an extension to the spec, results are defined even if \verb'dup' is non-associative.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_setElement:} add a single entry to a vector}
%-------------------------------------------------------------------------------
\label{vector_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_setElement // w(i) = x
(
GrB_Vector w, // vector to modify
<type> x, // scalar to assign to w(i)
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_setElement' sets a single entry in a vector, \verb'w(i) = x'.
The operation is exactly like setting a single entry in an \verb'n'-by-1
matrix, \verb'A(i,0) = x', where the column index for a vector is implicitly
\verb'j=0'. For further details of this function, see
\verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractElement:} get a single entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractElement // x = v(i)
(
<type> *x, // scalar extracted
const GrB_Vector v, // vector to extract an entry from
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extractElement' extracts a single entry from a vector,
\verb'x = v(i)'. The method is identical to extracting a single entry
\verb'x = A(i,0)' from an \verb'n'-by-1 matrix, so further details of this
method are discussed in Section~\ref{matrix_extractElement}, which discusses
\verb'GrB_Matrix_extractElement'. In this case, the column index is implicitly
\verb'j=0'.
{\bf NOTE: } if no entry is present at \verb'v(i)', then
\verb'x' is not modified, and the return value of
\verb'GrB_Vector_extractElement' is \verb'GrB_NO_VALUE'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_removeElement:} remove a single entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_removeElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_removeElement
(
GrB_Vector v, // vector to remove an entry from
GrB_Index i // index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_removeElement' removes a single entry \verb'v(i)' from a vector.
If no entry is present at \verb'v(i)', then the vector is not modified.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractTuples:} get all entries from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractTuples}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)
(
GrB_Index *I, // array for returning row indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I, X size on input; # tuples on output
const GrB_Vector v // vector to extract tuples from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extractTuples' extracts all tuples from a sparse vector,
analogous to \verb'[I,~,X] = find(v)' in MATLAB. This function is identical to
its \verb'GrB_Matrix_extractTuples' counterpart, except that the array of
column indices \verb'J' does not appear in this function. Refer to
Section~\ref{matrix_extractTuples} where further details of this function are
described.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_resize:} resize a vector}
%-------------------------------------------------------------------------------
\label{vector_resize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_resize // change the size of a vector
(
GrB_Vector u, // vector to modify
GrB_Index nrows_new // new number of rows in vector
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_resize' changes the size of a vector. If the dimension
decreases, entries that fall outside the resized vector are deleted.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_free:} free a vector}
%-------------------------------------------------------------------------------
\label{vector_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a vector
(
GrB_Vector *v // handle of vector to free
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_free' frees a vector. Either usage:
{\small
\begin{verbatim}
GrB_Vector_free (&v) ;
GrB_free (&v) ; \end{verbatim}}
\noindent
frees the vector \verb'v' and sets \verb'v' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'v == NULL' on input. Any
pending updates to the vector are abandoned.
\newpage
%===============================================================================
\subsection{GraphBLAS matrices: {\sf GrB\_Matrix}} %============================
%===============================================================================
\label{matrix}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse matrix, \verb'GrB_Matrix':
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GrB_Matrix_new' & create a matrix \\
\verb'GrB_Matrix_wait' & wait for a matrix \\
\verb'GrB_Matrix_dup' & copy a matrix \\
\verb'GrB_Matrix_clear' & clear a matrix of all entries \\
\verb'GrB_Matrix_nrows' & return the number of rows of a matrix \\
\verb'GrB_Matrix_ncols' & return the number of columns of a matrix \\
\verb'GrB_Matrix_nvals' & return the number of entries in a matrix \\
\verb'GxB_Matrix_type' & return the type of a matrix \\
\verb'GrB_Matrix_build' & build a matrix from a set of tuples \\
\verb'GrB_Matrix_setElement' & add a single entry to a matrix \\
\verb'GrB_Matrix_extractElement'& get a single entry from a matrix \\
\verb'GrB_Matrix_removeElement' & remove a single entry from a matrix \\
\verb'GrB_Matrix_extractTuples' & get all entries from a matrix \\
\verb'GrB_Matrix_resize' & resize a matrix \\
\verb'GrB_Matrix_free' & free a matrix \\
\hline
\verb'GxB_Matrix_import_CSR' & import a matrix in CSR form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_import_CSC' & import a matrix in CSC form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_import_HyperCSR' & import a matrix in HyperCSR form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_import_HyperCSC' & import a matrix in HyperCSC form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_export_CSR' & export a matrix in CSR form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_export_CSC' & export a matrix in CSC form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_export_HyperCSR' & export a matrix in HyperCSR form
(see Section~\ref{import_export})\\
\verb'GxB_Matrix_export_HyperCSC' & export a matrix in HyperCSC form
(see Section~\ref{import_export})\\
\hline
\end{tabular}
}
\vspace{0.2in}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_new:} create a matrix}
%-------------------------------------------------------------------------------
\label{matrix_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_new // create a new matrix with no entries
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_new' creates a new \verb'nrows'-by-\verb'ncols' sparse matrix
with no entries in it, of the given type. This is analogous to the MATLAB
statement \verb'A = sparse (nrows, ncols)', except that GraphBLAS can create
sparse matrices of any type.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_wait:} wait for a matrix}
%-------------------------------------------------------------------------------
% GB_PUBLIC GrB_Info GrB_Descriptor_wait (GrB_Descriptor *desc ) ;
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_wait // wait for a matrix
(
GrB_Matrix *C // matrix to wait for
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Matrix' may be delayed.
In this case, the matrix is not yet safe to use by multiple independent user
threads. A user application may force completion of a matrix \verb'C' via
\verb'GrB_Matrix_wait(&C)'. After this call, different user threads may safely
call GraphBLAS operations that use the matrix \verb'C' as an input parameter.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_dup:} copy a matrix}
%-------------------------------------------------------------------------------
\label{matrix_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_dup // make an exact copy of a matrix
(
GrB_Matrix *C, // handle of output matrix to create
const GrB_Matrix A // input matrix to copy
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_dup' makes a deep copy of a sparse matrix, like \verb'C=A' in
MATLAB. In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
C = A ; // C is a shallow copy of A \end{verbatim}}
Then \verb'C' and \verb'A' can be used interchangeably. However, only a
pointer reference is made, and modifying one of them modifies both, and freeing
one of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy \end{verbatim}}
Then \verb'C' and \verb'A' are two different matrices that currently have the
same set of values, but they do not depend on each other. Modifying one has
no effect on the other.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_clear:} clear a matrix of all entries}
%-------------------------------------------------------------------------------
\label{matrix_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_clear // clear a matrix of all entries;
( // type and dimensions remain unchanged
GrB_Matrix A // matrix to clear
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_clear' clears all entries from a matrix. All values
\verb'A(i,j)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the matrix. The pattern of \verb'A' is
empty, just as if it were created fresh with \verb'GrB_Matrix_new'. Analogous
with \verb'A (:,:) = 0' in MATLAB. The type and dimensions of \verb'A' do not
change. Any pending updates to the matrix are discarded.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nrows:} return the number of rows of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nrows}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix
(
GrB_Index *nrows, // matrix has nrows rows
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nrows' returns the number of rows of a matrix
(\verb'nrows=size(A,1)' in MATLAB).
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_ncols:} return the number of columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_ncols}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix
(
GrB_Index *ncols, // matrix has ncols columns
const GrB_Matrix A // matrix to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_ncols' returns the number of columns of a matrix
(\verb'ncols=size(A,2)' in MATLAB).
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nvals:} return the number of entries in a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix
(
GrB_Index *nvals, // matrix has nvals entries
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nvals' returns the number of entries in a matrix. Roughly
analogous to \verb'nvals = nnz(A)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_type:} return the type of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_type}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_type // get the type of a matrix
(
\newpage
GrB_Type *type, // returns the type of the matrix
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_type' returns the type of a matrix, like \verb'type=class(A)'
in MATLAB.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_type' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_build:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
const <type> *X, // array of values of tuples
GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_build' constructs a sparse matrix \verb'C' from a set of
tuples, \verb'I', \verb'J', and \verb'X', each of length \verb'nvals'. The
matrix \verb'C' must have already been initialized with \verb'GrB_Matrix_new',
and it must have no entries in it before calling \verb'GrB_Matrix_build'. Thus
the dimensions and type of \verb'C' are not changed by this function, but are
inherited from the prior call to \verb'GrB_Matrix_new' or
\verb'GrB_matrix_dup'.
An error is returned (\verb'GrB_INDEX_OUT_OF_BOUNDS') if any row index in
\verb'I' is greater than or equal to the number of rows of \verb'C', or if any
column index in \verb'J' is greater than or equal to the number of columns of
\verb'C'
Any duplicate entries with identical indices are assembled using the binary
\verb'dup' operator provided on input. All three types (\verb'x', \verb'y',
\verb'z' for \verb'z=dup(x,y)') must be identical. The types of \verb'dup',
\verb'C' and \verb'X' must all be compatible. See Section~\ref{typecasting}
regarding typecasting and compatibility. The values in \verb'X' are
typecasted, if needed, into the type of \verb'dup'. Duplicates are then
assembled into a matrix \verb'T' of the same type as \verb'dup', using
\verb'T(i,j) = dup (T (i,j), X (k))'. After \verb'T' is constructed, it is
typecasted into the result \verb'C'. That is, typecasting does not occur at
the same time as the assembly of duplicates.
\begin{spec}
{\bf SPEC:} As an extension to the spec, results are defined even if \verb'dup' is non-associative.
\end{spec}
The GraphBLAS API requires \verb'dup' to be associative so
that entries can be assembled in any order, and states that the result is
undefined if \verb'dup' is not associative. However, SuiteSparse:GraphBLAS
guarantees a well-defined order of assembly. Entries in the tuples
\verb'[I,J,X]' are first sorted in increasing order of row and column index,
with ties broken by the position of the tuple in the \verb'[I,J,X]' list. If
duplicates appear, they are assembled in the order they appear in the
\verb'[I,J,X]' input. That is, if the same indices \verb'i' and \verb'j'
appear in positions \verb'k1', \verb'k2', \verb'k3', and \verb'k4' in
\verb'[I,J,X]', where \verb'k1 < k2 < k3 < k4', then the following operations
will occur in order:
{\footnotesize
\begin{verbatim}
T (i,j) = X (k1) ;
T (i,j) = dup (T (i,j), X (k2)) ;
T (i,j) = dup (T (i,j), X (k3)) ;
T (i,j) = dup (T (i,j), X (k4)) ; \end{verbatim}}
This is a well-defined order but the user should not depend upon it when using
other GraphBLAS implementations since the GraphBLAS API does not
require this ordering.
However, SuiteSparse:GraphBLAS guarantees this ordering, even when it compute
the result in parallel. With this well-defined order, several operators become
very useful. In particular, the \verb'SECOND' operator results in the last
tuple overwriting the earlier ones. The \verb'FIRST' operator means the value
of the first tuple is used and the others are discarded.
The acronym \verb'dup' is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the \verb'_dup'
suffix in the name of the function \verb'GrB_Matrix_dup'. The latter function
does not apply any operator at all, nor any typecasting, but simply makes a
pure deep copy of a matrix.
The parameter \verb'X' is a pointer to any C equivalent built-in type, or a
\verb'void *' pointer. The \verb'GrB_Matrix_build' function uses the
\verb'_Generic' feature of ANSI C11 to detect the type of pointer passed as the
parameter \verb'X'. If \verb'X' is a pointer to a built-in type, then the
function can do the right typecasting. If \verb'X' is a \verb'void *' pointer,
then it can only assume \verb'X' to be a pointer to a user-defined type that is
the same user-defined type of \verb'C' and \verb'dup'. This function has no
way of checking this condition that the \verb'void * X' pointer points to an
array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.
The \verb'GrB_Matrix_build' method is analogous to \verb'C = sparse (I,J,X)' in
MATLAB, with several important extensions that go beyond that which MATLAB can
do. In particular, the MATLAB \verb'sparse' function only provides one option
for assembling duplicates (summation), and it can only build double, double
complex, and logical sparse matrices.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_setElement:} add a single entry to a matrix}
%-------------------------------------------------------------------------------
\label{matrix_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_setElement // C (i,j) = x
(
GrB_Matrix C, // matrix to modify
<type> x, // scalar to assign to C(i,j)
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_setElement' sets a single entry in a matrix, \verb'C(i,j)=x'.
If the entry is already present in the pattern of \verb'C', it is overwritten
with the new value. If the entry is not present, it is added to \verb'C'. In
either case, no entry is ever deleted by this function. Passing in a value of
\verb'x=0' simply creates an explicit entry at position \verb'(i,j)' whose
value is zero, even if the implicit value is assumed to be zero.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if the column index
\verb'j' is greater than or equal to the number of columns of \verb'C'. Note
that this error code differs from the same kind of condition in
\verb'GrB_Matrix_build', which returns \verb'GrB_INDEX_OUT_OF_BOUNDS'. This is
because \verb'GrB_INVALID_INDEX' is an API error, and is caught immediately
even in non-blocking mode, whereas \verb'GrB_INDEX_OUT_OF_BOUNDS' is an
execution error whose detection may wait until the computation completes
sometime later.
The scalar \verb'x' is typecasted into the type of \verb'C'. Any value can be
passed to this function and its type will be detected, via the \verb'_Generic'
feature of ANSI C11. For a user-defined type, \verb'x' is a \verb'void *'
pointer that points to a memory space holding a single entry of this
user-defined type. This user-defined type must exactly match the user-defined
type of \verb'C' since no typecasting is done between user-defined types.
\paragraph{\bf Performance considerations:} % BLOCKING: setElement, *assign
SuiteSparse:GraphBLAS exploits the non-blocking mode to greatly improve the
performance of this method. Refer to the example shown in
Section~\ref{overview}. If the entry exists in the pattern already, it is
updated right away and the work is not left pending. Otherwise, it is placed
in a list of pending updates, and the later on the updates are done all at
once, using the same algorithm used for \verb'GrB_Matrix_build'. In other
words, \verb'setElement' in SuiteSparse:GraphBLAS builds its own internal list
of tuples \verb'[I,J,X]', and then calls \verb'GrB_Matrix_build' whenever the
matrix is needed in another computation, or whenever \verb'GrB_Matrix_wait' is
called.
As a result, if calls to \verb'setElement' are mixed with calls to most other
methods and operations (even \verb'extractElement') then the pending updates
are assembled right away, which will be slow. Performance will be good if many
\verb'setElement' updates are left pending, and performance will be poor if the
updates are assembled frequently.
A few methods and operations can be intermixed with \verb'setElement', in
particular, some forms of the \verb'GrB_assign' and \verb'GxB_subassign'
operations are compatible with the pending updates from \verb'setElement'.
Section~\ref{compare_assign} gives more details on which \verb'GxB_subassign'
and \verb'GrB_assign' operations can be interleaved with calls to
\verb'setElement' without forcing updates to be assembled. Other methods that
do not access the existing entries may also be done without forcing the updates
to be assembled, namely \verb'GrB_Matrix_clear' (which erases all pending
updates), \verb'GrB_Matrix_free', \verb'GrB_Matrix_ncols',
\verb'GrB_Matrix_nrows', \verb'GxB_Matrix_type', and of course
\verb'GrB_Matrix_setElement' itself. All other methods and operations cause
the updates to be assembled. Future versions of SuiteSparse:GraphBLAS may
extend this list.
See Section~\ref{random} for an example of how to use
\verb'GrB_Matrix_setElement'.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractElement:} get a single entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractElement // x = A(i,j)
(
<type> *x, // extracted scalar
const GrB_Matrix A, // matrix to extract a scalar from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractElement' extracts a single entry from a matrix
\verb'x=A(i,j)'.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.
{\bf NOTE: } if no entry is present at \verb'A(i,j)', then
\verb'x' is not modified, and the return value of
\verb'GrB_Matrix_extractElement' is \verb'GrB_NO_VALUE'.
If the entry is not present then GraphBLAS does not know its value, since its
value depends on the implicit value, which is the identity value of the
additive monoid of the semiring. It is not a characteristic of the matrix
itself, but of the semiring it is used in. A matrix can be used in any
compatible semiring, and even a mixture of semirings, so the implicit value can
change as the semiring changes.
As a result, if the entry is present, \verb'x=A(i,j)' is performed and the
scalar \verb'x' is returned with this value. The method returns
\verb'GrB_SUCCESS'. If the entry is not present, \verb'x' is not modified, and
\verb'GrB_NO_VALUE' is returned to the caller. What this means is up to the
caller.
The function knows the type of the pointer \verb'x', so it can do typecasting
as needed, from the type of \verb'A' into the type of \verb'x'. User-defined
types cannot be typecasted, so if \verb'A' has a user-defined type then
\verb'x' must be a \verb'void *' pointer that points to a memory space the same
size as a single scalar of the type of \verb'A'.
Currently, this method causes all pending updates from
\verb'GrB_setElement', \verb'GrB_assign', or \verb'GxB_subassign' to be
assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_removeElement:} remove a single entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_removeElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_removeElement
(
GrB_Matrix C, // matrix to remove an entry from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_removeElement' removes a single entry \verb'A(i,j)' from a matrix.
If no entry is present at \verb'A(i,j)', then the matrix is not modified.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractTuples:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)
(
GrB_Index *I, // array for returning row indices of tuples
GrB_Index *J, // array for returning col indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I,J,X size on input; # tuples on output
const GrB_Matrix A // matrix to extract tuples from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractTuples' extracts all the entries from the matrix
\verb'A', returning them as a list of tuples, analogous to
\verb'[I,J,X]=find(A)' in MATLAB. Entries in the tuples \verb'[I,J,X]' are
unique. No pair of row and column indices \verb'(i,j)' appears more than once.
The GraphBLAS API states the tuples can be returned in any order.
SuiteSparse:GraphBLAS chooses to always return them in sorted order, depending
on whether the matrix is stored by row or by column.
The number of tuples in the matrix \verb'A' is given by
\verb'GrB_Matrix_nvals(&anvals,A)'. If \verb'anvals' is larger than the size
of the arrays (\verb'nvals' in the parameter list), an error
\verb'GrB_INSUFFICIENT_SIZE' is returned, and no tuples are extracted. If
\verb'nvals' is larger than \verb'anvals', then only the first \verb'anvals'
entries in the arrays \verb'I' \verb'J', and \verb'X' are modified, containing
all the tuples of \verb'A', and the rest of \verb'I' \verb'J', and \verb'X' are
left unchanged. On output, \verb'nvals' contains the number of tuples
extracted.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_resize:} resize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_resize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_resize // change the size of a matrix
(
GrB_Matrix A, // matrix to modify
const GrB_Index nrows_new, // new number of rows in matrix
const GrB_Index ncols_new // new number of columns in matrix
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_resize' changes the size of a matrix.
If the dimensions decrease, entries that fall outside the resized
matrix are deleted.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_free:} free a matrix}
%-------------------------------------------------------------------------------
\label{matrix_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a matrix
(
GrB_Matrix *A // handle of matrix to free
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_free' frees a matrix. Either usage:
{\small
\begin{verbatim}
GrB_Matrix_free (&A) ;
GrB_free (&A) ; \end{verbatim}}
\noindent
frees the matrix \verb'A' and sets \verb'A' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'A == NULL' on input. Any
pending updates to the matrix are abandoned.
\newpage
%===============================================================================
\subsection{GraphBLAS matrix and vector import/export} %========================
%===============================================================================
\label{import_export}
The import/export functions allow the user application to create a
\verb'GrB_Matrix' or \verb'GrB_Vector' object, and to extract its contents,
faster and with less memory overhead than the \verb'GrB_*_build' and
\verb'GrB_*_extractTuples' functions.
The semantics of import/export are the same as the {\em move constructor} in
C++. On import, the user provides a set of arrays that have been previously
allocated via the ANSI C \verb'malloc', \verb'calloc', or \verb'realloc'
functions (by default), or by the corresponding functions passed to
\verb'GxB_init'. The arrays define the content of the matrix or vector.
Unlike \verb'GrB_*_build', the GraphBLAS library then takes ownership of the
user's input arrays and may either:
\begin{enumerate}
\item incorporate them
into its internal data structure for the new \verb'GrB_Matrix' or
\verb'GrB_Vector', potentially creating the \verb'GrB_Matrix' or
\verb'GrB_Vector' in constant time with no memory copying performed, or
\item if
the library does not support the import format directly, then it may convert
the input to its internal format, and then free the user's input arrays.
\item A
GraphBLAS implementation may also choose to use a mix of the two strategies.
\end{enumerate}
SuiteSparse:GraphBLAS takes the first approach, and so the import functions
always take $O(1)$ time, and require $O(1)$ memory space to be allocated.
Regardless of the method chosen, as listed above, the input arrays are no
longer owned by the user application. If \verb'A' is a \verb'GrB_Matrix'
created by an import, the user input arrays are freed no later than
\verb'GrB_free(&A)', and may be freed earlier, at the discretion of the
GraphBLAS library. The data structure of the \verb'GrB_Matrix' and
\verb'GrB_Vector' remain opaque.
The export of a \verb'GrB_Matrix' or \verb'GrB_Vector' is symmetric with the
import operation. The export changes the ownership of the arrays, where the
\verb'GrB_Matrix' or \verb'GrB_Vector' no longer exists when the export
completes, and instead the user is returned several arrays that contain the
matrix or vector in the requested format. Ownership of these arrays is given
to the user application, which is then responsible for freeing them via the
ANSI C \verb'free' function (by default), or by the \verb'free_function' that
was passed in to \verb'GxB_init'. Alternatively, these arrays can be
re-imported into a \verb'GrB_Matrix' or \verb'GrB_Vector', at which point they
again become the responsibility of GraphBLAS.
For a matrix export, if the output format matches the current internal format
of the matrix then these arrays are returned to the user application in $O(1)$
time and with no memory copying performed. Otherwise, the \verb'GrB_Matrix' is
first converted into the requested format, and then exported.
The vector import/export methods use a single format for a \verb'GrB_Vector'.
Four different formats are provided for the import/export of a
\verb'GrB_Matrix'. For each format, the \verb'Ax' array has a C type
corresponding to one of the 13 built-in types in GraphBLAS (\verb'bool',
\verb'int*_t', \verb'uint*_t',
\verb'float', \verb'double'
\verb'float complex', \verb'double complex'), or that
corresponds with the user-defined type. No typecasting is done on import or
export.
The table below lists the methods presented in this section.
\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
method & purpose & Section \\
\hline
\verb'GxB_Vector_import' & import a vector &
\ref{vector_import} \\
\verb'GxB_Vector_export' & export a vector &
\ref{vector_export} \\
\hline
\verb'GxB_Matrix_import_CSR' & import a matrix in CSR form &
\ref{matrix_import_csr} \\
\verb'GxB_Matrix_import_CSC' & import a matrix in CSC form &
\ref{matrix_import_csc} \\
\verb'GxB_Matrix_import_HyperCSR' & import a matrix in HyperCSR form &
\ref{matrix_import_hypercsr} \\
\verb'GxB_Matrix_import_HyperCSC' & import a matrix in HyperCSC form &
\ref{matrix_import_hypercsc} \\
\verb'GxB_Matrix_export_CSR' & export a matrix in CSR form &
\ref{matrix_export_csr} \\
\verb'GxB_Matrix_export_CSC' & export a matrix in CSC form &
\ref{matrix_export_csc} \\
\verb'GxB_Matrix_export_HyperCSR' & export a matrix in HyperCSR form &
\ref{matrix_export_hypercsr} \\
\verb'GxB_Matrix_export_HyperCSC' & export a matrix in HyperCSC form &
\ref{matrix_export_hypercsc} \\
\hline
\end{tabular}
}
\vspace{0.2in}
\begin{spec}
{\bf SPEC:} The import/export methods are extensions to the spec. However,
they have been implemented in SuiteSparse:GraphBLAS at the request of the
GraphBLAS C API Committee, as a prototype for future consideration for
inclusion in a future specification. Their calling sequence may change if
these functions are added to the specification as \verb'GrB_*' functions. A
GraphBLAS library need not implement these methods in constant time and memory.
On import, a library may choose to copy the content of the user arrays into its
internal data structure and then \verb'free' the user arrays. On export, it
may chose to \verb'malloc' the output arrays, fill them with the requested
data, and then \verb'GrB_free' the GraphBLAS object being exported. The
semantics of these options are the same as a move constructor; they just take
more time and memory. The choice is up to the GraphBLAS implementation since
the internal data structure is opaque to the user application.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_import:} import a vector}
%-------------------------------------------------------------------------------
\label{vector_import}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_import // import a vector in CSC format
(
GrB_Vector *v, // vector to create
GrB_Type type, // type of vector to create
GrB_Index n, // vector length
GrB_Index nvals, // number of entries in the vector
GrB_Index **vi, // indices, size nvals (in sorted order)
void **vx, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
The \verb'GxB_Vector_import' function is a fast way to construct a
\verb'GrB_Vector', always taking just $O(1)$ time. Calling
\verb'GxB_Vector_import' with:
{\footnotesize
\begin{verbatim}
GxB_Vector_import (&v, type, n, nvals, &vi, &vx, desc) ;
\end{verbatim}}
is identical to the following:
{\footnotesize
\begin{verbatim}
int64_t *Ap = calloc (2, sizeof (int64_t)) ;
Ap [1] = nvals ;
GxB_Matrix_import_CSC (&A, type, n, 1, nvals, -1, &Ap, &vi, &vx, desc) ;
\end{verbatim}}
\noindent
except that the latter creates an \verb'n'-by-1 matrix instead. For the vector
import, described here, the first argument is a \verb'GrB_Vector'. The
arguments \verb'vi' and \verb'vx' take the place of \verb'Ai' and \verb'Ax',
and the \verb'Ap' array for the CSC matrix import is not provided for a vector
import. Refer to the description of \verb'GxB_Matrix_import_CSC' for details
(Section~\ref{matrix_import_csc}).
If successful, \verb'v' is created as a \verb'n'-by-1 vector. Its entries are
the row indices given by \verb'vi', with the corresponding values in \verb'vx'.
The two pointers \verb'vi' and \verb'vx' are returned as \verb'NULL', which
denotes that they are no longer owned by the user application. They have
instead been moved into the new vector \verb'v'. The row indices in \verb'vi'
must appear in sorted order, and no duplicates can appear. These conditions
are not checked, so results are undefined if they are not met exactly. The
user application can check the resulting vector \verb'v' with \verb'GxB_print',
if desired, which will determine if these conditions hold.
If not successful, \verb'v' is returned as \verb'NULL' and \verb'vi' and
\verb'vx' are not modified.
\begin{spec}
{\bf SPEC:} \verb'GxB_Vector_import' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_export:} export a vector}
%-------------------------------------------------------------------------------
\label{vector_export}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_export // export and free a vector
(
GrB_Vector *v, // vector to export and free
GrB_Type *type, // type of vector exported
GrB_Index *n, // length of the vector
GrB_Index *nvals, // number of entries in the vector
GrB_Index **vi, // indices, size nvals
void **vx, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
The \verb'GxB_Vector_export' function is a fast way to extract the contents of
a \verb'GrB_Vector', always taking just $O(1)$ time. Using
\verb'GxB_Vector_export' with:
{\footnotesize
\begin{verbatim}
GxB_Vector_export (&v, &type, &n, &nvals, &vi, &vx, desc) ;
\end{verbatim}}
is analogous to:
{\footnotesize
\begin{verbatim}
GxB_Matrix_export_CSC (&A, &type, &n, &one, &nvals, &nonempty,
&Ap, &Ai, &Ax, desc)
\end{verbatim}}
\noindent
if \verb'A' were an \verb'n'-by-1 matrix. For the vector export, described
here, the first argument is a \verb'GrB_Vector'. The arguments \verb'vi' and
\verb'vx' take the place of \verb'Ai' and \verb'Ax', and the \verb'Ap' array
for the CSC matrix export is not returned from a vector export. Refer to the
description of \verb'GxB_Matrix_export_CSC' for details.
(Section~\ref{matrix_export_csc}).
Exporting a vector forces completion of any pending operations on the vector.
If successful, \verb'v' is returned as \verb'NULL', and its contents are
returned to the user, with its \verb'type', dimension \verb'n', and number of
entries \verb'nvals'. A sorted list of row indices of entries that were in
\verb'v' is returned in \verb'vi', and the corresponding numerical values are
returned in \verb'vx'. If \verb'nvals' is zero, the \verb'vi' and \verb'vx'
arrays are returned as \verb'NULL'; this is not an error condition.
If not successful, \verb'v' is unmodified and \verb'vi' and \verb'vx' are
not modified.
\begin{spec}
{\bf SPEC:} \verb'GxB_Vector_export' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_import\_CSR:} import a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_import_csr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_import_CSR // import a CSR matrix
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
// CSR format:
int64_t nonempty, // number of rows with at least one entry:
// either < 0 if not known, or >= 0 if exact
GrB_Index **Ap, // row "pointers", size nrows+1
GrB_Index **Aj, // column indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_import_CSR' imports a matrix from 3 user arrays in CSR format.
In the resulting \verb'GrB_Matrix A', the \verb'CSR' format is a matrix with a
format (\verb'GxB_FORMAT') of \verb'GxB_BY_ROW', in standard for instead of
hypersparse form (See Section~\ref{hypersparse}).
The first four arguments of \verb'GxB_Matrix_import_CSR' are the same as
all four arguments of \verb'GrB_Matrix_new', because this function is similar.
It creates a new \verb'GrB_Matrix A', with the given type and dimensions.
The \verb'GrB_Matrix A' does not exist on input.
Unlike \verb'GrB_Matrix_new', this function also populates the new matrix
\verb'A' with the three arrays \verb'Ap', \verb'Aj' and \verb'Ax', provided by
the user, all of which must have been created with the ANSI C \verb'malloc',
\verb'calloc', or \verb'realloc' functions (by default), or by the
corresponding \verb'malloc_function', \verb'calloc_function', or
\verb'realloc_function' provided to \verb'GxB_init'. These arrays define the
pattern and values of the new matrix \verb'A':
\begin{itemize}
\item \verb'GrB_Index Ap [nrows+1] ;' The \verb'Ap' array is the row
``pointer'' array. It does not actual contain pointers. More precisely, it is
an integer array that defines where the column indices and values appear in
\verb'Aj' and \verb'Ax', for each row. The number of entries in row \verb'i'
is given by the expression \verb'Ap [i+1] - Ap [i]'.
\item \verb'GrB_Index Aj [nvals] ;' The \verb'Aj' array defines the
column indices of entries in each row.
\item \verb'ctype Aj [nvals] ;' The \verb'Ax' array defines the values of
entries in each row. It is passed in as a \verb'(void *)' pointer, but it must
point to an array of size \verb'nvals' values, each of size
\verb'sizeof(ctype)', where \verb'ctype' is the exact type in C that corresponds
to the \verb'GrB_Type type' parameter. That is, if \verb'type' is
\verb'GrB_INT32', then \verb'ctype' is \verb'int32_t'. User types
may be used, just the same as built-in types.
\end{itemize}
The content of the three arrays \verb'Ap' \verb'Aj', and \verb'Ax' is very
specific. This content is not checked, since this function takes only
$O(1)$ time. Results are undefined if the following specification is not
followed exactly.
The column indices of entries in the ith row of the matrix are held in
\verb'Aj [Ap [i] ... Ap[i+1]]', and the corresponding values are held in the
same positions in \verb'Ax'. Column indices must be in the range 0 to
\verb'ncols'-1, and must appear in sorted order within each row. No duplicate
column indices may appear in any row. \verb'Ap [0]' must equal zero, and
\verb'Ap [nrows]' must equal nvals. The \verb'Ap' array must be of size
\verb'nrows'+1 (or larger), and the \verb'Aj' and \verb'Ax' arrays must have
size at least \verb'nvals'.
If \verb'nvals' is zero, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
The \verb'nonempty' parameter is optional. It states the number of rows
that have at least one entry: if not known, use -1;
if $\ge 0$, it must be exact.
An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.
\begin{equation}
\label{eqn:Aexample}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 2.9 & 0 & 0.9 \\
0 & 1.7 & 3.0 & 0 \\
3.5 & 0.4 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
The \verb'Ap' array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and \verb'Ap [5] = 10' is the number of entries.
The content of the arrays is shown below:
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 2, 5, 7, 10 } ;
int64_t Aj [ ] = { 0, 2, 0, 1, 3, 1, 2, 0, 1, 3 } ;
double Ax [ ] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ; \end{verbatim} }
Spaces have been added to the \verb'Ap' array, just for illustration. Row zero
is in \verb'Aj [0..1]' (column indices) and \verb'Ax [0..1]' (values), starting
at \verb'Ap [0] = 0' and ending at \verb'Ap [0+1]-1 = 1'. The list of column
indices of row one is at \verb'Aj [2..4]' and row two is in \verb'Aj [5..6]'.
The last row (three) appears \verb'Aj [7..9]', because \verb'Ap [3] = 7' and
\verb'Ap [4]-1 = 10-1 = 9'. The corresponding numerical values appear in the
same positions in \verb'Ax'.
To iterate over the rows and entries of this matrix, the following code can be
used:
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nrows] ;
for (int64_t i = 0 ; i < nrows ; i++)
{
// get A(i,:)
for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [p] ; // numerical value
}
} \end{verbatim}}
On successful creation of \verb'A', the three pointers \verb'Ap', \verb'Aj',
and \verb'Ax' are set to \verb'NULL' on output. This denotes to the user
application that it is no longer responsible for freeing these arrays.
Internally, GraphBLAS has moved these arrays into its internal data structure.
They will eventually be freed no later than when the user does
\verb'GrB_free(&A)', but they may be freed or resized later, if the matrix
changes.
If the matrix \verb'A' is later exported in CSR form, and GraphBLAS has not yet
reallocated these arrays, then these same three arrays are returned to the user
by \verb'GxB_Matrix_export_CSR' (see Section~\ref{matrix_export_csr}). If an
export is performed, the freeing of these three arrays again becomes the
responsibility of the user application.
The \verb'GxB_Matrix_import_CSR' function will rarely fail, since it allocates
just $O(1)$ space. If it does fail, it returns \verb'GrB_OUT_OF_MEMORY',
and it leaves the three user arrays unmodified. They are still owned by
the user application, which is eventually responsible for freeing them with
\verb'free(Ap)', etc.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_import_CSR' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_import\_CSC:} import a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_import_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_import_CSC // import a CSC matrix
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
// CSC format:
int64_t nonempty, // number of columns with at least one entry:
// either < 0 if not known, or >= 0 if exact
GrB_Index **Ap, // column "pointers", size ncols+1
GrB_Index **Ai, // row indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_import_CSC' imports a matrix from 3 user arrays in CSC format.
The \verb'GrB_Matrix A' is created in the \verb'CSC' format, which is a
\verb'GxB_FORMAT' of \verb'GxB_BY_COL'. The arguments are identical to
\verb'GxB_Matrix_import_CSR', except for how the 3 user arrays are
interpreted. The column ``pointer'' array has size \verb'ncols+1'. The row
indices of the columns are in \verb'Ai', and must appear in ascending order in
each column. The corresponding numerical values are held in \verb'Ax'. The
row indices of column \verb'j' are held in \verb'Ai [Ap [j]...Ap [j+1]-1',
and the corresponding numerical values are in the same locations in \verb'Ax'.
The \verb'nonempty' parameter is optional. It states the number of columns
that have at least one entry: if not known, use -1;
if $\ge 0$, it must be exact.
The same matrix from Equation~\ref{eqn:Aexample}in
the last section (repeated here):
\begin{equation}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 2.9 & 0 & 0.9 \\
0 & 1.7 & 3.0 & 0 \\
3.5 & 0.4 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
is held in CSC form as follows:
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 3, 6, 8, 10 } ;
int64_t Ai [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;
double Ax [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ; \end{verbatim} }
That is, the row indices of column 1 (the second column) are in
\verb'Ai [3..5]', and the values in the same place in \verb'Ax',
since \verb'Ap [1] = 3' and \verb'Ap [2]-1 = 5'.
To iterate over the columns and entries of this matrix, the following code can
be used:
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [ncols] ;
for (int64_t j = 0 ; j < ncols ; j++)
{
// get A(:,j)
for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [p] ; // numerical value
}
} \end{verbatim}}
The method is identical to \verb'GxB_Matrix_import_CSR'; just the format is
different. That is, if the method is successful, the 3 user arrays are
imported into the new \verb'GrB_Matrix A', with the given type and dimensions,
and returned as \verb'NULL' pointers to the user application.
If \verb'nvals' is zero, then the content of the \verb'Ai' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_import_CSC' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_import\_HyperCSR:} import a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_import_hypercsr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_import_HyperCSR // import a hypersparse CSR matrix
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
// hypersparse CSR format:
int64_t nonempty, // number of rows in Ah with at least one entry,
// either < 0 if not known, or >= 0 if exact
GrB_Index nvec, // number of rows in Ah list
GrB_Index **Ah, // list of size nvec of rows that appear in A
GrB_Index **Ap, // row "pointers", size nvec+1
GrB_Index **Aj, // column indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_import_HyperCSR' imports a matrix in hypersparse CSR format in
$O(1)$ time. In the hypersparse format, the \verb'Ap' array itself becomes
sparse, if the matrix has rows that are completely empty. An array \verb'Ah'
of size \verb'nvec' provides a list of rows that appear in the data structure.
For example, consider Equation~\ref{eqn:Ahyper}, which is a sparser version of
the matrix in Equation~\ref{eqn:Aexample}. Row 2 and column 1 of this matrix
are all zero.
\begin{equation}
\label{eqn:Ahyper}
A = \left[
\begin{array}{cccc}
4.5 & 0 & 3.2 & 0 \\
3.1 & 0 & 0 & 0.9 \\
0 & 0 & 0 & 0 \\
3.5 & 0 & 0 & 1.0 \\
\end{array}
\right]
\end{equation}
The conventional CSR format would appear as follows. Since the third row (row
2) is all zero, accessing \verb'Ai [Ap [2] ... Ap [3]-1]' gives an empty set
(\verb'[2..1]'), and the number of entries in this row is
\verb'Ap [i+1] - Ap [i]' \verb'= Ap [3] - Ap [2] = 0'.
{\footnotesize
\begin{verbatim}
int64_t Ap [ ] = { 0, 2,2, 4, 5 } ;
int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }
double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }
A hypersparse CSR format for this same matrix would discard
these duplicate integers in \verb'Ap'. Doing so requires
another array, \verb'Ah', that keeps track of the rows that appear
in the data structure.
\newpage
{\footnotesize
\begin{verbatim}
int64_t nvec = 3 ;
int64_t Ah [ ] = { 0, 1, 3 } ;
int64_t Ap [ ] = { 0, 2, 4, 5 } ;
int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }
double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ; \end{verbatim} }
Note that the \verb'Aj' and \verb'Ax' arrays are the same in the standard and
hypersparse CSR formats. The row indices in \verb'Ah' must appear in ascending
order, and no duplicates can appear. To iterate over this data structure:
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)
{
int64_t i = Ah [k] ; // row index
// get A(i,:)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t j = Aj [p] ; // column index
double aij = Ax [p] ; // numerical value
}
} \end{verbatim}}
\vspace{-0.05in}
This is more complex than the standard CSR format, but it requires at most
$O(e)$ space, where $A$ is $m$-by-$n$ with $e$ = \verb'nvals' entries. The
standard CSR format requires $O(m+e)$ space. If $e << m$, then the size $m+1$
of \verb'Ap' can dominate the memory required. In the hypersparse form,
\verb'Ap' takes on size \verb'nvec+1', and \verb'Ah' has size \verb'nvec',
where \verb'nvec' is the number of rows that appear in the data structure.
The standard CSR format can be viewed as a dense array (of size \verb'nrows')
of sparse row vectors. By contrast, the hypersparse CSR format is a sparse
array (of size \verb'nvec') of sparse row vectors.
The import takes $O(1)$ time. If successful, the four arrays \verb'Ah',
\verb'Ap', \verb'Aj', and \verb'Ax' are returned as \verb'NULL', and the
hypersparse \verb'GrB_Matrix A' is created.
If \verb'nvals' is zero, then the content of the \verb'Aj' and \verb'Ax' arrays
is not accessed and they may be \verb'NULL' on input (if not \verb'NULL', they
are still freed and returned as \verb'NULL', if the method is successful).
The \verb'nonempty' parameter is optional. It states the number of rows
that have at least one entry: if not known, use -1;
if $\ge 0$, it must be exact.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_import_HyperCSR' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_import\_HyperCSC:} import a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_import_hypercsc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_import_HyperCSC // import a hypersparse CSC matrix
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols,
GrB_Index nvals, // number of entries in the matrix
// hypersparse CSC format:
int64_t nonempty, // number of columns in Ah with at least one entry,
// either < 0 if not known, or >= 0 if exact
GrB_Index nvec, // number of columns in Ah list
GrB_Index **Ah, // list of size nvec of columns that appear in A
GrB_Index **Ap, // column "pointers", size nvec+1
GrB_Index **Ai, // row indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_import_HyperCSC' imports a matrix in hypersparse CSC format in
$O(1)$ time. It is identical to \verb'GxB_Matrix_import_HyperCSR', except for
the data structure defined by the four arrays \verb'Ah', \verb'Ap', \verb'Ai',
and \verb'Ax'. It is a sparse array of size \verb'nvec' of sparse column
vectors. The following code iterates over the matrix:
\vspace{-0.10in}
{\footnotesize
\begin{verbatim}
int64_t nvals = Ap [nvec] ;
for (int64_t k = 0 ; k < nvec ; k++)
{
int64_t j = Ah [k] ; // column index
// get A(:,j)
for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)
{
// get A(i,j)
int64_t i = Ai [p] ; // row index
double aij = Ax [p] ; // numerical value
}
} \end{verbatim}}
\vspace{-0.12in}
The \verb'nonempty' parameter is optional. It states the number of columns
that have at least one entry: if not known, use -1;
if $\ge 0$, it must be exact.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_import_HyperCSC' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_export\_CSR:} export a CSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_export_csr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_export_CSR // export and free a CSR matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *ncols,
GrB_Index *nvals, // number of entries in the matrix
// CSR format:
int64_t *nonempty, // number of rows with at least one entry
GrB_Index **Ap, // row "pointers", size nrows+1
GrB_Index **Aj, // column indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_export_CSR' exports a matrix in CSR form:
{\footnotesize
\begin{verbatim}
GxB_Matrix_export_CSR (&A, &type, &nrows, &ncols, &nvals, &nonempty,
&Ap, &Aj, &Ax, desc) ;
\end{verbatim}}
On successful output, the \verb'GrB_Matrix A' is freed, and \verb'A' is
returned as \verb'NULL'. Its type is returned in the \verb'type' parameter,
its dimensions in \verb'nrows' and \verb'ncols', its number of entries in
\verb'nvals', and the CSR format is in the three arrays \verb'Ap', \verb'Aj',
and \verb'Ax'. If \verb'nvals' is zero, the \verb'Aj' and \verb'Ax' arrays are
returned as \verb'NULL'; this is not an error, and \verb'GxB_Matrix_import_CSR'
also allows these two arrays to be \verb'NULL' on input when \verb'nvals' is
zero. After a successful export, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed to \verb'GxB_init'). The CSR format is
described in Section~\ref{matrix_import_csr}.
This method takes $O(1)$ time if the matrix is already in standard
(non-hypersparse) CSR format internally. If it is in hypersparse CSR form, the
export must first convert the matrix to standard CSR form, taking $O(m)$ time
and memory, where $m$ = \verb'nrows'. If the matrix is in CSC format, it is
first transposed to convert it to CSR format, and then exported. This takes
$O(m+n+e)$ or $O(m+e \log e)$ time and memory, whichever is less, where $n=$
\verb'ncols' and $e=$ \verb'nvals'.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_export_CSR' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_export\_CSC:} export a CSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_export_csc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_export_CSC // export and free a CSC matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *ncols,
GrB_Index *nvals, // number of entries in the matrix
// CSC format:
int64_t *nonempty, // number of columns with at least one entry
GrB_Index **Ap, // column "pointers", size ncols+1
GrB_Index **Ai, // row indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_export_CSC' exports a matrix in CSC form:
{\footnotesize
\begin{verbatim}
GxB_Matrix_export_CSC (&A, &type, &nrows, &ncols, &nvals, &nonempty,
&Ap, &Ai, &Ax, desc) ;
\end{verbatim}}
On successful output, the \verb'GrB_Matrix A' is freed, and \verb'A' is
returned as \verb'NULL'. Its type is returned in the \verb'type' parameter,
its dimensions in \verb'nrows' and \verb'ncols', its number of entries in
\verb'nvals', and the CSC format is in the three arrays \verb'Ap', \verb'Ai',
and \verb'Ax'. If \verb'nvals' is zero, the \verb'Ai' and \verb'Ax' arrays are
returned as \verb'NULL'; this is not an error, and \verb'GxB_Matrix_import_CSC'
also allows these two arrays to be \verb'NULL' on input when \verb'nvals' is
zero. After a successful export, the user application is responsible for
freeing these three arrays via \verb'free' (or the \verb'free' function passed to \verb'GxB_init'). The CSC format is
described in Section~\ref{matrix_import_csc}.
This method takes $O(1)$ time if the matrix is already in standard
(non-hypersparse) CSC format internally. If it is in hypersparse CSC form, the
export must first convert the matrix to standard CSC form, taking $O(n)$ time
and memory, where $n$ = \verb'ncols'. If the matrix is in CSR
format, it is first transposed to convert it to CSC format, and then exported.
This takes $O(m+n+e)$ or $O(n+e \log e)$ time and memory, whichever is less,
where $m=$ \verb'nrows' and $e=$ \verb'nvals'.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_export_CSC' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_export\_HyperCSR:} export a HyperCSR matrix}
%-------------------------------------------------------------------------------
\label{matrix_export_hypercsr}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_export_HyperCSR // export and free a hypersparse CSR matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *ncols,
GrB_Index *nvals, // number of entries in the matrix
// hypersparse CSR format:
int64_t *nonempty, // number of rows in Ah with at least one entry
GrB_Index *nvec, // number of rows in Ah list
GrB_Index **Ah, // list of size nvec of rows that appear in A
GrB_Index **Ap, // row "pointers", size nvec+1
GrB_Index **Aj, // column indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_export_HyperCSR' exports a matrix in CSR form:
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
GxB_Matrix_export_HyperCSR (&A, &type, &nrows, &ncols, &nvals, &nonempty,
&nvec, &Ah, &Ap, &Aj, &Ax, desc) ; \end{verbatim}}
\vspace{-0.10in}
On successful output, the \verb'GrB_Matrix A' is freed, and \verb'A' is
returned as \verb'NULL'. Its type is returned in the \verb'type' parameter,
its dimensions in \verb'nrows' and \verb'ncols', its number of entries in
\verb'nvals', and the number of non-empty rows in \verb'nvec'. The hypersparse
CSR format is in the four arrays \verb'Ah', \verb'Ap', \verb'Aj', and
\verb'Ax'. If \verb'nvals' is zero, the \verb'Aj' and \verb'Ax' arrays are
returned as \verb'NULL'; this is not an error. After a successful export, the
user application is responsible for freeing these three arrays via
\verb'free' (or the \verb'free' function passed to \verb'GxB_init'). The hypersparse CSR format is described in
Section~\ref{matrix_import_hypercsr}.
This method takes $O(1)$ time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first
convert the matrix to hypersparse CSR form, taking $O(m)$ time and memory,
where $m$ = \verb'nrows'. If the matrix is in CSC format, it is first
transposed to convert it to hypersparse CSR format, and then exported. If in
standard CSC form, the transpose takes $O(m+n+e)$ or $O(n + e \log e)$ time and
memory, whichever is less. If in hypersparse CSC format, it takes $O(e \log
e)$ time.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_export_HyperCSR' is an extension to the spec.
\end{spec}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_export\_HyperCSC:} export a HyperCSC matrix}
%-------------------------------------------------------------------------------
\label{matrix_export_hypercsc}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_export_HyperCSC // export and free a hypersparse CSC matrix
(
GrB_Matrix *A, // handle of matrix to export and free
GrB_Type *type, // type of matrix exported
GrB_Index *nrows, // matrix dimension is nrows-by-ncols
GrB_Index *ncols,
GrB_Index *nvals, // number of entries in the matrix
// hypersparse CSC format:
int64_t *nonempty, // number of columns in Ah with at least one entry
GrB_Index *nvec, // number of columns in Ah list
GrB_Index **Ah, // list of size nvec of columns that appear in A
GrB_Index **Ap, // columns "pointers", size nvec+1
GrB_Index **Ai, // row indices, size nvals
void **Ax, // values, size nvals
const GrB_Descriptor desc // currently unused
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_export_HyperCSC' exports a matrix in CSC form:
{\footnotesize
\begin{verbatim}
GxB_Matrix_export_HyperCSC (&A, &type, &nrows, &ncols, &nvals, &nonempty,
&nvec, &Ah, &Ap, &Ai, &Ax, desc) ; \end{verbatim}}
\vspace{-0.05in}
On successful output, the \verb'GrB_Matrix A' is freed, and \verb'A' is
returned as \verb'NULL'. Its type is returned in the \verb'type' parameter,
its dimensions in \verb'nrows' and \verb'ncols', its number of entries in
\verb'nvals', and the number of non-empty rows in \verb'nvec'. The hypersparse
CSC format is in the four arrays \verb'Ah', \verb'Ap', \verb'Ai', and
\verb'Ax'. If \verb'nvals' is zero, the \verb'Ai' and \verb'Ax' arrays are
returned as \verb'NULL'; this is not an error. After a successful export, the
user application is responsible for freeing these three arrays via
\verb'free' (or the \verb'free' function passed to \verb'GxB_init'). The hypersparse CSC format is described in
Section~\ref{matrix_import_hypercsc}.
This method takes $O(1)$ time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first
convert the matrix to hypersparse CSR form, taking $O(m)$ time and memory,
where $m$ = \verb'nrows'. If the matrix is in CSC format, it is first
transposed to convert it to hypersparse CSR format, and then exported. If in
standard CSC form, the transpose takes $O(m+n+e)$ or $O(n + e \log e)$ time and
memory, whichever is less. If in hypersparse CSC format, it takes $O(e \log
e)$ time.
\begin{spec}
{\bf SPEC:} \verb'GxB_Matrix_export_HyperCSC' is an extension to the spec.
\end{spec}
\newpage
%===============================================================================
\subsection{GraphBLAS descriptors: {\sf GrB\_Descriptor}} %=====================
%===============================================================================
\label{descriptor}
A GraphBLAS {\em descriptor} modifies the behavior of a GraphBLAS operation.
% (not a operator).
% GraphBLAS operations are described in
% Section~\ref{operations}, and all of them have a final parameter of a
% descriptor.
If the descriptor is \verb'GrB_NULL', defaults are used.
% No GraphBLAS method (Section~\ref{objects}) is modified by a descriptor, and
% neither are any unary or binary operators.
The access to these parameters and their values is governed
by two \verb'enum' types, \verb'GrB_Desc_Field' and \verb'GrB_Desc_Value':
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#define GxB_NTHREADS 5 // for both GrB_Desc_field and GxB_Option_field
#define GxB_CHUNK 7
typedef enum
{
GrB_OUTP = 0, // descriptor for output of a method
GrB_MASK = 1, // descriptor for the mask input of a method
GrB_INP0 = 2, // descriptor for the first input of a method
GrB_INP1 = 3, // descriptor for the second input of a method
GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS, // number of threads to use
GxB_DESCRIPTOR_CHUNK = GxB_CHUNK, // chunk size for small problems
GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm
}
GrB_Desc_Field ;
typedef enum
{
// for all GrB_Descriptor fields:
GxB_DEFAULT = 0, // default behavior of the method
// for GrB_OUTP only:
GrB_REPLACE = 1, // clear the output before assigning new values to it
// for GrB_MASK only:
GrB_COMP = 2, // use the complement of the mask
GrB_STRUCTURE = 4, // use the structure of the mask
// for GrB_INP0 and GrB_INP1 only:
GrB_TRAN = 3, // use the transpose of the input
// for GxB_AxB_METHOD only:
GxB_AxB_GUSTAVSON = 1001, // gather-scatter saxpy method
GxB_AxB_HEAP = 1002, // heap-based saxpy method
GxB_AxB_DOT = 1003, // dot product
GxB_AxB_HASH = 1004, // hash-based saxpy method
GxB_AxB_SAXPY = 1005 // saxpy method (any kind)
}
GrB_Desc_Value ;
\end{verbatim} } \end{mdframed}
\newpage
\begin{spec}
{\bf SPEC:} \verb'GxB_DEFAULT', \verb'GxB_NTHREADS', \verb'GxB_CHUNK',
\verb'GxB_AxB_METHOD', and \verb'GxB_AxB_*'
are extensions to the spec.
\end{spec}
The internal representation is opaque to the user, but in this User Guide the
five descriptor fields of a descriptor \verb'desc' are illustrated as an array
of five items, as described in the list below. The underlying implementation
need not be an array:
\begin{itemize}
\item \verb'desc [GrB_OUTP]' is a parameter that modifies the output of a
GraphBLAS operation. Currently, there are two possible settings. In the
default case, the output is not cleared, and ${\bf C \langle M \rangle = Z
= C \odot T}$ is computed as-is, where ${\bf T}$ is the results of the
particular GraphBLAS operation.
In the non-default case, ${\bf Z = C \odot T}$ is first computed, using the
results of ${\bf T}$ and the accumulator $\odot$. After this is done, if
the \verb'GrB_OUTP' descriptor field is set to \verb'GrB_REPLACE', then the
output is cleared of its entries. Next, the assignment ${\bf C \langle M
\rangle = Z}$ is performed.
\item \verb'desc [GrB_MASK]' is a parameter that modifies the \verb'Mask',
even if the mask is not present.
If this parameter is set to its default value, and if the mask is not
present (\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=1' for all
\verb'i' and \verb'j'. If the mask is present then \verb'Mask(i,j)=1'
means that \verb'C(i,j)' is to be modified by the ${\bf C \langle M \rangle
= Z}$ update. Otherwise, if \verb'Mask(i,j)=0', then \verb'C(i,j)' is not
modified, even if \verb'Z(i,j)' is an entry with a different value; that
value is simply discarded.
If the \verb'desc [GrB_MASK]' parameter is set to \verb'GrB_COMP', then the
use of the mask is complemented. In this case, if the mask is not present
(\verb'Mask==NULL') then implicitly \verb'Mask(i,j)=0' for all \verb'i' and
\verb'j'. This means that none of ${\bf C}$ is modified and the entire
computation of ${\bf Z}$ might as well have been skipped. That is, a
complemented empty mask means no modifications are made to the output
object at all, except perhaps to clear it in accordance with the
\verb'GrB_OUTP' descriptor. With a complemented mask, if the mask is
present then \verb'Mask(i,j)=0' means that \verb'C(i,j)' is to be modified
by the ${\bf C \langle M \rangle = Z}$ update. Otherwise, if
\verb'Mask(i,j)=1', then \verb'C(i,j)' is not modified, even if
\verb'Z(i,j)' is an entry with a different value; that value is simply
discarded.
If the \verb'desc [GrB_MASK]' parameter is set to \verb'GrB_STRUCTURE',
then the values of the mask are ignored, and just the pattern of the
entries is used. Any entry \verb'M(i,j)' in the pattern is treated as if
it were true.
The \verb'GrB_COMP' and \verb'GrB_STRUCTURE' settings can be combined,
either by setting the mask option twice (once with each value), or by
setting the mask option to \verb'GrB_COMP+GrB_STRUCTURE' (the latter is an
extension to the spec).
Using a parameter to complement the \verb'Mask' is very useful because
constructing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in \verb'C'
that should be modified is very small, then use a sparse mask without
complementing it. If the number of places in \verb'C' that should
be protected from modification is very small, then use a sparse mask
to indicate those places, and use a descriptor \verb'GrB_MASK' that
complements the use of the mask.
\item \verb'desc [GrB_INP0]' and \verb'desc [GrB_INP1]' modify the use of the
first and second input matrices \verb'A' and \verb'B' of the GraphBLAS
operation.
If the \verb'desc [GrB_INP0]' is set to \verb'GrB_TRAN', then \verb'A' is
transposed before using it in the operation. Likewise, if
\verb'desc [GrB_INP1]' is set to \verb'GrB_TRAN', then the second input,
typically called \verb'B', is transposed.
Vectors and scalars are never transposed via the descriptor. If a method's
first parameter is a matrix and the second a vector or scalar, then
\verb'desc [GrB_INP0]' modifies the matrix parameter and
\verb'desc [GrB_INP1]' is ignored. If a method's first parameter is a
vector or scalar and the second a matrix, then \verb'desc [GrB_INP1]'
modifies the matrix parameter and \verb'desc [GrB_INP0]' is ignored.
To clarify this in each function, the inputs are labeled as
\verb'first input:' and \verb'second input:' in the function signatures.
\item \verb'desc [GxB_AxB_METHOD]' suggests the method that should be
used to compute \verb'C=A*B'. All the methods compute the same result,
except they may have different floating-point roundoff errors. This
descriptor should be considered as a hint; SuiteSparse:GraphBLAS is
free to ignore it. The current version always follows the hint, however.
\begin{itemize}
\item \verb'GxB_DEFAULT' means that a method is selected automatically.
\item \verb'GxB_AxB_SAXPY': select any saxpy-based method:
\verb'GxB_AxB_GUSTAVSON', \verb'GxB_AxB_HEAP', and/or
\verb'GxB_AxB_HASH', or any mix of the three,
in contrast to the dot-product method.
\item \verb'GxB_AxB_GUSTAVSON': an extended version of Gustavson's method
\cite{Gustavson78}, which is a very good general-purpose method, but
sometimes the workspace can be too large. Assuming all matrices are stored
by column, it computes \verb'C(:,j)=A*B(:,j)' with a sequence of {\em
saxpy} operations (\verb'C(:,j)+=A(:,k)*B(k:,j)' for each nonzero
\verb'B(k,j)'). Each internal thread requires workspace of size $m$, to
the number of rows of \verb'C', which is not suitable if the matrices are
extremely sparse or if there are many threads. If all matrices are stored
by row, then it computes \verb'C(i,:)=A(i,:)*B' in a sequence of sparse
{\em saxpy} operations, and using workspace of size $n$ per thread,
corresponding to the number of columns of \verb'C'.
\item \verb'GxB_AxB_HEAP': no longer appears in SuiteSparse:GraphBLAS, but
may be reintroduced in a future version. This is silently replaced with
\verb'GxB_AxB_HASH'.
\item \verb'GxB_AxB_HASH': a hash-based method, based on
\cite{10.1145/3229710.3229720}. Very efficient for hypersparse
matrices, matrix-vector-multiply, and when $|{\bf B}|$ is small.
% [2] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2018.
% High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore
% Architectures. In Proc. 47th Intl. Conf. on Parallel Processing (ICPP '18).
% Association for Computing Machinery, New York, NY, USA, Article 34, 1–10.
% DOI:https://doi.org/10.1145/3229710.3229720
\item \verb'GxB_AxB_DOT': computes \verb"C(i,j)=A(i,:)*B(j,:)'", for each
entry \verb'C(i,j)'. If the mask is present and not complemented, only
entries for which \verb'M(i,j)=1' are computed. This is a very specialized
method that works well only if the mask is present, very sparse, and not
complemented, or when \verb'C' is tiny. For example, it works very well
when \verb'A' and \verb'B' are tall and thin, and \verb"C<M>=A*B'" or
\verb"C=A*B'" are computed. These expressions assume all matrices are in
CSR format. If in CSC format, then the dot-product method used for
\verb"A'*B". The method is impossibly slow if \verb'C' is large and the
mask is not present, since it takes $\Omega(mn)$ time if \verb'C' is
$m$-by-$n$ in that case. It does not use any workspace at all. Since it
uses no workspace, it can work very well for extremely sparse or
hypersparse matrices, when the mask is present and not complemented.
\end{itemize}
\end{itemize}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_new:} create a new descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_new // create a new descriptor
(
GrB_Descriptor *descriptor // handle of descriptor to create
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_new' creates a new descriptor, with all fields set to
their defaults (output is not replaced, the mask is not complemented, the mask
is valued not structural, neither input matrix is transposed, and the method
used in \verb'C=A*B' is selected automatically).
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_wait:} wait for a descriptor}
%-------------------------------------------------------------------------------
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_wait // wait for a descriptor
(
GrB_Descriptor *descriptor // descriptor to wait for
) ;
\end{verbatim}
}\end{mdframed}
After creating a user-defined descriptor, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation.
\verb'GrB_Descriptor_wait(&d)' ensures the descriptor \verb'd' is completed.
SuiteSparse:GraphBLAS currently does nothing for
\verb'GrB_Descriptor_wait(&d)', except to ensure that \verb'd' is valid.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_set:} set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_set}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Descriptor_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
GrB_Desc_Field field, // parameter to change
GrB_Desc_Value val // value to change it to
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_set' sets a descriptor field (\verb'GrB_OUTP',
\verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1', or \verb'GxB_AxB_METHOD') to
a particular value (\verb'GxB_DEFAULT', \verb'GrB_COMP',
\verb'GrB_STRUCTURE', \verb'GrB_COMP+GrB_STRUCTURE', \verb'GrB_TRAN',
\verb'GrB_REPLACE', \verb'GxB_AxB_GUSTAVSON', \verb'GxB_AxB_HEAP',
\verb'GxB_AxB_HASH',
\verb'GxB_AxB_SAXPY',
or
\verb'GxB_AxB_DOT').
\vspace{0.2in}
\noindent
{\small
\begin{tabular}{|l|p{2.4in}|p{2.2in}|}
\hline
Descriptor & Default & Non-default \\
field & & \\
\hline
\verb'GrB_OUTP'
& \verb'GxB_DEFAULT':
The output matrix is not cleared. The operation computes
${\bf C \langle M \rangle = C \odot T}$.
& \verb'GrB_REPLACE':
After computing ${\bf Z=C\odot T}$,
the output {\bf C} is cleared of all entries.
Then ${\bf C \langle M \rangle = Z}$ is performed. \\
\hline
\verb'GrB_MASK'
& \verb'GxB_DEFAULT':
The Mask is not complemented. \verb'Mask(i,j)=1' means the value $C_{ij}$
can be modified by the operation, while \verb'Mask(i,j)=0' means the value
$C_{ij}$ shall not be modified by the operation.
& \verb'GrB_COMP':
The Mask is complemented. \verb'Mask(i,j)=0' means the value $C_{ij}$
can be modified by the operation, while \verb'Mask(i,j)=1' means the value
$C_{ij}$ shall not be modified by the operation. \\
&
& \verb'GrB_STRUCTURE':
The values of the Mask are ignored. If \verb'Mask(i,j)' is an entry
in the \verb'Mask' matrix, it is treated as if \verb'Mask(i,j)=1'.
The two options \verb'GrB_COMP' and \verb'GrB_STRUCTURE' can be
combined. \\
\hline
\verb'GrB_INP0'
& \verb'GxB_DEFAULT':
The first input is not transposed prior to using it in the operation.
& \verb'GrB_TRAN':
The first input is transposed prior to using it in the operation. Only
matrices are transposed, never vectors. \\
\hline
\verb'GrB_INP1'
& \verb'GxB_DEFAULT':
The second input is not transposed prior to using it in the operation.
& \verb'GrB_TRAN':
The second input is transposed prior to using it in the operation. Only
matrices are transposed, never vectors. \\
\hline
\verb'GrB_AxB_METHOD'
& \verb'GxB_DEFAULT':
The method used for computing \verb'C=A*B' is selected automatically.
& \verb'GxB_AxB_'{\em method}: The selected method is used to compute
\verb'C=A*B'. \\
\hline
\end{tabular}
}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_set:} set a parameter in a descriptor}
%-------------------------------------------------------------------------------
\label{desc_set}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
GrB_Desc_Field field, // parameter to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Desc_set' is like \verb'GrB_Descriptor_set', except that the
type of the third parameter can vary with the field. This function can
modify descriptor settings that do not have the type \verb'GrB_Desc_Value'.
See also \verb'GxB_set' described in Section~\ref{options}.
\begin{spec}
{\bf SPEC:} \verb'GxB_Desc_set' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Desc\_get:} get a parameter from a descriptor}
%-------------------------------------------------------------------------------
\label{desc_get}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Desc_get // get a parameter from a descriptor
(
GrB_Descriptor desc, // descriptor to query; NULL means defaults
GrB_Desc_Field field, // parameter to query
... // value of the parameter
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Desc_get' returns the value of a single field in a descriptor. The
type of the third parameter is a pointer to a variable type, whose type depends
on the field. See also \verb'GxB_get' described in Section~\ref{options}.
\begin{spec}
{\bf SPEC:} \verb'GxB_Desc_get' is an extension to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Descriptor\_free:} free a descriptor}
%-------------------------------------------------------------------------------
\label{descriptor_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a descriptor
(
GrB_Descriptor *descriptor // handle of descriptor to free
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Descriptor_free' frees a descriptor.
Either usage:
{\small
\begin{verbatim}
GrB_Descriptor_free (&descriptor) ;
GrB_free (&descriptor) ; \end{verbatim}}
\noindent
frees the \verb'descriptor' and sets \verb'descriptor' to \verb'NULL'. It
safely does nothing if passed a \verb'NULL' handle, or if
\verb'descriptor == NULL' on input.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_DESC\_*:} predefined descriptors}
%-------------------------------------------------------------------------------
\label{descriptor_predefined}
Version 1.3 of the GraphBLAS C API Specification adds predefined descriptors,
and these have been added as of v3.2.0 of SuiteSparse:GraphBLAS. They are
listed in the table below. These descriptors may not be modified or freed.
Attempts to modify them result in an error (\verb'GrB_INVALID_VALUE'); attempts
to free them are silently ignored.
\verb'GrB_NULL' is the default descriptor, with all settings at their defaults:
\verb'OUTP': do not replace the output,
\verb'MASK': mask is valued and not complemented,
\verb'INP0': first input not transposed, and
\verb'INP1': second input not transposed.
\vspace{0.02in}
\noindent
{\footnotesize
\begin{tabular}{|l|lllll|}
\hline
Descriptor & \verb'OUTP' & \verb'MASK' & \verb'MASK' & \verb'INP0' & \verb'INP1' \\
& & structural & complement & & \\
\hline
\verb'GrB_NULL' & - & - & - & - & - \\
\verb'GrB_DESC_T1' & - & - & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_T0' & - & - & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_T0T1' & - & - & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_C' & - & - & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_CT1' & - & - & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_CT0' & - & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_CT0T1' & - & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_S' & - & \verb'GrB_STRUCTURE' & - & - & - \\
\verb'GrB_DESC_ST1' & - & \verb'GrB_STRUCTURE' & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_ST0' & - & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_ST0T1' & - & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_SC' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_SCT1' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_SCT0' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_SCT0T1' & - & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_R' & \verb'GrB_REPLACE' & - & - & - & - \\
\verb'GrB_DESC_RT1' & \verb'GrB_REPLACE' & - & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RT0' & \verb'GrB_REPLACE' & - & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RT0T1' & \verb'GrB_REPLACE' & - & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RC' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_RCT1' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RCT0' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RCT0T1' & \verb'GrB_REPLACE' & - & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RS' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & - & - \\
\verb'GrB_DESC_RST1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RST0' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RST0T1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & - & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\verb'GrB_DESC_RSC' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & - \\
\verb'GrB_DESC_RSCT1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & - & \verb'GrB_TRAN' \\
\verb'GrB_DESC_RSCT0' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & - \\
\verb'GrB_DESC_RSCT0T1' & \verb'GrB_REPLACE' & \verb'GrB_STRUCTURE' & \verb'GrB_COMP' & \verb'GrB_TRAN' & \verb'GrB_TRAN' \\
\hline
\end{tabular}}
\newpage
%===============================================================================
\subsection{{\sf GrB\_free:} free any GraphBLAS object} %=======================
%===============================================================================
\label{free}
Each of the ten objects has \verb'GrB_*_new' and \verb'GrB_*_free' methods
that are specific to each object. They can also be accessed by a generic
function, \verb'GrB_free', that works for all ten objects. If \verb'G' is any
of the ten objects, the statement
{\footnotesize
\begin{verbatim}
GrB_free (&G) ; \end{verbatim} }
\noindent
frees the object and sets the variable \verb'G' to \verb'NULL'. It is safe to
pass in a \verb'NULL' handle, or to free an object twice:
{\footnotesize
\begin{verbatim}
GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing
GrB_free (&G) ; // the object G is freed and G set to NULL
GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing \end{verbatim} }
\noindent
However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.
{\footnotesize
\begin{verbatim}
H = G ; // valid; creates a 2nd handle of the same object
GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined
GrB_some_method (H) ; // not valid; H is undefined \end{verbatim}}
Some objects are predefined, such as the built-in types. If a user application
attempts to free a built-in object, SuiteSparse:GraphBLAS will safely do
nothing. The \verb'GrB_free' function in SuiteSparse:GraphBLAS returns
\verb'GrB_SUCCESS' or \verb'GrB_PANIC' in the unlikely event of a failure.
% TODO in 4.0: GrB_PANIC will not be returned.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The mask, accumulator, and replace option} %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:maskaccum}
After a GraphBLAS operation computes a result ${\bf T}$, (for example, ${\bf
T=AB}$ for \verb'GrB_mxm'), the results are assigned to an output matrix ${\bf
C}$ via the mask/ accumulator phase, written as ${\bf C \langle M \rangle = C
\odot T}$. This phase is affected by the \verb'GrB_REPLACE' option in the
descriptor, the presence of an optional binary accumulator operator ($\odot$),
the presence of the optional mask matrix ${\bf M}$, and the status of the mask
descriptor. The interplay of these options is summarized in
Table~\ref{tab:maskaccum}.
The mask ${\bf M}$ may be present, or not. It may be structural or valued, and
it may be complemented, or not. These options may be combined, for a total of
8 cases, although the structural/valued option as no effect if ${\bf M}$ is not
present. If ${\bf M}$ is not present and not complemented, then $m_{ij}$ is
implicitly true. If not present yet complemeted, then all $m_{ij}$ entries are
implicitly zero; in this case, ${\bf T}$ need not be computed at all. Either
${\bf C}$ is not modified, or all its entries are cleared if the replace option
is enabled. If ${\bf M}$ is present, and the structural option is used, then
$m_{ij}$ is treated as true if it is an entry in the matrix (its value is
ignored). Otherwise, the value of $m_{ij}$ is used. In both cases, entries
not present are implicitly zero. These values are negated if the mask is
complemented. All of these various cases are combined to give a single
effective value of the mask at position ${ij}$.
The combination of all these options are presented in the
Table~\ref{tab:maskaccum}. The first column is the \verb'GrB_REPLACE' option.
The second column lists whether or not the accumulator operator is present.
The third column lists whether or not $c_{ij}$ exists on input to the
mask/accumulator phase (a dash means that it does not exist). The fourth
column lists whether or not the entry $t_{ij}$ is present in the result matrix
${\bf T}$. The mask column is the final effective value of $m_{ij}$, after
accounting for the presence of ${\bf M}$ and the mask options. Finally, the
last column states the result of the mask/accum step; if no action is listed in
this column, then $c_{ij}$ is not modified.
Several important observations can be made from this table. First,
if no mask is present (and the mask-complement descriptor option is not used),
then only the first half of the table is used. In this case, the \verb'GrB_REPLACE'
option has no effect. The entire matrix ${\bf C}$ is modified.
Consider the cases when $c_{ij}$ is present but $t_{ij}$ is not, and there is no
mask or the effective value of the mask is true for this ${ij}$ position. With
no accumulator operator, $c_{ij}$ is deleted. If the accumulator operator is
present and the replace option is not used, $c_{ij}$ remains unchanged.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf T}$ & mask & action taken by ${\bf C \langle M \rangle = C \odot T}$ \\
\hline
- &- & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, update \\
- &- & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
- &- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $t_{ij}$ not present \\
- &- & - & - & 1 & \\
\hline
yes&- & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, update \\
yes&- & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
yes&- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $t_{ij}$ not present \\
yes&- & - & - & 1 & \\
\hline
- &yes & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
- &yes & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
- &yes & $c_{ij}$ & - & 1 & \\
- &yes & - & - & 1 & \\
\hline
yes&yes & $c_{ij}$ & $t_{ij}$ & 1 & $c_{ij} = c_{ij} \odot t_{ij}$, apply accumulator \\
yes&yes & - & $t_{ij}$ & 1 & $c_{ij} = t_{ij}$, insert \\
yes&yes & $c_{ij}$ & - & 1 & \\
yes&yes & - & - & 1 & \\
\hline
\hline
- &- & $c_{ij}$ & $t_{ij}$ & 0 & \\
- &- & - & $t_{ij}$ & 0 & \\
- &- & $c_{ij}$ & - & 0 & \\
- &- & - & - & 0 & \\
\hline
yes&- & $c_{ij}$ & $t_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & $t_{ij}$ & 0 & \\
yes&- & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $t_{ij}$ & 0 & \\
- &yes & - & $t_{ij}$ & 0 & \\
- &yes & $c_{ij}$ & - & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes&yes & $c_{ij}$ & $t_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & $t_{ij}$ & 0 & \\
yes&yes & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of the mask/accumulator phase \label{tab:maskaccum}}
\end{table}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Options} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{options}
\begin{spec}
{\bf SPEC:} {\sf GxB\_set} and {\sf GxB\_get} are extensions to the
specification.
\end{spec}
SuiteSparse:GraphBLAS includes two type-generic methods, \verb'GxB_set' and
\verb'GxB_get', that set and query various options and parameters settings,
including a generic way to set values in the \verb'GrB_Descriptor' object.
Using these methods, the user application can provide hints to
SuiteSparse:GraphBLAS on how it should store and operate on its matrices.
These hints have no effect on the results of any GraphBLAS operation (except
perhaps floating-point roundoff differences), but they can have a great impact
on the amount of time or memory taken.
\begin{itemize}
\item \verb'GxB_set (field, value)' provides hints to
SuiteSparse:GraphBLAS on how it should store all matrices created after
calling this function: by row, by column, and whether or not to use a {\em
hypersparse} format \cite{BulucGilbert08,BulucGilbert12}. These are global
options that modify all matrices created after calling this method.
The global settings also control the number of threads used, and the
heuristic for selecting the number of threads for small problems.
\item \verb'GxB_set (GrB_Matrix A, field, value)' provides hints to
SuiteSparse: GraphBLAS on how to store a particular matrix. This method
allows SuiteSparse:GraphBLAS to transform a specific matrix from one format
to another. The format has no effect on the result computed by GraphBLAS;
it only affects the time and memory taken to do the computations.
\item \verb'GxB_set (GrB_Descriptor desc, field, value)' is another way to
set the value of a field in a \verb'GrB_Descriptor'. It is identical to \\
\verb'GrB_Descriptor_set', just with a generic name.
\end{itemize}
The \verb'GxB_get' method queries a \verb'GrB_Descriptor', a \verb'GrB_Matrix',
or the global options.
\begin{itemize}
\item \verb'GxB_get (field, &value)' retrieves the value of
a global option.
\item \verb'GxB_get (GrB_Matrix A, field, &value)' retrieves the current
value of an option from a particular matrix \verb'A'.
\item \verb'GxB_get (GrB_Descriptor desc, field, &value)' retrieves the value
of a field in a descriptor.
\end{itemize}
%-------------------------------------------------------------------------------
\subsection{OpenMP parallelism}
%-------------------------------------------------------------------------------
SuiteSparse:GraphBLAS Version 3 is a parallel library, based on OpenMP. By
default, all GraphBLAS operations will use up to the maximum number of threads
specified by the \verb'omp_get_max_threads' OpenMP function. For small
problems, GraphBLAS may choose to use fewer threads, using two parameters: the
maximum number of threads to use (which may differ from the
\verb'omp_get_max_threads' value), and a parameter called the \verb'chunk'.
Suppose \verb'work' is a measure of the work an operation needs to perform (say
the number of entries in the two input matrices for \verb'GrB_eWiseAdd'). No
more than \verb'floor(work/chunk)' threads will be used (or one thread if the
ratio is less than 1).
The default \verb'chunk' value is 65,536, but this may change in future versions,
or it may be modified when GraphBLAS is installed on a particular machine.
Both parameters can be set in two ways:
\begin{itemize}
\item Globally: If the following methods are used, then all subsequent
GraphBLAS operations will use these settings. Note the typecast,
\verb'(double)' \verb'chunk'. This is necessary if a literal constant such as
\verb'20000' is passed as this argument. The type of the constant must be
\verb'double'.
{\footnotesize
\begin{verbatim}
int nthreads_max = 40 ;
GxB_set (GxB_NTHREADS, nthreads_max) ;
GxB_set (GxB_CHUNK, (double) 20000) ; \end{verbatim} }
\item Per operation: Most GraphBLAS operations take a \verb'GrB_Descriptor'
input, and this can be modified to set the number of threads and chunk
size for the operation that uses this descriptor. Note that \verb'chunk'
is a \verb'double'.
{\footnotesize
\begin{verbatim}
GrB_Descriptor desc ;
GrB_Descriptor_new (&desc)
int nthreads_max = 40 ;
GxB_set (desc, GxB_NTHREADS, nthreads_max) ;
double chunk = 20000 ;
GxB_set (desc, GxB_CHUNK, chunk) ; \end{verbatim} }
\end{itemize}
The smaller of \verb'nthreads_max' and \verb'floor(work/chunk)' is used for any
given GraphBLAS operation, except that a single thread is used if this value is
zero or less.
If either parameter is set to \verb'GxB_DEFAULT', then default values are used.
The default for \verb'nthreads_max' is the return value from
\verb'omp_get_max_threads', and the default chunk size is currently 65,536.
If a descriptor value for either parameter is left at its default, or set to
\verb'GxB_DEFAULT', then the global setting is used. This global setting may
have been modified from its default, and this modified value will be used.
For example, suppose \verb'omp_get_max_threads' reports 8 threads. If \newline
\verb'GxB_set (GxB_NTHREADS, 4)' is used, then the global setting is four
threads, not eight. If a descriptor is used but its \verb'GxB_NTHREADS' is not
set, or set to \verb'GxB_DEFAULT', then any operation that uses this descriptor
will use 4 threads.
%-------------------------------------------------------------------------------
\subsection{Storing a matrix by row or by column}
%-------------------------------------------------------------------------------
The GraphBLAS \verb'GrB_Matrix' is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored. However,
choices made in how the matrix is represented in a particular implementation,
such as SuiteSparse:GraphBLAS, can have a large impact on performance.
Many graph algorithms are just as fast in any format, but some algorithms are
much faster in one format or the other. For example, suppose the user
application stores a directed graph as a matrix \verb'A', with the edge $(i,j)$
represented as the value \verb'A(i,j)', and the application makes many accesses
to the $i$th row of the matrix, with \verb'GrB_Col_extract'
\verb'(w,...,A,GrB_ALL,...,i,desc)' with the transposed descriptor
(\verb'GrB_INP0' set to \verb'GrB_TRAN'). If the matrix is stored by column
this can be extremely slow, just like the expression \verb'w=A(i,:)' in MATLAB,
where \verb'i' is a scalar. Since this is a typical use-case in graph
algorithms, the default format in SuiteSparse:GraphBLAS is to store its
matrices by row, in Compressed Sparse Row format (CSR).
MATLAB stores its sparse matrices by column, in ``non-hypersparse'' format, in
what is called the Compressed Sparse Column format, or CSC for short. An
\verb'm'-by-\verb'n' matrix in MATLAB is represented as a set of \verb'n'
column vectors, each with a sorted list of row indices and values of the
nonzero entries in that column. As a result, \verb'w=A(:,j)' is very fast in
MATLAB, since the result is already held in the data structure a single list,
the $j$th column vector. However, \verb'w=A(i,:)' is very slow in MATLAB,
since every column in the matrix has to be searched to see if it contains row
\verb'i'. In MATLAB, if many such accesses are made, it is much better to
transpose the matrix (say \verb"AT=A'") and then use \verb"w=AT(:,i)" instead.
This can have a dramatic impact on the performance of MATLAB.
Likewise, if \verb'u' is a very sparse column vector and \verb'A' is stored by
column, then \verb"w=u'*A" (via \verb'GrB_vxm') is slower than \verb'w=A*u'
(via \verb'GrB_mxv'). The opposite is true if the matrix is stored by row.
An example of this can be found in Section B.1 of Version 1.2 of the GraphBLAS
API Specification, where the breadth-first search \verb'BFS' uses
\verb'GrB_vxm' to compute \verb"q'=q'*A". This method is not fast if the
matrix \verb'A' is stored by column. The \verb'bfs5' and \verb'bfs6' examples
in the \verb'Demo/' folder of SuiteSparse:GraphBLAS use \verb'GrB_vxm',
which is fast since the matrices are assumed to be stored in their
default format, by row.
SuiteSparse:GraphBLAS stores its sparse matrices by row, by default. In
Versions 2.1 and earlier, the matrices were stored by column, by default.
However, it can also be instructed to store any selected matrices, or all
matrices, by column instead (just like MATLAB), so that \verb'w=A(:,j)' (via
\verb'GrB_Col_extract') is very fast. The change in data format has no effect
on the result, just the time and memory usage. To use a column-oriented format
by default, the following can be done in a user application that tends to
access its matrices by column.
{\footnotesize
\begin{verbatim}
GrB_init (...) ;
// just after GrB_init: do the following:
#ifdef GxB_SUITESPARSE_GRAPHBLAS
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
#endif \end{verbatim} }
If this is done, and no other \verb'GxB_set' calls are made with
\verb'GxB_FORMAT', all matrices will be stored by column. Alternatively,
SuiteSparse:GraphBLAS can be compiled with \verb'-DBYCOL', which changes the
default format to \verb'GxB_BY_COL', with no calls to any \verb'GxB_*'
function. The default format is now \verb'GxB_BY_ROW'.
%-------------------------------------------------------------------------------
\subsection{Hypersparse matrices}
\label{hypersparse}
%-------------------------------------------------------------------------------
MATLAB can store an \verb'm'-by-\verb'n' matrix with a very large value of
\verb'm', since a CSC data structure takes $O(n+|{\bf A}|)$ memory, independent
of \verb'm', where $|{\bf A}|$ is the number of nonzeros in the matrix. It
cannot store a matrix with a huge \verb'n', and this structure is also
inefficient when $|{\bf A}|$ is much smaller than \verb'n'. In contrast,
SuiteSparse:GraphBLAS can store its matrices in {\em hypersparse} format,
taking only $O(|{\bf A}|)$ memory, independent of how it is stored (by row or
by column) and independent of both \verb'm' and \verb'n'
\cite{BulucGilbert08,BulucGilbert12}.
In both the CSR and CSC formats, the matrix is held as a set of sparse vectors.
In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty. For example, an
\verb'm'-by-\verb'n' matrix in non-hypersparse CSC format contains \verb'n'
sparse vectors. Each column vector takes at least one integer to represent,
even for a column with no entries. This allows for quick lookup for a
particular vector, but the memory required is $O(n+|{\bf A}|)$. With a
hypersparse CSC format, the set of vectors itself is sparse, and columns with
no entries take no memory at all. The drawback of the hypersparse format is
that finding an arbitrary column vector \verb'j', such as for the computation
\verb'C=A(:,j)', takes $O(\log k)$ time if there $k \le n$ vectors in the data
structure. One advantage of the hypersparse structure is the memory required
for an \verb'm'-by-\verb'n' hypersparse CSC matrix is only $O(|{\bf A}|)$,
independent of \verb'm' and \verb'n'. Algorithms that must visit all non-empty
columns of a matrix are much faster when working with hypersparse matrices,
since empty columns can be skipped.
The \verb'hyper_ratio' parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to 1.
The default is \verb'hyper_ratio' = \verb'GxB_HYPER_DEFAULT', which is an
\verb'extern' \verb'const' \verb'double' value, currently set to 0.0625, or
1/16. This default ratio may change in the future.
The \verb'hyper_ratio' determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let $n$ be the number of columns of a
CSC matrix, or the number of rows of a CSR matrix. The matrix can have at most
$n$ non-empty vectors.
Let $k$ be the actual number of non-empty vectors. That is, for the CSC
format, $k \le n$ is the number of columns that have at least one entry. Let
$h$ be the value of \verb'hyper_ratio'.
If a matrix is currently hypersparse, it can be converted to non-hypersparse if
the either condition $n \le 1$ or $k > 2nh$ holds, or both. Otherwise, it
stays hypersparse. Note that if $n \le 1$ the matrix is always stored as
non-hypersparse.
If currently non-hypersparse, it can be converted to hypersparse if
both conditions $n > 1$ and $k \le nh$ hold. Otherwise, it stays
non-hypersparse. Note that if $n \le 1$ the matrix always remains
non-hypersparse.
The default value of \verb'hyper_ratio' is assigned at startup by
\verb'GrB_init', and can then be modified globally with \verb'GxB_set'. All
new matrices are created with the same \verb'hyper_ratio', determined by the
global value. Once a particular matrix \verb'A' has been constructed, its
hypersparsity ratio can be modified from the default with:
{\footnotesize
\begin{verbatim}
double hyper_ratio = 0.2 ;
GxB_set (A, GxB_HYPER, hyper_ratio) ; \end{verbatim}}
To force a matrix to always be non-hypersparse, use \verb'hyper_ratio' equal to
\verb'GxB_NEVER_HYPER'. To force a matrix to always stay hypersparse, set
\verb'hyper_ratio' to \verb'GxB_ALWAYS_HYPER'.
A \verb'GrB_Matrix' can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All \verb'GrB_Vector' objects are always stored
in non-hypersparse CSC format.
A new matrix created via \verb'GrB_Matrix_new' starts with $k=0$ and is created
in hypersparse form by default unless $n \le 1$ or if $h<0$, where $h$ is the
global \verb'hyper_ratio' value. The matrix is created in either
\verb'GxB_BY_ROW' or \verb'GxB_BY_COL' format, as determined by the last call
to \verb'GxB_set(GxB_FORMAT,...)' or \verb'GrB_init'.
A new matrix \verb'C' created via \verb'GrB_dup (&C,A)' inherits the CSR/CSC
format, hypersparsity format, and \verb'hyper_ratio' from \verb'A'.
%-------------------------------------------------------------------------------
{\bf Parameter types:}
%-------------------------------------------------------------------------------
The \verb'GxB_Option_Field' enumerated type gives the type of the \verb'field'
parameter for the second argument of \verb'GxB_set' and \verb'GxB_get',
for setting global options or matrix options.
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_HYPER = 0, // defines switch to hypersparse format (double value)
GxB_FORMAT = 1, // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL
GxB_MODE = 2, // mode passed to GrB_init (blocking or non-blocking)
GxB_THREAD_SAFETY = 3, // thread library for thread safety
GxB_THREADING = 4, // currently none (in progress)
GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use
GxB_GLOBAL_CHUNK = GxB_CHUNK, // chunk size for small problems
GxB_IS_HYPER = 6 // query a matrix to see if it hypersparse or not
// (GxB_Matrix_Option_get only)
}
GxB_Option_Field ;
\end{verbatim} }
The \verb'GxB_FORMAT' field can be by row or by column, set to a value
with the type \verb'GxB_Format_Value':
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_BY_ROW = 0, // CSR: compressed sparse row format
GxB_BY_COL = 1 // CSC: compressed sparse column format
}
GxB_Format_Value ;
\end{verbatim} }
The default format (in SuiteSparse:GraphBLAS Version 2.2 and later) is by row.
The format in SuiteSparse:GraphBLAS Version 2.1 and earlier was by column,
just like MATLAB.
The default format is given by the predefined value \verb'GxB_FORMAT_DEFAULT',
which is equal to \verb'GxB_BY_ROW' if default compile-time options are used.
To change the default at compile time to \verb'GxB_BY_COL', compile the
SuiteSparse: GraphBLAS library with \verb'-DBYCOL'. This changes
\verb'GxB_FORMAT_DEFAULT' to \verb'GxB_BY_COL'. The default hypersparsity
ratio is 0.0625 (1/16), but this value may change in the future.
Setting the \verb'GxB_HYPER' field to \verb'GxB_ALWAYS_HYPER' ensures a matrix
always stays hypersparse. If set to \verb'GxB_NEVER_HYPER', it always stays
non-hypersparse. At startup, \verb'GrB_init' defines the following initial
settings:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER, GxB_HYPER_DEFAULT) ;
GxB_set (GxB_FORMAT, GxB_FORMAT_DEFAULT) ;
\end{verbatim} }
That is, by default, all new matrices are held by column in CSR format, unless
\verb'-DBYCOL' is used at compile time, in which case the default is to store
all new matrices by row in CSC format. If a matrix has fewer than $n/16$
columns, it can be converted to hypersparse format. If it has more than $n/8$
columns, it can be converted to non-hypersparse format. These options can be
changed for all future matrices with \verb'GxB_set'. For example, to change
all future matrices to be in non-hypersparse CSC when created, use:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
\end{verbatim} }
Then if a particular matrix needs a different format, then (as an example):
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_HYPER, 0.1) ;
GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;
\end{verbatim} }
This changes the matrix \verb'A' so that it is stored by row, and it is
converted from non-hypersparse to hypersparse format if it has fewer than 10\%
non-empty columns. If it is hypersparse, it is a candidate for conversion to
non-hypersparse if has 20\% or more non-empty columns. If it has between 10\%
and 20\% non-empty columns, it remains in its current format.
MATLAB only supports a non-hypersparse CSC format. The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is:
{\footnotesize
\begin{verbatim}
GrB_init (...) ;
GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
// no subsequent use of GxB_HYPER or GxB_FORMAT
\end{verbatim} }
The \verb'GxB_HYPER' and \verb'GxB_FORMAT' options should be considered as
suggestions from the user application as to how SuiteSparse:GraphBLAS can
obtain the best performance for a particular application.
SuiteSparse:GraphBLAS is free to ignore any of these suggestions, both now and
in the future, and the available options and formats may be augmented in the
future. Any prior options no longer needed in future versions of
SuiteSparse:GraphBLAS will be silently ignored, so the use these options is
safe for future updates.
The hypersparse status of a matrix can be queried with the following:
{\footnotesize
\begin{verbatim}
bool is_hyper ;
GxB_get (A, GxB_IS_HYPER, &is_hyper) ;
printf (is_hyper ? "A is hypersparse" : "A is standard sparse") ; \end{verbatim}}
%-------------------------------------------------------------------------------
\subsection{Other global options}
%-------------------------------------------------------------------------------
\verb'GxB_MODE', \verb'GxB_THREAD_SAFETY', and \verb'GxB_THREADING' can only be
queried by \verb'GxB_get'; they cannot be modified by \verb'GxB_set'. The mode
is the value passed to \verb'GrB_init' (blocking or non-blocking). The
\verb'GxB_THREAD*' options are returned as an \verb'enum' type with one of the
following options:
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_THREAD_NONE = 0, // no threading
GxB_THREAD_OPENMP = 1, // OpenMP
GxB_THREAD_POSIX = 2, // POSIX pthreads
GxB_THREAD_WINDOWS = 3, // Windows threads
GxB_THREAD_ANSI = 4 // ANSI C11 threads
}
GxB_Thread_Model ; \end{verbatim} }
SuiteSparse:GraphBLAS multi-threaded, using only OpenMP for its internal
parallelism. It is also thread-safe if it is compiled with OpenMP or POSIX
pthreads, and if the user application threads do not operate on the same
matrices at the same time. The user threads may use OpenMP or POSIX pthreads.
If multiple user threads make simultaneous calls to GraphBLAS, then output
matrices and vectors used by different threads must be different, and input
matrices and vectors can be safely used only if any pending computations on
them have finished, via \verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', or
\verb'GxB_Scalar_wait'.
The \verb'GxB_THREAD_SAFETY' option returns the threading model used internally
to synchronize user threads, solely for the now-deprecated \verb'GrB_wait()'.
This is determined during installation (see Section~\ref{sec:threads}). Since
\verb'GxB_THREAD_NONE' is zero, the following can be used:
{\footnotesize
\begin{verbatim}
GxB_Thread_Model thread_safety ;
GxB_get (GxB_THREAD_SAFETY, &thread_safety) ;
if (thread_safety)
{
printf ("GraphBLAS is thread-safe\n") ;
}
else
{
// neither OpenMP, POSIX pthreads, nor any other threading model
// was available at compile-time
printf ("GraphBLAS is not thread-safe!\n") ;
}
\end{verbatim} }
The \verb'GxB_THREADING' option returns the internal parallelism used inside
SuiteSparse:GraphBLAS, depending on how the library was compiled:
{\footnotesize
\begin{verbatim}
GxB_Thread_Model threading ;
GxB_get (GxB_THREADING, &threading) ;
if (threading == GxB_THREAD_NONE)
{
printf ("GraphBLAS is single-threaded, internally.\n") ;
}
else
{
printf ("GraphBLAS is multi-threaded, internally, using OpenMP.\n") ;
}
\end{verbatim} }
All threads in the same user application share the same global options,
including hypersparsity and CSR/CSC format determined by \verb'GxB_set', the
blocking mode determined by \verb'GrB_init', and the threading options.
Specific format and hypersparsity parameters of each matrix are specific to
that matrix and can be independently changed.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_set:} set a global option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set a global default option
(
const GxB_Option_Field field, // option to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_set' sets the value of a global option.
The \verb'field' parameter can be \verb'GxB_HYPER', \verb'GxB_FORMAT',
\verb'GxB_NTHREADS', or \verb'GxB_CHUNK'.
For example, the following usage sets the global hypersparsity ratio to 0.2,
the format of future matrices to \verb'GxB_BY_COL', the maximum number
of threads to 4, and the chunk size to 10000.
No existing matrices are changed.
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER, 0.2) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
GxB_set (GxB_NTHREADS, 4) ;
GxB_set (GxB_CHUNK, (double) 10000) ;
\end{verbatim} }
%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_set:} set a matrix option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set an option in a matrix
(
GrB_Matrix A, // matrix to modify
const GxB_Option_Field field, // option to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_set' sets the value of a matrix option, for a
particular matrix.
The \verb'field' parameter can be \verb'GxB_HYPER' or \verb'GxB_FORMAT'.
For example, the following usage sets the hypersparsity
ratio to 0.2, and the format of \verb'GxB_BY_COL', for a particular matrix
\verb'A'. SuiteSparse:GraphBLAS currently applies these changes immediately,
but since they are simply hints, future versions of SuiteSparse:GraphBLAS may
delay the change in format if it can obtain better performance.
{\footnotesize
\begin{verbatim}
GxB_set (A, GxB_HYPER, 0.2) ;
GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;
\end{verbatim} }
For performance, the matrix option should be set as soon as it is created with
\verb'GrB_Matrix_new', so the internal transformation takes less time.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Desc\_set:} set a {\sf GrB\_Descriptor} value}
%===============================================================================
\label{gxbset}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_set // set a parameter in a descriptor
(
GrB_Descriptor desc, // descriptor to modify
const GrB_Desc_Field field, // parameter to change
... // value to change it to
) ;
\end{verbatim} } \end{mdframed}
This usage is similar to \verb'GrB_Descriptor_set', just with a name that is
consistent with the other usages of this generic function. Unlike
\verb'GrB_Descriptor_set', the \verb'field' may also be \verb'GxB_NTHREADS', or
\verb'GxB_CHUNK'. Refer to Sections~\ref{descriptor_set}~and~\ref{desc_set}
for details.
%===============================================================================
\subsection{{\sf GxB\_Global\_Option\_get:} retrieve a global option}
%===============================================================================
\label{gxbget}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // gets the current global default option
(
const GxB_Option_Field field, // option to query
... // return value of the global option
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_get' retrieves the value of a global option. The
\verb'field' parameter can be \verb'GxB_HYPER', \verb'GxB_FORMAT'.
\verb'GxB_MODE', \verb'GxB_THREAD_SAFETY', \verb'GxB_THREADING',
\verb'GxB_NTHREADS', or \verb'GxB_CHUNK'.
For example:
{\footnotesize
\begin{verbatim}
double h ;
GxB_get (GxB_HYPER, &h) ;
printf ("hyper_ratio = %g for all new matrices\n", h) ;
GxB_Format_Value s ;
GxB_get (GxB_FORMAT, &s) ;
if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") :
else printf ("all new matrices are stored by row\n") ;
GrB_mode mode ;
GxB_get (GxB_MODE, &mode) ;
if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n") :
else printf ("GrB_init(GrB_NONBLOCK) was called.\n") ;
int nthreads_max ;
GxB_get (GxB_NTHREADS, &nthreads_max) ;
printf ("max # of threads to use: %d\n", nthreads_max) ;
double chunk ;
GxB_get (GxB_CHUNK, &chunk) ;
printf ("chunk size: %g\n", chunk) ;
// see Demo/Program/pthread_demo.c and openmp_demo.c for examples:
GxB_Threading_Model thread_safety, threading ;
GxB_get (GxB_THREAD_SAFETY, &thread_safey) ;
GxB_get (GxB_THREADING, &threading) ; \end{verbatim} }
%===============================================================================
\subsection{{\sf GxB\_Matrix\_Option\_get:} retrieve a matrix option}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // gets the current option of a matrix
(
GrB_Matrix A, // matrix to query
GxB_Option_Field field, // option to query
... // return value of the matrix option
) ;
\end{verbatim} } \end{mdframed}
This usage of \verb'GxB_get' retrieves the value of a matrix option.
The \verb'field' parameter can be \verb'GxB_HYPER', \verb'GxB_IS_HYPER',
or \verb'GxB_FORMAT'.
For example:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
double h ;
bool is_hyper ;
GxB_get (A, GxB_IS_HYPER, &is_hyper) ;
GxB_get (A, GxB_HYPER, &h) ;
printf ("matrix A has hyper_ratio = %g\n", h) ;
printf ("matrix A is currently %shypersparse\n", is_hyper ? "not " : " ") ;
GxB_Format_Value s ;
GxB_get (A, GxB_FORMAT, &s) ;
printf ("matrix A is stored by %s\n", (s == GxB_BY_COL) ? "col" : "row") ; \end{verbatim} }
%===============================================================================
\subsection{{\sf GxB\_Desc\_get:} retrieve a {\sf GrB\_Descriptor} value}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_get // get a parameter from a descriptor
(
GrB_Descriptor desc, // descriptor to query; NULL means defaults
GrB_Desc_Field field, // parameter to query
... // value of the parameter
) ;
\end{verbatim} } \end{mdframed}
This usage is the same as \verb'GxB_Desc_get'. The \verb'field' parameter can
be \verb'GrB_OUTP', \verb'GrB_MASK', \verb'GrB_INP0', \verb'GrB_INP1',
\verb'GxB_AxB_METHOD',
\verb'GxB_NTHREADS', or \verb'GxB_CHUNK'.
Refer to Section~\ref{desc_get} for details.
%===============================================================================
\newpage
\subsection{Summary of usage of {\sf GxB\_set} and {\sf GxB\_get}}
%===============================================================================
The different usages of \verb'GxB_set' and \verb'GxB_get' are summarized below.
\noindent
To set/get the global options:
{\footnotesize
\begin{verbatim}
GxB_set (GxB_HYPER, double h) ;
GxB_set (GxB_HYPER, GxB_ALWAYS_HYPER) ;
GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_get (GxB_HYPER, double *h) ;
GxB_set (GxB_FORMAT, GxB_BY_ROW) ;
GxB_set (GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;
GxB_set (GxB_NTHREADS, int nthreads_max) ;
GxB_get (GxB_NTHREADS, int *nthreads_max) ;
GxB_set (GxB_CHUNK, double chunk) ;
GxB_get (GxB_CHUNK, double *chunk) ;
GxB_set (GxB_BURBLE, bool burble) ;
GxB_get (GxB_BURBLE, bool *burble) ; \end{verbatim} }
\noindent
To get global options that can be queried but not modified:
{\footnotesize
\begin{verbatim}
GxB_get (GxB_MODE, GrB_Mode *mode) ;
GxB_get (GxB_THREAD_SAFETY, GxB_Thread_Model *thread_safety) ;
GxB_get (GxB_THREADING, GxB_Thread_Model *threading) ; \end{verbatim} }
\noindent
To set/get a matrix option:
{\footnotesize
\begin{verbatim}
GxB_set (GrB_Matrix A, GxB_HYPER, double h) ;
GxB_set (GrB_Matrix A, GxB_HYPER, GxB_ALWAYS_HYPER) ;
GxB_set (GrB_Matrix A, GxB_HYPER, GxB_NEVER_HYPER) ;
GxB_get (GrB_Matrix A, GxB_HYPER, double *h) ;
GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;
GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;
GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ; \end{verbatim} }
\noindent
To get the hypersparse status of a matrix:
{\footnotesize
\begin{verbatim}
GxB_get (GrB_Matrix A, GxB_IS_HYPER, bool *is_hyper) ; \end{verbatim} }
\newpage
\noindent
To set/get a descriptor field:
{\footnotesize
\begin{verbatim}
GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;
GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;
GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP+GrB_STRUCTURE) ;
GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;
GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;
GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HEAP) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;
GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;
GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;
GxB_set (GrB_Descriptor d, GxB_NTHREADS, int nthreads) ;
GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;
GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;
GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ; \end{verbatim} }
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{SuiteSparse:GraphBLAS Colon and Index Notation} %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{colon}
MATLAB uses a colon notation to index into matrices, such as
\verb'C=A(2:4,3:8)', which extracts \verb'C' as 3-by-6 submatrix from \verb'A',
from rows 2 through 4 and columns 3 to 8 of the matrix \verb'A'. A single
colon is used to denote all rows, \verb'C=A(:,9)', or all columns,
\verb'C=A(12,:)', which refers to the 9th column and 12th row of \verb'A',
respectively. An arbitrary integer list can be given as well, such as the
MATLAB statements:
{\footnotesize
\begin{verbatim}
I = [2 1 4] ;
J = [3 5] ;
C = A (I,J) ; \end{verbatim} }
\noindent
which creates the 3-by-2 matrix \verb'C' as follows:
\[
C =
\left[
\begin{array}{cc}
a_{2,3} & a_{2,5} \\
a_{1,3} & a_{1,5} \\
a_{4,3} & a_{4,5} \\
\end{array}
\right]
\]
The GraphBLAS API can do the equivalent of \verb'C=A(I,J)',
\verb'C=A(:,J)', \verb'C=A(I,:)', and \verb'C=A(:,:)', by passing a parameter
\verb'const GrB_Index *I' as either an array of size \verb'ni', or as the
special value \verb'GrB_ALL', which corresponds to the stand-alone colon
\verb'C=A(:,J)', and the same can be done for \verb'J'.. To compute
\verb'C=A(2:4,3:8)' in GraphBLAS requires the user application to create two
explicit integer arrays \verb'I' and \verb'J' of size 3 and 5, respectively,
and then fill them with the explicit values \verb'[2,3,4]' and
\verb'[3,4,5,6,7,8]'. This works well if the lists are small, or if the matrix
has more entries than rows or columns.
However, particularly with hypersparse matrices, the size of the explicit
arrays \verb'I' and \verb'J' can vastly exceed the number of entries in the
matrix. When using its hypersparse format, SuiteSparse:GraphBLAS allows the
user application to create a \verb'GrB_Matrix' with dimensions up to $2^{60}$,
with no memory constraints. The only constraint on memory usage in a
hypersparse matrix is the number of entries in the matrix.
For example, creating a $n$-by-$n$ matrix \verb'A' of type \verb'GrB_FP64' with
$n=2^{60}$ and one million entries is trivial to do in Version 2.1 (and later)
of SuiteSparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS
Version 2.1 (or later) could do this on an old smartphone. However, using just
the pure GraphBLAS API, constructing \verb'C=A(0:(n/2),0:(n/2))'
in SuiteSparse Version 2.0 would require the creation of an integer array
\verb'I' of size $2^{59}$, containing the sequence 0, 1, 2, 3, ...., requiring
about 4 ExaBytes of memory (4 million terabytes). This is roughly 1000 times
larger than the memory size of the world's largest computer in 2018.
SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS API with a
full implementation of the MATLAB colon notation for integers,
\verb'I=begin:inc:end'. This extension allows the construction of the matrix
\verb'C=A(0:(n/2),0:(n/2))' in this example, with dimension $2^{59}$, probably
taking just milliseconds on an old smartphone.
The \verb'GrB_extract', \verb'GrB_assign', and \verb'GxB_subassign' operations
(described in the Section~\ref{operations}) each have parameters that define a
list of integer indices, using two parameters:
{\footnotesize
\begin{verbatim}
const GrB_Index *I ; // an array, or a special value GrB_ALL
GrB_Index ni ; // the size of I, or a special value \end{verbatim}}
These two parameters define five kinds of index lists, which can be used to
specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted \verb'|I|'. This
discussion applies equally to the row indices \verb'I' and the column indices
\verb'J'. The five kinds are listed below.
\begin{enumerate}
\item
An explicit list of indices, such as \verb'I = [2 1 4 7 2]' in MATLAB
notation, is handled by passing in \verb'I' as a pointer to an array of
size 5, and passing \verb'ni=5' as the size of the list.
The length of the explicit list is \verb'ni=|I|'.
Duplicates may appear, except that for some uses of \verb'GrB_assign'
and \verb'GxB_subassign', duplicates lead to undefined behavior
according to the GraphBLAS C API Specification.
SuiteSparse:GraphBLAS specifies how duplicates are handled in all cases,
as an addition to the specification.
See Section~\ref{duplicates} for details.
\item To specify all rows of a matrix, use \verb'I = GrB_ALL'. The
parameter \verb'ni' is ignored. This is equivalent to \verb'C=A(:,J)'
in MATLAB. In GraphBLAS, this is the sequence \verb'0:(m-1)' if \verb'A'
has \verb'm' rows, with length \verb'|I|=m'. If \verb'J' is used the
columns of an \verb'm'-by-\verb'n' matrix, then \verb'J=GrB_ALL' refers to
all columns, and is the sequence \verb'0:(n-1)', of length \verb'|J|=n'.
\item To specify a contiguous range of indices, such as \verb'I=10:20'
in MATLAB, the array \verb'I' has size 2, and \verb'ni' is passed to
SuiteSparse:GraphBLAS as the special value \verb'ni = GxB_RANGE'. The
beginning index is \verb'I[GxB_BEGIN]' and the ending index is
\verb'I[GxB_END]'. Both values must be non-negative since
\verb'GrB_Index' is an unsigned integer (\verb'uint64_t'). The value of
\verb'I[GxB_INC]' is ignored.
{\footnotesize
\begin{verbatim}
// to specify I = 10:20
GrB_Index I [2], ni = GxB_RANGE ;
I [GxB_BEGIN] = 10 ; // the start of the sequence
I [GxB_END ] = 20 ; // the end of the sequence \end{verbatim}}
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]',
The sequence has length zero if $b > e$; otherwise the length is
$|I| = (e-b) + 1$.
\item To specify a strided range of indices with a non-negative stride,
such as \verb'I=3:2:10', the array \verb'I' has size 3, and \verb'ni' has
the special value \verb'GxB_STRIDE'. This is the sequence 3, 5, 7, 9, of
length 4. Note that 10 does not appear in the list. The end point need
not appear if the increment goes past it.
{\footnotesize
\begin{verbatim}
// to specify I = 3:2:10
GrB_Index I [3], ni = GxB_STRIDE ;
I [GxB_BEGIN ] = 3 ; // the start of the sequence
I [GxB_INC ] = 2 ; // the increment
I [GxB_END ] = 10 ; // the end of the sequence \end{verbatim}}
The \verb'GxB_STRIDE' sequence is the same as the \verb'List' generated by
the following for loop:
{\footnotesize
\begin{verbatim}
int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)
for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])
{
// i is the kth entry in the sequence
List [k++] = i ;
} \end{verbatim}}
Then passing the explicit array \verb'List' and its length \verb'ni=k' has
the same effect as passing in the array \verb'I' of size 3, with
\verb'ni=GxB_STRIDE'. The latter is simply much faster to produce, and
much more efficient for SuiteSparse:GraphBLAS to process.
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
$\Delta$ = \verb'I[GxB_INC]'. The sequence has length zero if $b > e$ or
$\Delta=0$. Otherwise, the length of the sequence is
\[
|I| = \Bigl\lfloor\dfrac{e-b}{\Delta}\Bigr\rfloor + 1
\]
\item
In MATLAB notation, if the stride is negative, the sequence is decreasing.
For example, \verb'10:-2:1' is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use \verb'ni = GxB_BACKWARDS', with an array
\verb'I' of size 3. The following example specifies defines the equivalent
of the MATLAB expression \verb'10:-2:1' in SuiteSparse:GraphBLAS:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
// to specify I = 10:-2:1
GrB_Index I [3], ni = GxB_BACKWARDS ;
I [GxB_BEGIN ] = 10 ; // the start of the sequence
I [GxB_INC ] = 2 ; // the magnitude of the increment
I [GxB_END ] = 1 ; // the end of the sequence \end{verbatim}}
\vspace{-0.1in}
The value -2 cannot be assigned to the \verb'GrB_Index' array \verb'I',
since that is an unsigned type. The signed increment is represented
instead with the special value \verb'ni = GxB_BACKWARDS'.
The \verb'GxB_BACKWARDS' sequence is the same as generated by the following
for loop:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
int64_t k = 0 ;
GrB_Index *List = (a pointer to an array of large enough size)
for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])
{
// i is the kth entry in the sequence
List [k++] = i ;
} \end{verbatim}}
\vspace{-0.1in}
Let $b$ = \verb'I[GxB_BEGIN]', let $e$ = \verb'I[GxB_END]', and let
$\Delta$ = \verb'I[GxB_INC]' (note that $\Delta$ is not negative). The
sequence has length zero if $b < e$ or $\Delta=0$. Otherwise, the length
of the sequence is
\[
|I| = \Bigl\lfloor\dfrac{b-e}{\Delta}\Bigr\rfloor + 1
\]
\end{enumerate}
Since \verb'GrB_Index' is an unsigned integer, all three values
\verb'I[GxB_BEGIN]', \verb'I[GxB_INC]', and \verb'I[GxB_END]' must
be non-negative.
Just as in MATLAB, it is valid to specify an empty sequence of length zero.
For example, \verb'I = 5:3' has length zero in MATLAB and the same is
true for a \verb'GxB_RANGE' sequence in SuiteSparse:GraphBLAS, with
\verb'I[GxB_BEGIN]=5' and \verb'I[GxB_END]=3'. This has the same
effect as array \verb'I' with \verb'ni=0'.
\begin{spec}
{\bf SPEC:} \verb'GxB_RANGE', \verb'GxB_STRIDE', and \verb'GxB_BACKWARDS'
are extensions to the specification.
\end{spec}
% \newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{GraphBLAS Operations} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{operations}
The next sections define each of the GraphBLAS operations, also listed in the
table below. SuiteSparse:GraphBLAS extensions (\verb'GxB_subassign',
\verb'GxB_select') are included in the table.
\vspace{0.2in}
{\small
\begin{tabular}{lll}
\hline
\verb'GrB_mxm' & matrix-matrix multiply & ${\bf C \langle M \rangle = C \odot AB}$ \\
\verb'GrB_vxm' & vector-matrix multiply & ${\bf w^{\sf T}\langle m^{\sf T}\rangle = w^{\sf T}\odot u^{\sf T}A}$ \\
\verb'GrB_mxv' & matrix-vector multiply & ${\bf w \langle m \rangle = w \odot Au}$ \\
\hline
\verb'GrB_eWiseMult' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \otimes B)}$ \\
& set union & ${\bf w \langle m \rangle = w \odot (u \otimes v)}$ \\
\hline
\verb'GrB_eWiseAdd' & element-wise, & ${\bf C \langle M \rangle = C \odot (A \oplus B)}$ \\
& set intersection & ${\bf w \langle m \rangle = w \odot (u \oplus v)}$ \\
\hline
\verb'GrB_extract' & extract submatrix & ${\bf C \langle M \rangle = C \odot A(I,J)}$ \\
& & ${\bf w \langle m \rangle = w \odot u(i)}$ \\
\hline
\verb'GxB_subassign' & assign submatrix, & ${\bf C (I,J) \langle M \rangle = C(I,J) \odot A}$ \\
& with submask for ${\bf C(I,J)}$
& ${\bf w (i) \langle m \rangle = w(i) \odot u}$ \\
\hline
\verb'GrB_assign' & assign submatrix & ${\bf C \langle M \rangle (I,J) = C(I,J) \odot A}$ \\
& with submask for ${\bf C}$
& ${\bf w \langle m \rangle (i) = w(i) \odot u}$ \\
\hline
\verb'GrB_apply' & apply unary operator & ${\bf C \langle M \rangle = C \odot} f{\bf (A)}$ \\
& & ${\bf w \langle m \rangle = w \odot} f{\bf (u)}$ \\
& apply binary operator & ${\bf C \langle M \rangle = C \odot} f(x,{\bf A})$ \\
& & ${\bf C \langle M \rangle = C \odot} f({\bf A},y)$ \\
& & ${\bf w \langle m \rangle = w \odot} f(x,{\bf x})$ \\
& & ${\bf w \langle m \rangle = w \odot} f({\bf u},y)$ \\
\hline
\verb'GxB_select' & apply select operator & ${\bf C \langle M \rangle = C \odot} f{\bf (A,k)}$ \\
& & ${\bf w \langle m \rangle = w \odot} f{\bf (u,k)}$ \\
\hline
\verb'GrB_reduce' & reduce to vector & ${\bf w \langle m \rangle = w \odot} [{\oplus}_j {\bf A}(:,j)]$ \\
& reduce to scalar & $s = s \odot [{\oplus}_{ij} {\bf A}(I,J)]$ \\
\hline
\verb'GrB_transpose' & transpose & ${\bf C \langle M \rangle = C \odot A^{\sf T}}$ \\
\hline
\verb'GrB_kronecker' & Kronecker product & ${\bf C \langle M \rangle = C \odot \mbox{kron}(A, B)}$ \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%===============================================================================
\subsection{{\sf GrB\_mxm:} matrix-matrix multiply} %===========================
%===============================================================================
\label{mxm}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Semiring semiring, // defines '+' and '*' for A*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_mxm' multiplies two sparse matrices \verb'A' and \verb'B' using the
\verb'semiring'. The input matrices \verb'A' and \verb'B' may be transposed
according to the descriptor, \verb'desc' (which may be \verb'NULL') and then
typecasted to match the multiply operator of the \verb'semiring'. Next,
\verb'T=A*B' is computed on the \verb'semiring', precisely defined in the
\verb'GB_spec_mxm.m' script in \verb'GraphBLAS/Test'. The actual algorithm
exploits sparsity and does not take $O(n^3)$ time, but it computes the
following:
{\footnotesize
\begin{verbatim}
[m s] = size (A.matrix) ;
[s n] = size (B.matrix) ;
T.matrix = zeros (m, n, multiply.ztype) ;
T.pattern = zeros (m, n, 'logical') ;
T.matrix (:,:) = identity ; % the identity of the semiring's monoid
T.class = multiply.ztype ; % the ztype of the semiring's multiply op
A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring's multiply op
B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring's multiply op
for j = 1:n
for i = 1:m
for k = 1:s
% T (i,j) += A (i,k) * B (k,j), using the semiring
if (A.pattern (i,k) && B.pattern (k,j))
z = multiply (A (i,k), B (k,j)) ;
T.matrix (i,j) = add (T.matrix (i,j), z) ;
T.pattern (i,j) = true ;
end
end
end
end \end{verbatim}}
Finally, \verb'T' is typecasted into the type of \verb'C', and the results are
written back into \verb'C' via the \verb'accum' and \verb'Mask', ${\bf C
\langle M \rangle = C \odot T}$. The latter step is reflected in the MATLAB
function \verb'GB_spec_accum_mask.m', discussed in Section~\ref{accummask}.
\paragraph{\bf Performance considerations:}
Suppose all matrices are in \verb'GxB_BY_COL' format, and \verb'B' is extremely
sparse but \verb'A' is not as sparse. Then computing \verb'C=A*B' is very
fast, and much faster than when \verb'A' is extremely sparse. For example, if
\verb'A' is square and \verb'B' is a column vector that is all nonzero except
for one entry \verb'B(j,0)=1', then \verb'C=A*B' is the same as extracting
column \verb'A(:,j)'. This is very fast if \verb'A' is stored by column but
slow if \verb'A' is stored by row. If \verb'A' is a sparse row with a single
entry \verb'A(0,i)=1', then \verb'C=A*B' is the same as extracting row
\verb'B(i,:)'. This is fast if \verb'B' is stored by row but slow if \verb'B'
is stored by column.
If the user application needs to repeatedly extract rows and columns from a
matrix, whether by matrix multiplication or by \verb'GrB_extract', then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.
\newpage
%===============================================================================
\subsection{{\sf GrB\_vxm:} vector-matrix multiply} %===========================
%===============================================================================
\label{vxm}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_vxm // w'<mask> = accum (w, u'*A)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines '+' and '*' for u'*A
const GrB_Vector u, // first input: vector u
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_vxm' multiplies a row vector \verb"u'" times a matrix \verb'A'. The
matrix \verb'A' may be first transposed according to \verb'desc' (as the second
input, \verb'GrB_INP1'); the column vector \verb'u' is never transposed via the
descriptor. The inputs \verb'u' and \verb'A' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'. Next, an intermediate column vector \verb"t=A'*u" is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.
The last step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.
\paragraph{\bf Performance considerations:} % u'=u'*A
If the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_ROW', and the default
descriptor is used (\verb'A' is not transposed), then \verb'GrB_vxm' is faster
than than \verb'GrB_mxv' with its default descriptor, when the vector \verb'u'
is very sparse.
However, if the \verb'GxB_FORMAT' of \verb'A' is \verb'GxB_BY_COL', then
\verb'GrB_mxv' with its default descriptor is faster than \verb'GrB_vxm' with
its default descriptor, when the vector \verb'u' is very sparse.
Using the non-default \verb'GrB_TRAN' descriptor for \verb'A' makes the
\verb'GrB_vxm' operation equivalent to \verb'GrB_mxv' with its default
descriptor (with the operands reversed in the multiplier, as well). The
reverse is true as well; \verb'GrB_mxv' with \verb'GrB_TRAN' is the same as
\verb'GrB_vxm' with a default descriptor.
The breadth-first search presented in Section~\ref{bfs} of this User Guide uses
\verb'GrB_vxm' instead of \verb'GrB_mxv', since the default format in
SuiteSparse:GraphBLAS is \verb'GxB_BY_ROW'. If the matrix is stored by column,
then use \verb'GrB_mxv' instead.
\newpage
%===============================================================================
\subsection{{\sf GrB\_mxv:} matrix-vector multiply} %===========================
%===============================================================================
\label{mxv}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_mxv // w<mask> = accum (w, A*u)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Semiring semiring, // defines '+' and '*' for A*B
const GrB_Matrix A, // first input: matrix A
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_mxv' multiplies a matrix \verb'A' times a column vector \verb'u'.
The matrix \verb'A' may be first transposed according to \verb'desc' (as the
first input); the column vector \verb'u' is never transposed via the
descriptor. The inputs \verb'A' and \verb'u' are typecasted to match the
\verb'xtype' and \verb'ytype' inputs, respectively, of the multiply operator of
the \verb'semiring'. Next, an intermediate column vector \verb't=A*u' is
computed on the \verb'semiring' using the same method as \verb'GrB_mxm'.
Finally, the column vector \verb't' is typecasted from the \verb'ztype' of the
multiply operator of the \verb'semiring' into the type of \verb'w', and the
results are written back into \verb'w' using the optional accumulator
\verb'accum' and \verb'mask'.
The last step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.
\paragraph{\bf Performance considerations:} % u=A*u
Refer to the discussion of \verb'GrB_vxm'. In SuiteSparse:GraphBLAS,
\verb'GrB_mxv' is very efficient when \verb'u' is sparse or dense, when the
default descriptor is used, and when the matrix is \verb'GxB_BY_COL'. When
\verb'u' is very sparse and \verb'GrB_INP0' is set to its non-default
\verb'GrB_TRAN', then this method is not efficient if the matrix is in
\verb'GxB_BY_COL' format. If an application needs to perform \verb"A'*u"
repeatedly where \verb'u' is very sparse, then use the \verb'GxB_BY_ROW' format
for \verb'A' instead.
\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseMult:} element-wise operations, set intersection} %==
%===============================================================================
\label{eWiseMult}
Element-wise ``multiplication'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A.*B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just multiplication.
The pattern of the result of the element-wise ``multiplication'' is exactly
this set intersection. Entries in \verb'A' but not \verb'B', or visa versa, do
not appear in the result.
Let $\otimes$ denote the binary operator to be used. The computation ${\bf T =
A \otimes B}$ is given below. Entries not in the intersection of ${\bf A}$ and
${\bf B}$ do not appear in the pattern of ${\bf T}$. That is:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
\> \> $t_{ij} = a_{ij} \otimes b_{ij}$ \\
\end{tabbing} }
\vspace{-0.2in}
Depending on what kind of operator is used and what the implicit value is
assumed to be, this can give the Hadamard product. This is the case for
\verb'A.*B' in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the \verb'eWiseMult' operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of \verb'A' and \verb'B', and discards any entry outside this
intersection. Its usefulness in a user's application does not depend upon it
computing a Hadamard product in all cases. The operator need not be
associative, commutative, nor have any particular property except for type
compatibility with \verb'A' and \verb'B', and the output matrix \verb'C'.
The generic name for this operation is \verb'GrB_eWiseMult', which can be used
for both matrices and vectors.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_eWiseMult\_Vector:} element-wise vector multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> multiply, // defines '.*' for t=u.*v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Vector_eWiseMult' computes the element-wise ``multiplication'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
times). The vectors are not transposed via the descriptor. The vectors
\verb'u' and \verb'v' are first typecasted into the first and second inputs of
the \verb'multiply' operator. Next, a column vector \verb't' is computed,
denoted ${\bf t = u \otimes v}$. The pattern of \verb't' is the set
intersection of \verb'u' and \verb'v'. The result \verb't' has the type of the
output \verb'ztype' of the \verb'multiply' operator.
The \verb'operator' is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.
The next and final step is ${\bf w \langle m \rangle = w \odot t}$, as
described in Section~\ref{accummask}, except that all the terms are column
vectors instead of matrices. Note for all GraphBLAS operations, including this
one, the accumulator ${\bf w \odot t}$ is always applied in a set union manner,
even though ${\bf t = u \otimes v}$ for this operation is applied in a set
intersection manner.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_eWiseMult\_Matrix:} element-wise matrix multiply}
%-------------------------------------------------------------------------------
\label{eWiseMult_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> multiply, // defines '.*' for T=A.*B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_eWiseMult' computes the element-wise ``multiplication'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just times). The input matrices may be transposed first, according to the
descriptor \verb'desc'. They are then typecasted into the first and second
inputs of the \verb'multiply' operator. Next, a matrix \verb'T' is computed,
denoted ${\bf T = A \otimes B}$. The pattern of \verb'T' is the set
intersection of \verb'A' and \verb'B'. The result \verb'T' has the type of the
output \verb'ztype' of the \verb'multiply' operator.
The \verb'multiply' operator is typically a \verb'GrB_BinaryOp', but the method
is type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'multiply' binary operator.
If given a semiring (\verb'GrB_Semiring'), the multiply operator of the
semiring is used as the \verb'multiply' binary operator.
\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
{\footnotesize
\begin{verbatim}
[nrows, ncols] = size (A.matrix) ;
T.matrix = zeros (nrows, ncols, multiply.ztype) ;
T.class = multiply.ztype ;
p = A.pattern & B.pattern ;
A = cast (A.matrix (p), multiply.xtype) ;
B = cast (B.matrix (p), multiply.ytype) ;
T.matrix (p) = multiply (A, B) ;
T.pattern = p ; \end{verbatim} }
The final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}. Note for all GraphBLAS operations, including this
one, the accumulator ${\bf C \odot T}$ is always applied in a set union manner,
even though ${\bf T = A \otimes B}$ for this operation is applied in a set
intersection manner.
\newpage
%===============================================================================
\subsection{{\sf GrB\_eWiseAdd:} element-wise operations, set union} %==========
%===============================================================================
\label{eWiseAdd}
Element-wise ``addition'' is shorthand for applying a binary operator
element-wise on two matrices or vectors \verb'A' and \verb'B', for all entries
that appear in the set intersection of the patterns of \verb'A' and \verb'B'.
This is like \verb'A+B' for two sparse matrices in MATLAB, except that in
GraphBLAS any binary operator can be used, not just addition. The pattern of
the result of the element-wise ``addition'' is the set union of the pattern of
\verb'A' and \verb'B'. Entries in neither in \verb'A' nor in \verb'B' do
not appear in the result.
Let $\oplus$ denote the binary operator to be used. The computation ${\bf T =
A \oplus B}$ is exactly the same as the computation with accumulator operator
as described in Section~\ref{accummask}. It acts like a sparse matrix
addition, except that any operator can be used. The pattern of ${\bf A \oplus
B}$ is the set union of the patterns of ${\bf A}$ and ${\bf B}$, and the
operator is applied only on the set intersection of ${\bf A}$ and ${\bf B}$.
Entries not in either the pattern of ${\bf A}$ or ${\bf B}$ do not appear in
the pattern of ${\bf T}$. That is:
\vspace{-0.2in}
{\small
\begin{tabbing}
\hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
\> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
\> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
\> \> $t_{ij} = a_{ij}$ \\
\> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
\> \> $t_{ij} = b_{ij}$
\end{tabbing}
}
The only difference between element-wise ``multiplication'' (${\bf T =A \otimes
B}$) and ``addition'' (${\bf T = A \oplus B}$) is the pattern of the result,
and what happens to entries outside the intersection. With $\otimes$ the
pattern of ${\bf T}$ is the intersection; with $\oplus$ it is the set union.
Entries outside the set intersection are dropped for $\otimes$, and kept for
$\oplus$; in both cases the operator is only applied to those (and only those)
entries in the intersection. Any binary operator can be used interchangeably
for either operation.
Element-wise operations do not operate on the implicit values, even implicitly,
since the operations make no assumption about the semiring. As a result, the
results can be different from MATLAB, which can always assume the implicit
value is zero. For example, \verb'C=A-B' is the conventional matrix
subtraction in MATLAB. Computing \verb'A-B' in GraphBLAS with \verb'eWiseAdd'
will apply the \verb'MINUS' operator to the intersection, entries in \verb'A'
but not \verb'B' will be unchanged and appear in \verb'C', and entries in
neither \verb'A' nor \verb'B' do not appear in \verb'C'. For these cases, the
results matches the MATLAB \verb'C=A-B'. Entries in \verb'B' but not \verb'A'
do appear in \verb'C' but they are not negated; they cannot be subtracted from
an implicit value in \verb'A'. This is by design. If conventional matrix
subtraction of two sparse matrices is required, and the implicit value is known
to be zero, use \verb'GrB_apply' to negate the values in \verb'B', and then
use \verb'eWiseAdd' with the \verb'PLUS' operator, to compute \verb'A+(-B)'.
The generic name for this operation is \verb'GrB_eWiseAdd', which can be used
for both matrices and vectors.
There is another minor difference in two variants of the element-wise
functions. If given a \verb'semiring', the \verb'eWiseAdd' functions use the
binary operator of the semiring's monoid, while the \verb'eWiseMult' functions
use the multiplicative operator of the semiring.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_eWiseAdd\_Vector:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd // w<mask> = accum (w, u+v)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> add, // defines '+' for t=u+v
const GrB_Vector u, // first input: vector u
const GrB_Vector v, // second input: vector v
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_eWiseAdd' computes the element-wise ``addition'' of two
vectors \verb'u' and \verb'v', element-wise using any binary operator (not just
plus). The vectors are not transposed via the descriptor. Entries in the
intersection of \verb'u' and \verb'v' are first typecasted into the first and
second inputs of the \verb'add' operator. Next, a column vector \verb't' is
computed, denoted ${\bf t = u \oplus v}$. The pattern of \verb't' is the set
union of \verb'u' and \verb'v'. The result \verb't' has the type of the output
\verb'ztype' of the \verb'add' operator.
The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator. If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.
The final step is ${\bf w \langle m \rangle = w \odot t}$, as described in
Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_eWiseAdd\_Matrix:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseAdd_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> add, // defines '+' for T=A+B
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_eWiseAdd' computes the element-wise ``addition'' of two
matrices \verb'A' and \verb'B', element-wise using any binary operator (not
just plus). The input matrices may be transposed first, according to the
descriptor \verb'desc'. Entries in the intersection then typecasted into the
first and second inputs of the \verb'add' operator. Next, a matrix \verb'T' is
computed, denoted ${\bf T = A \oplus B}$. The pattern of \verb'T' is the set
union of \verb'A' and \verb'B'. The result \verb'T' has the type of the output
\verb'ztype' of the \verb'add' operator.
The \verb'add' operator is typically a \verb'GrB_BinaryOp', but the method is
type-generic for this parameter. If given a monoid (\verb'GrB_Monoid'), the
additive operator of the monoid is used as the \verb'add' binary operator. If
given a semiring (\verb'GrB_Semiring'), the additive operator of the monoid of
the semiring is used as the \verb'add' binary operator.
\vspace{0.05in}
The operation can be expressed in MATLAB notation as:
{\footnotesize
\begin{verbatim}
[nrows, ncols] = size (A.matrix) ;
T.matrix = zeros (nrows, ncols, add.ztype) ;
p = A.pattern & B.pattern ;
A = GB_mex_cast (A.matrix (p), add.xtype) ;
B = GB_mex_cast (B.matrix (p), add.ytype) ;
T.matrix (p) = add (A, B) ;
p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;
p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;
T.pattern = A.pattern | B.pattern ;
T.class = add.ztype ; \end{verbatim} }
Except for when typecasting is performed, this is identical to how the
\verb'accum' operator is applied in Figure~\ref{fig_accummask}.
The final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}.
\newpage
%===============================================================================
\subsection{{\sf GrB\_extract:} submatrix extraction } %========================
%===============================================================================
\label{extract}
The \verb'GrB_extract' function is a generic name for three specific functions:
\verb'GrB_Vector_extract', \verb'GrB_Col_extract', and
\verb'GrB_Matrix_extract'. The generic name appears in the function signature,
but the specific function name is used when describing what each variation
does.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extract:} extract subvector from vector}
%-------------------------------------------------------------------------------
\label{extract_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // w<mask> = accum (w, u(I))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_extract' extracts a subvector from another vector, identical
to \verb't = u (I)' in MATLAB where \verb'I' is an integer vector of row
indices. Refer to \verb'GrB_Matrix_extract' for further details; vector
extraction is the same as matrix extraction with \verb'n'-by-1 matrices.
See Section~\ref{colon} for a description of \verb'I' and \verb'ni'.
The final step is ${\bf w \langle m \rangle = w \odot
t}$, as described in Section~\ref{accummask}, except that all the terms are
column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extract:} extract submatrix from matrix}
%-------------------------------------------------------------------------------
\label{extract_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extract' extracts a submatrix from another matrix, identical
to \verb'T = A(I,J)' in MATLAB where \verb'I' and \verb'J' are integer vectors
of row and column indices, respectively, except that indices are zero-based in
GraphBLAS and one-based in MATLAB. The input matrix \verb'A' may be transposed
first, via the descriptor. The type of \verb'T' and \verb'A' are the same.
The size of \verb'C' is \verb'|I|'-by-\verb'|J|'.
Entries outside \verb'A(I,J)' are not accessed and do not take part in the
computation. More precisely, assuming the matrix \verb'A' is not transposed,
the matrix \verb'T' is defined as follows:
\vspace{-0.1in}
{\footnotesize
\begin{verbatim}
T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj
T.pattern = false (ni, nj) ;
for i = 1:ni
for j = 1:nj
if (A (I(i),J(j)).pattern)
T (i,j).matrix = A (I(i),J(j)).matrix ;
T (i,j).pattern = true ;
end
end
end \end{verbatim}}
\vspace{-0.1in}
If duplicate indices are present in \verb'I' or \verb'J', the above method
defines the result in \verb'T'. Duplicates result in the same values of
\verb'A' being copied into different places in \verb'T'.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
The final step is ${\bf C \langle M \rangle = C \odot
T}$, as described in Section~\ref{accummask}.
\paragraph{\bf Performance considerations:} % C=A(I,J)
If \verb'A' is not transposed via input descriptor: if \verb'|I|' is small,
then it is fastest if \verb'A' is \verb'GxB_BY_ROW'; if
\verb'|J|' is small, then it is fastest if \verb'A' is
\verb'GxB_BY_COL'. The opposite is true if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_extract:} extract column vector from matrix}
%-------------------------------------------------------------------------------
\label{extract_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Col_extract' extracts a subvector from a matrix, identical to
\verb't = A (I,j)' in MATLAB where \verb'I' is an integer vector of row indices
and where \verb'j' is a single column index. The input matrix \verb'A' may be
transposed first, via the descriptor, which results in the extraction of a
single row \verb'j' from the matrix \verb'A', the result of which is a column
vector \verb'w'. The type of \verb't' and \verb'A' are the same.
The size of \verb'w' is \verb'|I|'-by-1.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni'.
The final step is ${\bf w \langle m
\rangle = w \odot t}$, as described in Section~\ref{accummask}, except that
all the terms are column vectors instead of matrices.
\paragraph{\bf Performance considerations:} % w = A(I,j)
If \verb'A' is not transposed: it is fastest if the format of \verb'A' is
\verb'GxB_BY_COL'. The opposite is true if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{{\sf GxB\_subassign:} submatrix assignment} %=======================
%===============================================================================
\label{subassign}
The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'. All
methods can be used in their generic form with the single name
\verb'GxB_subassign'. This is reflected in the prototypes. However, to avoid
confusion between the different kinds of assignment, the name of the specific
function is used when describing each variation. If the discussion applies to
all variations, the simple name \verb'GxB_subassign' is used.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
\verb'GxB_subassign' is very similar to \verb'GrB_assign', described in
Section~\ref{assign}. The two operations are compared and contrasted in
Section~\ref{compare_assign}. For a discussion of how duplicate indices
are handled in \verb'I' and \verb'J', see Section~\ref{duplicates}.
\begin{spec}
{\bf SPEC:} All variants of \verb'GxB_subassign' are extensions to the spec.
\end{spec}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{subassign_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'. The method is identical to
\verb'GxB_Matrix_subassign' described in Section~\ref{subassign_matrix}, where
all matrices have a single column each. The \verb'mask' has the same size as
\verb'w(I)' and \verb'u'. The only other difference is that the input \verb'u'
in this method is not transposed via the \verb'GrB_INP0' descriptor.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{subassign_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign' operates only on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'. For this operation, the result is not
the entire matrix \verb'C', but a submatrix \verb'S=C(I,J)' of \verb'C'. The
steps taken are as follows, except that ${\bf A}$ may be optionally transposed
via the \verb'GrB_INP0' descriptor option.
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
& notation & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & extract the ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$ & apply the accumulator/mask to the submatrix ${\bf S}$\\
3 & ${\bf C(I,J)}= {\bf S}$ & put the submatrix ${\bf S}$ back into ${\bf C(I,J)}$ \\
\hline
\end{tabular}
\vspace{0.1in}
The accumulator/mask step in Step 2 is the same as for all other GraphBLAS
operations, described in Section~\ref{accummask}, except that for
\verb'GxB_subassign', it is applied to just the submatrix ${\bf S} = {\bf
C(I,J)}$, and thus the \verb'Mask' has the same size as ${\bf A}$,
${\bf S}$, and ${\bf C(I,J)}$.
The \verb'GxB_subassign' operation is the reverse of matrix extraction:
\begin{itemize}
\item
For submatrix extraction, \verb'GrB_Matrix_extract',
the submatrix \verb'A(I,J)' appears on the right-hand side of the assignment,
\verb'C=A(I,J)', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\item
For submatrix assignment, \verb'GxB_Matrix_subassign',
the submatrix \verb'C(I,J)' appears on the left-hand-side of the assignment,
\verb'C(I,J)=A', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\end{itemize}
In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the \verb'Mask' matrix is present it is the same
size as the submatrix:
\begin{itemize}
\item
For submatrix extraction,
${\bf C \langle M \rangle = C \odot A(I,J)}$ is computed,
where the submatrix is on the right.
The mask ${\bf M}$ has the same size as the submatrix ${\bf A(I,J)}$.
\item
For submatrix assignment,
${\bf C(I,J) \langle M \rangle = C(I,J) \odot A}$ is computed,
where the submatrix is on the left.
The mask ${\bf M}$ has the same size as the submatrix ${\bf C(I,J)}$.
\end{itemize}
In Step 1, the submatrix \verb'S' is first computed by the
\verb'GrB_Matrix_extract' operation, \verb'S=C(I,J)'.
Step 2 accumulates the results ${\bf S \langle M \rangle = S \odot T}$,
exactly as described in Section~\ref{accummask}, but operating on the submatrix
${\bf S}$, not ${\bf C}$, using the optional \verb'Mask' and \verb'accum'
operator. The matrix ${\bf T}$ is simply ${\bf T}={\bf A}$, or ${\bf T}={\bf
A}^{\sf T}$ if ${\bf A}$ is transposed via the \verb'desc' descriptor,
\verb'GrB_INP0'. The \verb'GrB_REPLACE' option in the descriptor clears ${\bf
S}$ after computing ${\bf Z = T}$ or ${\bf Z = C \odot T}$, not all of ${\bf
C}$ since this operation can only modify the specified submatrix of ${\bf C}$.
Finally, Step 3 writes the result (which is the modified submatrix \verb'S' and
not all of \verb'C') back into the \verb'C' matrix that contains it, via the
assignment \verb'C(I,J)=S', using the reverse operation from the method
described for matrix extraction:
{\footnotesize
\begin{verbatim}
for i = 1:ni
for j = 1:nj
if (S (i,j).pattern)
C (I(i),J(j)).matrix = S (i,j).matrix ;
C (I(i),J(j)).pattern = true ;
end
end
end \end{verbatim}}
\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Col\_subassign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(I,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(I,j) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Col_subassign' modifies a single sub-column of a matrix \verb'C'. It
is the same as \verb'GxB_Matrix_subassign' where the index vector \verb'J[0]=j'
is a single column index (and thus \verb'nj=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single column. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Row\_subassign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_row}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(i,J)<mask'> = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,J) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Row_subassign' modifies a single sub-row of a matrix \verb'C'. It is
the same as \verb'GxB_Matrix_subassign' where the index vector \verb'I[0]=i' is
a single row index (and thus \verb'ni=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single row. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GxB_BY_COL'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GxB_BY_ROW'.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{subassign_vector_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign_<type>' assigns a single scalar to an entire
subvector of the vector \verb'w'. The operation is exactly like setting a
single entry in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column
index for a vector is implicitly \verb'j=0'. For further details of this
function, see \verb'GxB_Matrix_subassign_<type>' in
Section~\ref{subassign_matrix_scalar}.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{subassign_matrix_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J) and Mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB. The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GxB_Matrix_subassign'. Refer
to that function in Section~\ref{subassign_matrix} for further details.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.
The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}). Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11. For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.
If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined. No error status will be returned since GraphBLAS has no way of
catching this error.
\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{{\sf GrB\_assign:} submatrix assignment} %==========================
%===============================================================================
\label{assign}
The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'. All
methods can be used in their generic form with the single name
\verb'GrB_assign'. These methods are very similar to their
\verb'GxB_subassign' counterparts in Section~\ref{subassign}. They differ
primarily in the size of the \verb'Mask', and how the \verb'GrB_REPLACE' option
works. Refer to Section~\ref{compare_assign} for a complete comparison of
\verb'GxB_subassign' and \verb'GrB_assign'.
See Section~\ref{colon} for a description of
\verb'I', \verb'ni', \verb'J', and \verb'nj'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{assign_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)
(
GrB_Vector w, // input/output matrix for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_assign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'. The \verb'mask' vector has the same
size as \verb'w'. The method is identical to \verb'GrB_Matrix_assign'
described in Section~\ref{assign_matrix}, where all matrices have a single
column each. The only other difference is that the input \verb'u' in this
method is not transposed via the \verb'GrB_INP0' descriptor.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{assign_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_assign' operates on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'. It may also modify all of \verb'C',
depending on the input descriptor \verb'desc' and the \verb'Mask'.
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
& notation & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & extract ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$ & apply the accumulator (but not the mask) to ${\bf S}$\\
3 & ${\bf Z} = {\bf C}$ & make a copy of ${\bf C}$ \\
4 & ${\bf Z(I,J)} = {\bf S}$ & put the submatrix into ${\bf Z(I,J)}$ \\
5 & ${\bf C \langle M \rangle = Z}$ & apply the mask/replace phase to all of ${\bf C}$ \\
\hline
\end{tabular}
\vspace{0.1in}
In contrast to \verb'GxB_subassign', the \verb'Mask' has the same as \verb'C'.
Step 1 extracts the submatrix and then Step 2 applies the accumulator
(or ${\bf S}={\bf A}$ if \verb'accum' is \verb'NULL'). The \verb'Mask' is
not yet applied.
Step 3 makes a copy of the ${\bf C}$ matrix, and then Step 4 writes the
submatrix ${\bf S}$ into ${\bf Z}$. This is the same as Step 3 of
\verb'GxB_subassign', except that it operates on a temporary matrix ${\bf Z}$.
Finally, Step 5 writes ${\bf Z}$ back into ${\bf C}$ via the \verb'Mask', using
the Mask/Replace Phase described in Section~\ref{accummask}. If
\verb'GrB_REPLACE' is enabled, then all of ${\bf C}$ is cleared prior to
writing ${\bf Z}$ via the mask. As a result, the \verb'GrB_REPLACE' option can
delete entries outside the ${\bf C(I,J)}$ submatrix.
\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Col\_assign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{assign_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(:,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(:,j) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Col_assign' modifies a single sub-column of a matrix \verb'C'. It is
the same as \verb'GrB_Matrix_assign' where the index vector \verb'J[0]=j' is a
single column index, and where all matrices in \verb'GrB_Matrix_assign' (except
\verb'C') consist of a single column.
Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single column of \verb'C'.
The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed. Refer to \verb'GrB_Matrix_assign' for further details.
\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'. \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Row\_assign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{assign_row}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<mask'>(i,J) = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,:), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,:) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Row_subassign' modifies a single sub-row of a matrix \verb'C'. It is
the same as \verb'GxB_Matrix_subassign' where the index vector \verb'I[0]=i' is
a single row index, and where all matrices in \verb'GxB_Matrix_subassign'
(except \verb'C') consist of a single row.
Unlike \verb'GrB_Matrix_assign', the \verb'mask' is a vector with the same size
as a single row of \verb'C'.
The input descriptor \verb'GrB_INP0' is ignored; the input vector \verb'u' is
not transposed. Refer to \verb'GxB_Matrix_subassign' for further details.
\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GrB_Col_assign' is much faster than \verb'GrB_Row_assign' if the format
of \verb'C' is \verb'GxB_BY_COL'. \verb'GrB_Row_assign' is much faster than
\verb'GrB_Col_assign' if the format of \verb'C' is \verb'GxB_BY_ROW'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_assign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{assign_vector_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_assign_<type>' assigns a single scalar to an entire subvector
of the vector \verb'w'. The operation is exactly like setting a single entry
in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column index for a
vector is implicitly \verb'j=0'. The \verb'mask' vector has the same size as
\verb'w'. For further details of this function, see
\verb'GrB_Matrix_assign_<type>' in the next section.
Following the C API Specification, results are well-defined if \verb'I'
contains duplicate indices. Duplicate indices are simply ignored. See
Section~\ref{duplicates} for more details.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_assign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{assign_matrix_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C and Mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_assign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB. The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GrB_Matrix_assign'. Refer
to that function in Section~\ref{assign_matrix} for further details.
The \verb'Mask' has the same size as \verb'C'.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.
The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}). Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of ANSI C11. For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.
If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined. No error status will be returned since GraphBLAS has no way of
catching this error.
Following the C API Specification, results are well-defined if \verb'I' or
\verb'J' contain duplicate indices. Duplicate indices are simply ignored. See
Section~\ref{duplicates} for more details.
\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GxB_BY_ROW'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GxB_BY_COL'. The opposite is true
if \verb'A' is transposed.
\newpage
%===============================================================================
\subsection{Duplicate indices in {\sf GrB\_assign} and {\sf GxB\_subassign}}
%===============================================================================
\label{duplicates}
According to the GraphBLAS C API Specification if the index vectors \verb'I' or
\verb'J' contain duplicate indices, the results are undefined for
\verb'GrB_Matrix_assign' \verb'GrB_Matrix_assign' \verb'GrB_Col_assign' and
\verb'GrB_Row_assign'. Only the scalar assignment operations
(\verb'GrB_Matrix_assign_TYPE' and \verb'GrB_Matrix_assign_TYPE') are
well-defined when duplicates appear in \verb'I' and \verb'J'. In those two
functions, duplicate indices are ignored.
As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases. If \verb'I' has
duplicate indices, they are ignored and the last unique entry in the list is
used. When no mask and no accumulator is present, the results are identical to
how MATLAB handles duplicate indices in the built-in expression
\verb'C(I,J)=A'. Details of how this is done is shown below.
{\small
\begin{verbatim}
function C = subassign (C, I, J, A)
% submatrix assignment with pre-sort of I and J; and remove duplicates
% delete duplicates from I, keeping the last one seen
[I2 I2k] = sort (I) ;
Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;
I2 = I2 (~Idupl) ;
I2k = I2k (~Idupl) ;
assert (isequal (I2, unique (I)))
% delete duplicates from J, keeping the last one seen
[J2 J2k] = sort (J) ;
Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;
J2 = J2 (~Jdupl) ;
J2k = J2k (~Jdupl) ;
assert (isequal (J2, unique (J)))
% do the submatrix assignment, with no duplicates in I2 or J2
C (I2,J2) = A (I2k,J2k) ;
\end{verbatim}}
If a mask is present, then it is replaced with \verb'M = M (I2k, J2k)' for
\verb'GxB_subassign', or with \verb'M = M (I2, J2)' for \verb'GrB_assign'.
If an accumulator operator is present, it is applied after the duplicates
are removed, as (for example):
{\small
\begin{verbatim}
C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;
\end{verbatim}}
These definitions allow the MATLAB interface to GraphBLAS to return the same
results for \verb'C(I,J)=A' for a \verb'GrB' object as they do for built-in
MATLAB matrices. They also allow the assignment to be done in parallel.
Results are always well-defined in SuiteSparse:GraphBLAS, but they might not be
what you expect. For example, suppose the \verb'MIN' operator is being used
the following assigment to the vector \verb'x', and suppose \verb'I' contains
the entries \verb'[0 0]'. Suppose \verb'x' is initially empty, of length 1,
and suppose \verb'y' is a vector of length 2 with the values \verb'[5 7]'.
{\small
\begin{verbatim}
#include "GraphBLAS.h"
#include <stdio.h>
int main (void)
{
GrB_init (GrB_NONBLOCKING) ;
GrB_Vector x, y ;
GrB_Vector_new (&x, GrB_INT32, 1) ;
GrB_Vector_new (&y, GrB_INT32, 2) ;
GrB_Index I [2] = {0, 0} ;
GrB_Vector_setElement (y, 5, 0) ;
GrB_Vector_setElement (y, 7, 1) ;
GrB_Vector_wait (&y) ;
GxB_print (x, 3) ;
GxB_print (y, 3) ;
GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;
GrB_Vector_wait (&y) ;
GxB_print (x, 3) ;
GrB_finalize ( ) ;
}
\end{verbatim}}
You might (wrongly) expect the result to be the vector \verb'x(0)=5', since
two entries seem to be assigned, and the min operator might be expected to
take the minimum of the two. This is not how SuiteSparse:GraphBLAS handles
duplicates.
Instead, the first duplicate index of \verb'I' is discarded
(\verb'I [0] = 0', and \verb'y(0)=5').
and only the second entry is used
(\verb'I [1] = 0', and \verb'y(1)=7').
The output of the above program is:
{\small
\begin{verbatim}
1x1 GraphBLAS int32_t vector, sparse by col:
x, no entries
2x1 GraphBLAS int32_t vector, sparse by col:
y, 2 entries
(0,0) 5
(1,0) 7
1x1 GraphBLAS int32_t vector, sparse by col:
x, 1 entry
(0,0) 7
\end{verbatim}}
You see that the result is \verb'x(0)=7', since the \verb'y(0)=5' entry
has been ignored because of the duplicate indices in \verb'I'.
\begin{spec}
{\bf SPEC:} Providing a well-defined behavior for duplicate
indices with matrix and vector assignment is an extension to the spec.
The spec only defines the behavior when assigning a scalar into a matrix
or vector, and states that duplicate indices otherwise lead to undefined
results.
\end{spec}
\newpage
%===============================================================================
\subsection{Comparing {\sf GrB\_assign} and {\sf GxB\_subassign}} %=============
%===============================================================================
\label{compare_assign}
% \begin{spec}
% {\bf SPEC:} \verb'GxB_subassign' is an extension to the spec.
% \end{spec}
The \verb'GxB_subassign' and \verb'GrB_assign' operations are very similar, but
they differ in two ways:
\begin{enumerate}
\item {\bf The Mask has a different size:}
The mask in \verb'GxB_subassign' has the same dimensions as \verb'w(I)' for
vectors and \verb'C(I,J)' for matrices. In \verb'GrB_assign', the mask is
the same size as \verb'w' or \verb'C', respectively (except for the row/col
variants). The two masks are related. If \verb'M' is the mask for
\verb'GrB_assign', then \verb'M(I,J)' is the mask for \verb'GxB_subassign'.
If there is no mask, or if \verb'I' and \verb'J' are both \verb'GrB_ALL',
the two masks are the same.
For \verb'GrB_Row_assign' and \verb'GrB_Col_assign', the \verb'mask' vector
is the same size as a row or column of \verb'C', respectively. For the
corresponding \verb'GxB_Row_subassign' and \verb'GxB_Col_subassign'
operations, the \verb'mask' is the same size as the sub-row \verb'C(i,J)' or
subcolumn \verb'C(I,j)', respectively.
\item {\bf \verb'GrB_REPLACE' is different:}
They differ in how \verb'C' is affected in areas outside the \verb'C(I,J)'
submatrix. In \verb'GxB_subassign', the \verb'C(I,J)' submatrix is the
only part of \verb'C' that can be modified, and no part of \verb'C' outside
the submatrix is ever modified. In \verb'GrB_assign', it is possible to
delete entries in \verb'C' outside the submatrix, but only in one specific
manner. Suppose the mask \verb'M' is present (or, suppose it is not
present but \verb'GrB_COMP' is true). After (optionally) complementing the
mask, the value of \verb'M(i,j)' can be 0 for some entry outside the
\verb'C(I,J)' submatrix. If the \verb'GrB_REPLACE' descriptor is
true, \verb'GrB_assign' deletes this entry.
\end{enumerate}
\verb'GxB_subassign' and \verb'GrB_assign' are identical if \verb'GrB_REPLACE'
is set to its default value of false, and if the masks happen to be the same.
The two masks can be the same in two cases: either the \verb'Mask' input is
\verb'NULL' (and it is not complemented via \verb'GrB_COMP'), or \verb'I' and
\verb'J' are both \verb'GrB_ALL'.
If all these conditions hold,
the two algorithms are identical and have the same performance. Otherwise,
\verb'GxB_subassign' is much faster than \verb'GrB_assign' when the latter
must examine the entire matrix \verb'C' to delete entries (when
\verb'GrB_REPLACE' is true), and if it must deal with a much larger \verb'Mask'
matrix. However, both methods have specific uses.
Consider using \verb'C(I,J)+=F' for many submatrices \verb'F' (for example,
when assembling a finite-element matrix). If the \verb'Mask' is meant as a
specification for which entries of \verb'C' should appear in the final result,
then use \verb'GrB_assign'.
If instead the \verb'Mask' is meant to control which entries of the submatrix
\verb'C(I,J)' are modified by the finite-element \verb'F', then use
\verb'GxB_subassign'. This is particularly useful is the \verb'Mask' is a
template that follows along with the finite-element \verb'F', independent of
where it is applied to \verb'C'. Using \verb'GrB_assign' would be very
difficult in this case since a new \verb'Mask', the same size as \verb'C',
would need to be constructed for each finite-element \verb'F'.
In GraphBLAS notation, the two methods can be described as follows:
\vspace{0.05in}
\begin{tabular}{ll}
\hline
matrix and vector subassign & ${\bf C(I,J) \langle M \rangle} = {\bf C(I,J)} \odot {\bf A}$ \\
matrix and vector assign & ${\bf C \langle M \rangle (I,J)} = {\bf C(I,J)} \odot {\bf A}$ \\
\hline
\end{tabular}
\vspace{0.05in}
This notation does not include the details of the \verb'GrB_COMP' and
\verb'GrB_REPLACE' descriptors, but it does illustrate the difference in the
\verb'Mask'. In the subassign, \verb'Mask' is the same size as \verb'C(I,J)'
and \verb'A'. If \verb'I[0]=i' and \verb'J[0]=j', Then \verb'Mask(0,0)'
controls how \verb'C(i,j)' is modified by the subassign, from the value
\verb'A(0,0)'. In the assign, \verb'Mask' is the same size as \verb'C', and
\verb'Mask(i,j)' controls how \verb'C(i,j)' is modified.
The \verb'GxB_subassign' and \verb'GrB_assign' functions have the same
signatures; they differ only in how they consider the \verb'Mask' and the
\verb'GrB_REPLACE' descriptor
Details of each step of the two operations are listed below:
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & \verb'GrB_Matrix_assign' & \verb'GxB_Matrix_subassign' \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & ${\bf S} = {\bf C(I,J)}$ \\
2 & ${\bf S} = {\bf S} \odot {\bf A}$ & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$ \\
3 & ${\bf Z} = {\bf C}$ & ${\bf C(I,J)}= {\bf S}$ \\
4 & ${\bf Z(I,J)} = {\bf S}$ & \\
5 & ${\bf C \langle M \rangle = Z}$ & \\
\hline
\end{tabular}
\vspace{0.1in}
Step 1 is the same. In the Accumulator Phase (Step 2), the expression
${\bf S} \odot {\bf A}$,
described in Section~\ref{accummask}, is the same in both
operations. The result is simply ${\bf A}$ if \verb'accum' is \verb'NULL'. It
only applies to the submatrix ${\bf S}$, not the whole matrix.
The result ${\bf S} \odot {\bf A}$ is used differently in the Mask/Replace
phase.
The Mask/Replace Phase, described in Section~\ref{accummask} is different:
\begin{itemize}
\item
For \verb'GrB_assign' (Step 5), the mask is applied to all of ${\bf
C}$. The mask has the same size as ${\bf C}$. Just prior to making the
assignment via the mask, the \verb'GrB_REPLACE' option can be used to clear
all of ${\bf C}$ first. This is the only way in which entries in ${\bf C}$ that
are outside the ${\bf C(I,J)}$ submatrix can be modified by this operation.
\item
For \verb'GxB_subassign' (Step 2b), the mask is applied to just
${\bf S}$. The mask has the same size as ${\bf C(I,J)}$, ${\bf S}$, and
${\bf A}$. Just prior to making the assignment via the mask, the
\verb'GrB_REPLACE' option can be used to clear ${\bf S}$ first. No entries
in ${\bf C}$ that are outside the ${\bf C(I,J)}$ can be modified by this
operation. Thus, \verb'GrB_REPLACE' has no effect on entries in ${\bf C}$
outside the ${\bf C(I,J)}$ submatrix.
\end{itemize}
The differences between \verb'GrB_assign' and
\verb'GxB_subassign' can be seen in Tables~\ref{insubmatrix} and
\ref{outsubmatrix}. The first table considers the case when the entry $c_{ij}$
is in the ${\bf C(I,J)}$ submatrix, and it describes what is computed for both
\verb'GrB_assign' and \verb'GxB_subassign'. They perform the
exact same computation; the only difference is how the value of the mask is
specified. Compare Table~\ref{insubmatrix} with Table~\ref{tab:maskaccum}
in Section~\ref{sec:maskaccum}.
The first column of Table~\ref{insubmatrix} is {\em yes} if \verb'GrB_REPLACE' is enabled,
and a dash otherwise. The second column is {\em yes} if an accumulator
operator is given, and a dash otherwise. The third column is $c_{ij}$ if the
entry is present in ${\bf C}$, and a dash otherwise. The fourth column is
$a_{i'j'}$ if the corresponding entry is present in ${\bf A}$, where
$i={\bf I}(i')$ and $j={\bf J}(i')$.
The {\em mask} column is 1 if the effective value of the mask mask allows ${\bf
C}$ to be modified, and 0 otherwise. This is $m_{ij}$ for \verb'GrB_assign',
and $m_{i'j'}$ for \verb'GxB_subassign', to reflect the difference in the mask,
but this difference is not reflected in the table. The value 1 or 0 is the
value of the entry in the mask after it is optionally complemented via the
\verb'GrB_COMP' option.
Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case $c_{ij}$ is not modified if present, or not
inserted into ${\bf C}$ if not present.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf A}$ & mask & action taken by \verb'GrB_assign' and \verb'GxB_subassign'\\
\hline
- &- & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, update \\
- &- & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
- &- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $a_{i'j'}$ not present \\
- &- & - & - & 1 & \\
\hline
yes&- & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, update \\
yes&- & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
yes&- & $c_{ij}$ & - & 1 & delete $c_{ij}$ because $a_{i'j'}$ not present \\
yes&- & - & - & 1 & \\
\hline
- &yes & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
- &yes & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
- &yes & $c_{ij}$ & - & 1 & \\
- &yes & - & - & 1 & \\
\hline
yes&yes & $c_{ij}$ & $a_{i'j'}$ & 1 & $c_{ij} = c_{ij} \odot a_{i'j'}$, apply accumulator \\
yes&yes & - & $a_{i'j'}$ & 1 & $c_{ij} = a_{i'j'}$, insert \\
yes&yes & $c_{ij}$ & - & 1 & \\
yes&yes & - & - & 1 & \\
\hline
\hline
- &- & $c_{ij}$ & $a_{i'j'}$ & 0 & \\
- &- & - & $a_{i'j'}$ & 0 & \\
- &- & $c_{ij}$ & - & 0 & \\
- &- & - & - & 0 & \\
\hline
yes&- & $c_{ij}$ & $a_{i'j'}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & $a_{i'j'}$ & 0 & \\
yes&- & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&- & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $a_{i'j'}$ & 0 & \\
- &yes & - & $a_{i'j'}$ & 0 & \\
- &yes & $c_{ij}$ & - & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes&yes & $c_{ij}$ & $a_{i'j'}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & $a_{i'j'}$ & 0 & \\
yes&yes & $c_{ij}$ & - & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes&yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of assign and subassign for entries in the ${\bf C(I,J)}$ submatrix \label{insubmatrix}}
\end{table}
\newpage
Table~\ref{outsubmatrix} illustrates how \verb'GrB_assign' and
\verb'GxB_subassign' differ for entries outside the submatrix.
\verb'GxB_subassign' never modifies any entry outside the ${\bf C(I,J)}$
submatrix, but \verb'GrB_assign' can modify them in two cases listed in
Table~\ref{outsubmatrix}. When the \verb'GrB_REPLACE' option is selected, and
when the \verb'Mask(i,j)' for an entry $c_{ij}$ is false (or if the
\verb'Mask(i,j)' is true and \verb'GrB_COMP' is enabled via the descriptor),
then the entry is deleted by \verb'GrB_assign'.
The fourth column of Table~\ref{outsubmatrix} differs from
Table~\ref{insubmatrix}, since entries in ${\bf A}$ never affect these entries.
Instead, for all index pairs outside the $I \times J$ submatrix, ${\bf C}$ and
${\bf Z}$ are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either $c_{ij}$ is present, or not. This in
contrast to Table~\ref{insubmatrix}, where each section must consider four
different cases.
The \verb'GrB_Row_assign' and \verb'GrB_Col_assign' operations are slightly
different. They only affect a single row or column of ${\bf C}$.
For \verb'GrB_Row_assign', Table~\ref{outsubmatrix} only applies to entries in
the single row \verb'C(i,J)' that are outside the list of indices, \verb'J'.
For \verb'GrB_Col_assign', Table~\ref{outsubmatrix} only applies to entries in
the single column \verb'C(I,j)' that are outside the list of indices, \verb'I'.
\begin{table}
{\small
\begin{tabular}{lllll|l}
\hline
repl & accum & ${\bf C}$ & ${\bf C=Z}$ & mask & action taken by \verb'GrB_assign' \\
\hline
- &- & $c_{ij}$ & $c_{ij}$ & 1 & \\
- &- & - & - & 1 & \\
\hline
yes & - & $c_{ij}$ & $c_{ij}$ & 1 & \\
yes & - & - & - & 1 & \\
\hline
- &yes & $c_{ij}$ & $c_{ij}$ & 1 & \\
- &yes & - & - & 1 & \\
\hline
yes & yes & $c_{ij}$ & $c_{ij}$ & 1 & \\
yes & yes & - & - & 1 & \\
\hline
\hline
- &- & $c_{ij}$ & $c_{ij}$ & 0 & \\
- &- & - & - & 0 & \\
\hline
yes & - & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes & - & - & - & 0 & \\
\hline
- &yes & $c_{ij}$ & $c_{ij}$ & 0 & \\
- &yes & - & - & 0 & \\
\hline
yes & yes & $c_{ij}$ & $c_{ij}$ & 0 & delete $c_{ij}$ (because of \verb'GrB_REPLACE') \\
yes & yes & - & - & 0 & \\
\hline
\end{tabular}
}
\caption{Results of assign for entries outside the
${\bf C(I,J)}$ submatrix. Subassign has no effect on these entries. \label{outsubmatrix}}
\end{table}
%-------------------------------------------------------------------------------
\subsubsection{Example}
%-------------------------------------------------------------------------------
The difference between \verb'GxB_subassign' and \verb'GrB_assign' is
illustrated in the following example. Consider the 2-by-2 matrix ${\bf C}$
where all entries are present.
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 12 \\
21 & 22 \\
\end{array}
\right]
\]
Suppose \verb'GrB_REPLACE' is true, and \verb'GrB_COMP' is false. Let the
\verb'Mask' be:
\[
{\bf M} = \left[
\begin{array}{rr}
1 & 1 \\
0 & 1 \\
\end{array}
\right].
\]
Let ${\bf A} = 100$, and let the index sets be ${\bf I}=0$ and ${\bf J}=1$.
Consider the computation
${\bf C \langle M \rangle} (0,1) = {\bf C}(0,1) + {\bf A}$,
using the \verb'GrB_assign' operation. The result is:
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 112 \\
- & 22 \\
\end{array}
\right].
\]
The $(0,1)$ entry is updated and the $(1,0)$ entry is deleted because
its \verb'Mask' is zero. The other two entries are not modified since ${\bf Z}
= {\bf C}$ outside the submatrix, and those two values are written back into
${\bf C}$ because their \verb'Mask' values are 1. The $(1,0)$ entry is deleted
because the entry ${\bf Z}(1,0)=21$ is prevented from being written back into
${\bf C}$ since \verb'Mask(1,0)=0'.
Now consider the analogous \verb'GxB_subassign' operation. The \verb'Mask' has
the same size as ${\bf A}$, namely:
\[
{\bf M} = \left[
\begin{array}{r}
1 \\
\end{array}
\right].
\]
After computing
${\bf C} (0,1) {\bf \langle M \rangle} = {\bf C}(0,1) + {\bf A}$,
the result is
\[
{\bf C} = \left[
\begin{array}{rr}
11 & 112 \\
21 & 22 \\
\end{array}
\right].
\]
Only the ${\bf C(I,J)}$ submatrix, the single entry ${\bf C}(0,1)$, is modified
by \verb'GxB_subassign'. The entry ${\bf C}(1,0)=21$ is unaffected by
\verb'GxB_subassign', but it is deleted by \verb'GrB_assign'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{Performance of {\sf GxB\_subassign}, {\sf GrB\_assign}
and {\sf GrB\_*\_setElement}}
%-------------------------------------------------------------------------------
When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications to a
matrix by \verb'GxB_subassign', \verb'GrB_assign', and \verb'GrB_*_setElement'
can postponed, and computed all at once later on. This has a huge impact on
performance.
A sequence of assignments is fast if their completion can be postponed for as
long as possible, or if they do not modify the pattern at all. Modifying the
pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.
Consider a sequence of $t$ submatrix assignments \verb'C(I,J)=C(I,J)+A' to an
$n$-by-$n$ matrix \verb'C' where each submatrix \verb'A' has size $a$-by-$a$
with $s$ entries, and where \verb'C' starts with $c$ entries.
Assume the matrices are all stored in non-hypersparse form, by row
(\verb'GxB_BY_ROW').
If blocking mode is enabled, or if the sequence requires the matrix to be
completed after each assignment, each of the $t$ assignments takes $O(a + s
\log n)$ time to process the \verb'A' matrix and then $O(n + c + s \log s)$
time to complete \verb'C'. The latter step uses \verb'GrB_*_build' to build an
update matrix and then merge it with \verb'C'. This step does not occur if the
sequence of assignments does not add new entries to the pattern of \verb'C',
however. Assuming in the worst case that the pattern does change, the total
time is $O (t \left[ a + s \log n + n + c + s \log s \right] )$.
If the sequence can be computed with all updates postponed until the end of the
sequence, then the total time is no worse than $O(a + s \log n)$ to process
each \verb'A' matrix, for $t$ assignments, and then a single \verb'build' at
the end, taking $O(n + c + st \log st)$ time.
The total time is $O (t \left [a + s \log n \right] + (n + c + st \log st))$.
If no new entries appear in
\verb'C' the time drops to $O (t \left [a + s \log n \right])$, and in this
case, the time for both methods is the same; both are equally efficient.
A few simplifying assumptions are useful to compare these times. Consider a
graph of $n$ nodes with $O(n)$ edges, and with a constant bound on the degree
of each node. The asymptotic bounds assume a worst-case scenario where
\verb'C' has a least some dense rows (thus the $\log n$ terms). If these
are not present, if both $t$ and $c$ are $O(n)$, and if $a$ and $s$ are
constants, then the total time with blocking mode becomes $O(n^2)$, assuming
the pattern of \verb'C' changes at each assignment. This very high for a
sparse graph problem. In contrast, the non-blocking time becomes $O(n \log n)$
under these same assumptions, which is asymptotically much faster.
\newpage
The difference in practice can be very dramatic, since $n$ can be many millions
for sparse graphs with $n$ nodes and $O(n)$, which can be handled on a
commodity laptop.
The following guidelines should be considered when using
\verb'GxB_subassign', \verb'GrB_assign' and \verb'GrB_*_setElement'.
\begin{enumerate}
\item A sequence of assignments that does not modify the pattern at all is
fast, taking as little as $\Omega(1)$ time per entry modified. The worst case
time complexity is $O(\log n)$ per entry, assuming they all modify a dense
row of \verb'C' with \verb'n' entries, which can occur in practice. It is
more common, however, that most rows of \verb'C' have a constant number of
entries, independent of \verb'n'. No work is ever left pending when the
pattern of \verb'C' does not change.
\item A sequence of assignments that modifies the entries that already exist in
the pattern of a matrix, or adds new entries to the pattern (using the same
\verb'accum' operator), but does not delete any entries, is fast. The matrix
is not completed until the end of the sequence.
\item Similarly, a sequence that modifies existing entries, or deletes them,
but does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast. The
matrix is not completed until the end of the sequence.
\item A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assignment. The
time complexity can become quadratic in the worst case.
\item However, any single assignment takes no more than $O (a + s \log n + n +
c + s \log s )$ time, even including the time for a matrix completion, where
\verb'C' is $n$-by-$n$ with $c$ entries and \verb'A' is $a$-by-$a$ with $s$
entries. This time is essentially linear in the size of the matrix \verb'C',
if \verb'A' is relatively small and sparse compared with \verb'C'. In this
case, $n+c$ are the two dominant terms.
\item In general, \verb'GxB_subassign' is faster than \verb'GrB_assign'.
If \verb'GrB_REPLACE' is used with \verb'GrB_assign', the entire matrix
\verb'C' must be traversed. This is much slower than \verb'GxB_subassign',
which only needs to examine the \verb'C(I,J)' submatrix. Furthermore,
\verb'GrB_assign' must deal with a much larger \verb'Mask' matrix, whereas
\verb'GxB_subassign' has a smaller mask. Since its mask is smaller,
\verb'GxB_subassign' takes less time than \verb'GrB_assign' to access the mask.
\end{enumerate}
% see GraphBLAS/Test/test46.m
Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient, even
without considering the advantages of non-blocking mode discussed in
Section~\ref{compare_assign}. It can be up to 500x faster than MATLAB
R2019b, or even higher depending on the kind of matrix assignment.
MATLAB logical indexing (the mask of GraphBLAS) is much faster with
GraphBLAS than in MATLAB R2019b; differences of up to 100,000x have been
observed.
All of the 28 variants (each with their own source code) are either
asymptotically optimal, or to within a log factor of being asymptotically
optimal. The methods are also fully parallel. For hypersparse matrices, the
term $n$ in the expressions in the above discussion is dropped, and is replaced
with $h \log h$, at the worst case, where $h << n$ is the number of non-empty
columns of a hypersparse matrix stored by column, or the number of non-empty
rows of a hypersparse matrix stored by row. In many methods, $n$ is replaced
with $h$, not $h \log h$.
\newpage
%===============================================================================
\subsection{{\sf GrB\_apply:} apply a unary or binary operator} %===============
%===============================================================================
\label{apply}
\verb'GrB_apply' is the generic name for 62 specific functions.
\verb'GrB_Vector_apply' and \verb'GrB_Matrix_apply' apply a unary operator to
the entries of a matrix. \verb'GrB_*_apply_BinaryOp1st*' applies a binary
operator where a single scalar is provided as the $x$ input to the binary
operator. \verb'GrB_*_apply_BinaryOp2nd*' applies a binary operator where a
single scalar is provided as the $y$ input to the binary operator. The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation. When discussing features that apply to all
versions, the simple name \verb'GrB_apply' is used.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_apply:} apply a unary operator to a vector}
%-------------------------------------------------------------------------------
\label{apply_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply' applies a unary operator to the entries of a vector,
analogous to \verb't = op(u)' in MATLAB except the operator \verb'op' is only
applied to entries in the pattern of \verb'u'. Implicit values outside the
pattern of \verb'u' are not affected. The entries in \verb'u' are typecasted
into the \verb'xtype' of the unary operator. The vector \verb't' has the same
type as the \verb'ztype' of the unary operator. The final step is ${\bf w
\langle m \rangle = w \odot t}$, as described in Section~\ref{accummask},
except that all the terms are column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_apply:} apply a unary operator to a matrix}
%-------------------------------------------------------------------------------
\label{apply_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply'
applies a unary operator to the entries of a matrix, analogous to
\verb'T = op(A)' in MATLAB except the operator \verb'op' is only applied to
entries in the pattern of \verb'A'. Implicit values outside the pattern of
\verb'A' are not affected. The input matrix \verb'A' may be transposed first.
The entries in \verb'A' are typecasted into the \verb'xtype' of the unary
operator. The matrix \verb'T' has the same type as the \verb'ztype' of the
unary operator. The final step is ${\bf C \langle M \rangle = C \odot T}$, as
described in Section~\ref{accummask}.
The built-in \verb'GrB_IDENTITY_'$T$ operators (one for each built-in type $T$)
are very useful when combined with this function, enabling it to compute ${\bf
C \langle M \rangle = C \odot A}$. This makes \verb'GrB_apply' a direct
interface to the accumulator/mask function for both matrices and vectors.
The \verb'GrB_IDENTITY_'$T$ operators also provide the fastest stand-alone
typecasting methods in SuiteSparse:GraphBLAS, with all $13 \times 13=169$
methods appearing as individual functions, to typecast between any of the 13
built-in types.
To compute ${\bf C \langle M \rangle = A}$ or ${\bf C \langle M \rangle = C
\odot A}$ for user-defined types, the user application would need to define an
identity operator for the type. Since GraphBLAS cannot detect that it is an
identity operator, it must call the operator to make the full copy \verb'T=A'
and apply the operator to each entry of the matrix or vector.
The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is \verb'GrB_transpose', which does not require an
operator to perform this task. As a result, \verb'GrB_transpose' can be used
as an efficient and direct interface to the accumulator/mask function for
both built-in and user-defined types. However, it is only available for
matrices, not vectors.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp1st:} apply a binary operator to a vector; 1st scalar binding}
%===============================================================================
\label{vector_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(x,u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $x$ is bound to the first input of the
operator. It is otherwise identical to \verb'GrB_Vector_apply'. With no
suffix, \verb'GxB_Vector_apply_BinaryOp1st' takes as input a \verb'GxB_Scalar'.
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp2nd:} apply a binary operator to a vector; 2nd scalar binding}
%===============================================================================
\label{vector_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $y$ is bound to the second input of the
operator. It is otherwise identical to \verb'GrB_Vector_apply'. With no
suffix, \verb'GxB_Vector_apply_BinaryOp2nd' takes as input a \verb'GxB_Scalar'.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp1st:} apply a binary operator to a matrix; 1st scalar binding}
%===============================================================================
\label{matrix_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(x,A))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the first input of the
operator. It is otherwise identical to \verb'GrB_Matrix_apply'. With no
suffix, \verb'GxB_Matrix_apply_BinaryOp1st' takes as input a \verb'GxB_Scalar'.
To transpose the input matrix, use the \verb'GrB_INP0' descriptor setting.
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp2nd:} apply a binary operator to a matrix; 2nd scalar binding}
%===============================================================================
\label{matrix_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(A,y))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the second input of the
operator. It is otherwise identical to \verb'GrB_Matrix_apply'. With no
suffix, \verb'GxB_Matrix_apply_BinaryOp2nd' takes as input a \verb'GxB_Scalar'.
To transpose the input matrix, use the \verb'GrB_INP1' descriptor setting.
\newpage
%===============================================================================
\subsection{{\sf GxB\_select:} apply a select operator} %=======================
%===============================================================================
\label{select}
The \verb'GxB_select' function is the generic name for two specific functions:
\\ \verb'GxB_Vector_select' and \verb'GxB_Matrix_select'. The generic name
appears in the function prototypes, but the specific function name is used when
describing each variation. When discussing features that apply to both
versions, the simple name \verb'GxB_select' is used.
\begin{spec}
{\bf SPEC:} The \verb'GxB_select' operation and \verb'GxB_SelectOp' operator
are extensions to the spec.
\end{spec}
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_select:} apply a select operator to a vector}
%-------------------------------------------------------------------------------
\label{select_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_select // w<mask> = accum (w, op(u,k))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GxB_SelectOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const GxB_Scalar Thunk, // optional input for the select operator
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_select' applies a select operator to the entries of a vector,
analogous to \verb't = u.*op(u)' in MATLAB except the operator \verb'op' is
only applied to entries in the pattern of \verb'u'. Implicit values outside
the pattern of \verb'u' are not affected. If the operator is not type-generic,
the entries in \verb'u' are typecasted into the \verb'xtype' of the select
operator. The vector \verb't' has the same type and size as \verb'u'. The
final step is ${\bf w \langle m \rangle = w \odot t}$, as described in
Section~\ref{accummask}, except that all the terms are column vectors instead
of matrices.
This operation operates on vectors just as if they were \verb'm'-by-1 matrices,
except that GraphBLAS never transposes a vector via the descriptor. The
\verb'op' is passed \verb'n=1' as the number of columns. Refer to the next
section on \verb'GxB_Matrix_select' for more details.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_select:} apply a select operator to a matrix}
%-------------------------------------------------------------------------------
\label{select_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_select // C<Mask> = accum (C, op(A,k)) or op(A',k)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GxB_SelectOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GxB_Scalar Thunk, // optional input for the select operator
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_select' applies a select operator to the entries of a matrix,
analogous to \verb'T = A .* op(A)' in MATLAB except the operator \verb'op' is
only applied to entries in the pattern of \verb'A'. Implicit values outside
the pattern of \verb'A' are not affected. The input matrix \verb'A' may be
transposed first. If the operator is not type-generic, the entries in \verb'A'
are typecasted into the \verb'xtype' of the select operator. The final step is
${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}.
The matrix \verb'T' has the same size and type as \verb'A' (or the transpose of
\verb'A' if the input is transposed via the descriptor). The entries of
\verb'T' are a subset of those of \verb'A'. Each entry \verb'A(i,j)' of
\verb'A' is passed to the \verb'op', as $z=f(i,j,m,n,a_{ij},\mbox{thunk})$,
where \verb'A' is $m$-by-$n$. If \verb'A' is transposed first then the
operator is applied to entries in the transposed matrix, \verb"A'". If $z$ is
returned as true, then the entry is copied into \verb'T', unchanged. If it
returns false, the entry does not appear in \verb'T'.
If \verb'Thunk' is not \verb'NULL', it must be a valid \verb'GxB_Scalar'.
If it has no entry, it is treated as if it had a single entry equal to zero,
for built-in types (not user-defined types).
For user-defined select operators, the entry
is passed to the user-defined select operator, with no typecasting.
Its type must be identical to \verb'ttype' of the select operator.
For the \verb'GxB_TRIL', \verb'GxB_TRIU', \verb'GxB_DIAG', and
\verb'GxB_OFFDIAG', the \verb'Thunk' parameter may be \verb'NULL', or it may be
present but contain no entry. In this case, these operators use the value of
\verb'k=0', the main diagonal. If present, the \verb'Thunk' can be any
built-in type. The value of this entry is typecasted:
\verb'k = (int64_t) Thunk'. The value \verb'k=0' specifies the main
diagonal of the matrix, \verb'k=1' is the +1 diagonal (the entries just above
the main diagonal), \verb'k=-1' is the -1 diagonal, and so on.
For the \verb'GxB_*ZERO' select operators, \verb'Thunk' is ignored, and may be
\verb'NULL'. For built-in types, with the \verb'GxB_*THUNK' operators, the
value of \verb'Thunk' is typecasted to the same type as the \verb'A' matrix.
For user-defined types, \verb'Thunk' is passed to the select operator without
typecasting.
The action of \verb'GxB_select' with the built-in select operators is described
in the table below. The MATLAB analogs are precise for \verb'tril' and
\verb'triu', but shorthand for the other operations. The MATLAB \verb'diag'
function returns a column with the diagonal, if \verb'A' is a matrix, whereas
the matrix \verb'T' in \verb'GxB_select' always has the same size as \verb'A'
(or its transpose if the \verb'GrB_INP0' is set to \verb'GrB_TRAN'). In the
MATLAB analog column, \verb'diag' is as if it operates like \verb'GxB_select',
where \verb'T' is a matrix.
The following operators may be used on matrices with a user-defined type:
\verb'GxB_TRIL',
\verb'GxB_TRIU',
\verb'GxB_DIAG',
\verb'GxB_OFFIAG',
\verb'GxB_NONZERO',
\verb'GxB_EQ_ZERO',
\verb'GxB_NE_THUNK',
and
\verb'GxB_EQ_THUNK'.
The comparators \verb'GxB_GT_*' \verb'GxB_GE_*' \verb'GxB_LT_*', and
\verb'GxB_LE_*' only work for built-in types. All other built-in select
operators can be used for any type, both built-in and any user-defined type.
{\bf NOTE:} For floating-point values, comparisons with \verb'NaN' always return
false. The built-in select operators should not be used with a scalar
\verb'thunk' that is equal to \verb'NaN'. For this case, create a user-defined
select operator that performs the test with the ANSI C \verb'isnan' function
instead.
\vspace{0.2in}
{\small
\begin{tabular}{llp{3in}}
\hline
GraphBLAS & MATLAB & \\
name & analog & \\
\hline
\verb'GxB_TRIL' & \verb'T=tril(A,k)' &
Entries in \verb'T' are the entries on and below the \verb'k'th diagonal of \verb'A'. \\
\verb'GxB_TRIU' & \verb'T=triu(A,k)' &
Entries in \verb'T' are the entries on and above the \verb'k'th diagonal of \verb'A'. \\
\verb'GxB_DIAG' & \verb'T=diag(A,k)' &
Entries in \verb'T' are the entries on the \verb'k'th diagonal of \verb'A'. \\
\verb'GxB_OFFDIAG' & \verb'T=A-diag(A,k)' &
Entries in \verb'T' are all entries not on the \verb'k'th diagonal of \verb'A'. \\
\hline
\verb'GxB_NONZERO' & \verb'T=A(A~=0)' &
Entries in \verb'T' are all entries in \verb'A' that have nonzero value. \\
\verb'GxB_EQ_ZERO' & \verb'T=A(A==0)' &
Entries in \verb'T' are all entries in \verb'A' that are equal to zero. \\
\verb'GxB_GT_ZERO' & \verb'T=A(A>0)' &
Entries in \verb'T' are all entries in \verb'A' that are greater than zero. \\
\verb'GxB_GE_ZERO' & \verb'T=A(A<=0)' &
Entries in \verb'T' are all entries in \verb'A' that are greater than or equal to zero. \\
\verb'GxB_LT_ZERO' & \verb'T=A(A<0)' &
Entries in \verb'T' are all entries in \verb'A' that are less than zero. \\
\verb'GxB_LE_ZERO' & \verb'T=A(A<=0)' &
Entries in \verb'T' are all entries in \verb'A' that are less than or equal to zero. \\
\hline
\verb'GxB_NE_THUNK' & \verb'T=A(A~=k)' &
Entries in \verb'T' are all entries in \verb'A' that are not equal to \verb'k'. \\
\verb'GxB_EQ_THUNK' & \verb'T=A(A==k)' &
Entries in \verb'T' are all entries in \verb'A' that are equal to \verb'k'. \\
\verb'GxB_GT_THUNK' & \verb'T=A(A>k)' &
Entries in \verb'T' are all entries in \verb'A' that are greater than \verb'k'. \\
\verb'GxB_GE_THUNK' & \verb'T=A(A>=k)' &
Entries in \verb'T' are all entries in \verb'A' that are greater than or equal to \verb'k'. \\
\verb'GxB_LT_THUNK' & \verb'T=A(A<k)' &
Entries in \verb'T' are all entries in \verb'A' that are less than \verb'k'. \\
\verb'GxB_LE_THUNK' & \verb'T=A(A<=k)' &
Entries in \verb'T' are all entries in \verb'A' that are less than or equal to \verb'k'. \\
\hline
\end{tabular}
}
\vspace{0.2in}
\newpage
%===============================================================================
\subsection{{\sf GrB\_reduce:} reduce to a vector or scalar} %==================
%===============================================================================
\label{reduce}
The generic function name \verb'GrB_reduce' may be used for all specific
functions discussed in this section. When the details of a specific function
are discussed, the specific name is used for clarity.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_$<$op$>$:} reduce a matrix to a vector}
%-------------------------------------------------------------------------------
\label{reduce_to_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const <operator> reduce, // reduce operator for t=reduce(A)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_reduce_<op>' is a generic name for two specific methods. Both
methods reduce a matrix to a column vector using an operator, roughly analogous
to \verb"t = sum (A')" in MATLAB, in the default case, where \verb't' is a
column vector. By default, the method reduces across the rows to
obtain a column vector; use \verb'GrB_TRAN' to reduce down the columns.
\verb'GrB_Matrix_reduce_BinaryOp' relies on a binary operator for the
reduction: the fourth argument \verb'reduce', a \verb'GrB_BinaryOp'. All three
domains of the operator must be the same. \verb'GrB_Matrix_reduce_Monoid'
performs the same reduction using a \verb'GrB_Monoid' as its fourth argument.
In both cases the reduction operator must be commutative and associative.
Otherwise the results are undefined.
The input matrix \verb'A' may be transposed first. Its entries are then
typecast into the type of the \verb'reduce' operator or monoid. The reduction
is applied to all entries in \verb'A (i,:)' to produce the scalar \verb't (i)'.
This is done without the use of the identity value of the monoid. If the
\verb'i'th row \verb'A (i,:)' has no entries, then \verb'(i)' is not an entry
in \verb't' and its value is implicit. If \verb'A (i,:)' has a single entry,
then that is the result \verb't (i)' and \verb'reduce' is not applied at all
for the \verb'i'th row. Otherwise, multiple entries in row \verb'A (i,:)' are
reduced via the \verb'reduce' operator or monoid to obtain a single scalar,
the result \verb't (i)'.
The final step is ${\bf w \langle m \rangle = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_reduce\_$<$type$>$:} reduce a vector to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_vector_to_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))
(
<type> *c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Vector u, // vector to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_reduce_<type>'
reduces a vector to a scalar, analogous to \verb't = sum (u)' in MATLAB,
except that in GraphBLAS any commutative and associative monoid can be used
in the reduction.
% There is no mask since the output is a mere scalar, not a GraphBLAS vector or
% matrix. The result does not depend on whether or not the input can be
% transposed (and vectors cannot be transposed in any case). The
% \verb'replace' option is not implemented for this function. Thus, no
% parameters from the descriptor are used.
The reduction operator is a commutative and associative monoid with an identity
value. Results are undefined if the monoid does not have these properties.
This function differs from \verb'GrB_Matrix_reduce_BinaryOp' (which reduces
a matrix to a vector) in that it requires a
valid monoid additive identity value. If the vector \verb'u' has no entries,
that identity value is copied into the scalar \verb't'. Otherwise, all of the
entries in the vector are reduced to a single scalar using the \verb'reduce'
operator.
The scalar type is any of the built-in types, or a user-defined type. In the
function signature it is a C type: \verb'bool', \verb'int8_t', ...
\verb'float', \verb'double', or \verb'void *' for a user-defined type.
The user-defined type must be identical to the type of the vector \verb'u'.
This cannot be checked by GraphBLAS and thus results are undefined if the
types are not the same.
The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API.
This function has no mask so its accumulator/mask step differs from the other
GraphBLAS operations. It does not use the methods described in
Section~\ref{accummask}, but uses the following method instead.
If \verb'accum' is \verb'NULL', then the scalar \verb't' is typecast into the
type of \verb'c', and \verb'c = t' is the final result. Otherwise, the scalar
\verb't' is typecast into the \verb'ytype' of the \verb'accum' operator, and
the value of \verb'c' (on input) is typecast into the \verb'xtype' of the
\verb'accum' operator. Next, the scalar \verb'z = accum (c,t)' is computed, of
the \verb'ztype' of the \verb'accum' operator. Finally, \verb'z' is typecast
into the final result, \verb'c'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_$<$type$>$:} reduce a matrix to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_matrix_to_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))
(
<type> *c, // result scalar
const GrB_BinaryOp accum, // optional accum for c=accum(c,t)
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Matrix A, // matrix to reduce
const GrB_Descriptor desc // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_reduce_<type>' reduces a matrix \verb'A' to a scalar, roughly
analogous to \verb't = sum (A (:))' in MATLAB. This function is identical to
reducing a vector to a scalar, since the positions of the entries in a matrix
or vector have no effect on the result. Refer to the reduction to scalar
described in the previous Section~\ref{reduce_vector_to_scalar}.
\newpage
%===============================================================================
\subsection{{\sf GrB\_transpose:} transpose a matrix} %=========================
%===============================================================================
\label{transpose}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_transpose // C<Mask> = accum (C, A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_transpose'
transposes a matrix \verb'A', just like the array transpose \verb"T = A.'" in
MATLAB. The internal result matrix \verb"T = A'" (or merely \verb"T = A" if
\verb'A' is transposed via the descriptor) has the same type as \verb'A'. The
final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}, which typecasts \verb'T' as needed and applies the
mask and accumulator.
To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix \verb'A' may be transposed first. It may seem
counter-intuitive, but this has the effect of not doing any transpose at all.
As a result, \verb'GrB_transpose' is useful for more than just transposing a
matrix. It can be used as a direct interface to the accumulator/mask
operation, ${\bf C \langle M \rangle = C \odot A}$. This step also does any
typecasting needed, so \verb'GrB_transpose' can be used to typecast a matrix
\verb'A' into another matrix \verb'C'. To do this, simply use \verb'NULL' for
the \verb'Mask' and \verb'accum', and provide a non-default descriptor
\verb'desc' that sets the transpose option:
{\footnotesize
\begin{verbatim}
// C = typecasted copy of A
GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;
GrB_transpose (C, NULL, NULL, A, desc) ; \end{verbatim}}
If the types of \verb'C' and \verb'A' match,
then the above two lines of code are the
same as \verb'GrB_Matrix_dup (&C, A)', except that for \verb'GrB_transpose' the
matrix \verb'C' must already exist and be the right size. If \verb'C' does not
exist, the work of \verb'GrB_Matrix_dup' can be replicated with this:
{\footnotesize
\begin{verbatim}
// C = create an exact copy of A, just like GrB_Matrix_dup
GrB_Matrix C ;
GrB_Type type ;
GrB_Index nrows, ncols ;
GrB_Descriptor desc ;
GxB_Matrix_type (&type, A) ;
GrB_Matrix_nrows (&nrows, A) ;
GrB_Matrix_ncols (&ncols, A) ;
GrB_Matrix_new (&C, type, nrows, ncols) ;
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;
GrB_transpose (C, NULL, NULL, A, desc) ; \end{verbatim}}
Since the input matrix \verb'A' is transposed by the descriptor,
SuiteSparse:Graph\-BLAS does the right thing and does not transpose the matrix
at all. Since \verb'T = A' is not typecasted, SuiteSparse:GraphBLAS can
construct \verb'T' internally in $O(1)$ time and using no memory at all. This
makes \verb'Grb_transpose' a fast and direct interface to the accumulator/mask
function in GraphBLAS.
This example is of course overkill, since the work can all be done by a
single call to the \verb'GrB_Matrix_dup' function. However, the
\verb'GrB_Matrix_dup' function can only create \verb'C' as an exact copy of
\verb'A', whereas variants of the code above can do many more things with these
two matrices. For example, the \verb'type' in the example can be replaced with
any other type, perhaps selected from another matrix or from an operator.
Consider the following code excerpt, which uses \verb'GrB_transpose' to remove
all diagonal entries from a square matrix. It first creates a diagonal
\verb'Mask', which is complemented so that ${\bf C \langle \neg M \rangle =A}$
does not modify the diagonal of ${\bf C}$. The \verb'REPLACE' ensures that
\verb'C' is cleared first, and then ${\bf C \langle \neg M \rangle = A}$
modifies all entries in ${\bf C}$ where the mask ${\bf M}$ is false. These
correspond to all the off-diagonal entries. The descriptor ensures that ${\bf
A}$ is not transposed at all. The \verb'Mask' can have any pattern, of course,
and wherever it is set true, the corresponding entries in \verb'A' are
deleted from the copy \verb'C'.
{\footnotesize
\begin{verbatim}
// remove all diagonal entries from the matrix A
// Mask = speye (n) ;
GrB_Matrix_new (&Mask, GrB_BOOL, n, n) ;
for (int64_t i = 0 ; i < n ; i++)
{
GrB_Matrix_setElement (Mask, (bool) true, i, i) ;
}
// C<~Mask> = A, clearing C first. No transpose.
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;
GrB_Descriptor_set (desc, GrB_MASK, GrB_COMP) ;
GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ;
GrB_transpose (A, Mask, NULL, A, desc) ; \end{verbatim}}
\newpage
%===============================================================================
\subsection{{\sf GrB\_kronecker:} Kronecker product} %==========================
%===============================================================================
\label{kron}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_kronecker // C<Mask> = accum (C, kron(A,B))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const <operator> op, // defines '*' for T=kron(A,B)
const GrB_Matrix A, // first input: matrix A
const GrB_Matrix B, // second input: matrix B
const GrB_Descriptor desc // descriptor for C, Mask, A, and B
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_kronecker' computes the Kronecker product,
${\bf C \langle M \rangle = C \odot \mbox{kron}(A,B)}$ where
\[
\mbox{kron}{\bf (A,B)} =
\left[
\begin{array}{ccc}
a_{00} \otimes {\bf B} & \ldots & a_{0,n-1} \otimes {\bf B} \\
\vdots & \ddots & \vdots \\
a_{m-1,0} \otimes {\bf B} & \ldots & a_{m-1,n-1} \otimes {\bf B} \\
\end{array}
\right]
\]
The $\otimes$ operator is defined by the \verb'op' parameter. It is applied in
an element-wise fashion (like \verb'GrB_eWiseMult'), where the pattern of the
submatrix $a_{ij} \otimes {\bf B}$ is the same as the pattern of ${\bf B}$ if
$a_{ij}$ is an entry in the matrix ${\bf A}$, or empty otherwise. The input
matrices \verb'A' and \verb'B' can be of any dimension, and both matrices may
be transposed first via the descriptor, \verb'desc'. Entries in \verb'A' and
\verb'B' are typecast into the input types of the \verb'op'. The matrix
\verb'T=kron(A,B)' has the same type as the \verb'ztype' of the binary
operator, \verb'op'. The final step is ${\bf C \langle M \rangle = C \odot
T}$, as described in Section~\ref{accummask}.
The operator \verb'op' may be a \verb'GrB_BinaryOp', a \verb'GrB_Monoid', or a
\verb'GrB_Semiring'. In the latter case, the multiplicative operator of
the semiring is used.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Printing GraphBLAS objects} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{fprint}
\begin{spec}
{\bf SPEC:} The GraphBLAS API has no mechanism for printing the contents of
GraphBLAS objects. This entire section is an extension to the specification.
\end{spec}
The ten different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
\verb'GrB_Matrix_extractTuples', \verb'GrB_Matrix_extractElement',
\verb'GxB_Matrix_type', and so on. The GraphBLAS C API has no mechanism for
printing all the contents of GraphBLAS objects, but this is helpful for
debugging. Ten type-specific methods and two type-generic methods are
provided:
\vspace{0.2in}
{\footnotesize
\begin{tabular}{ll}
\hline
\verb'GxB_Type_fprint' & print and check a \verb'GrB_Type' \\
\verb'GxB_UnaryOp_fprint' & print and check a \verb'GrB_UnaryOp' \\
\verb'GxB_BinaryOp_fprint' & print and check a \verb'GrB_BinaryOp' \\
\verb'GxB_SelectOp_fprint' & print and check a \verb'GxB_SelectOp' \\
\verb'GxB_Monoid_fprint' & print and check a \verb'GrB_Monoid' \\
\verb'GxB_Semiring_fprint' & print and check a \verb'GrB_Semiring' \\
\verb'GxB_Descriptor_fprint' & print and check a \verb'GrB_Descriptor' \\
\verb'GxB_Matrix_fprint' & print and check a \verb'GrB_Matrix' \\
\verb'GxB_Vector_fprint' & print and check a \verb'GrB_Vector' \\
\verb'GxB_Scalar_fprint' & print and check a \verb'GxB_Scalar' \\
\hline
\verb'GxB_fprint' & print/check any object to a file \\
\verb'GxB_print' & print/check any object to \verb'stdout' \\
\hline
\end{tabular}
}
\vspace{0.2in}
These methods do not modify the status of any object. If a matrix or vector
has not been completed, the pending computations are guaranteed to {\em not} be
performed. The reason is simple. It is possible for a bug in the user
application (such as accessing memory outside the bounds of an array) to mangle
the internal content of a GraphBLAS object, and the \verb'GxB_*print' methods
can be helpful tools to track down this bug. If \verb'GxB_*print' attempted to
complete any computations prior to printing or checking the contents of the
matrix or vector, then further errors could occur, including a segfault.
By contrast, GraphBLAS methods and operations that return values into
user-provided arrays or variables might finish pending operations before the
return these values, and this would change their state. Since they do not
change the state of any object, the \verb'GxB_*print' methods provide a useful
alternative for debugging, and for a quick understanding of what GraphBLAS is
computing while developing a user application.
Each of the methods has a parameter of type \verb'GxB_Print_Level' that
specifies the amount to print:
{\footnotesize
\begin{verbatim}
typedef enum
{
GxB_SILENT = 0, // nothing is printed, just check the object
GxB_SUMMARY = 1, // print a terse summary
GxB_SHORT = 2, // short description, about 30 entries of a matrix
GxB_COMPLETE = 3, // print the entire contents of the object
GxB_SHORT_VERBOSE = 4, // GxB_SHORT but with "%.15g" for doubles
GxB_COMPLETE_VERBOSE = 5 // GxB_COMPLETE but with "%.15g" for doubles
}
GxB_Print_Level ; \end{verbatim}}
The ten type-specific functions include an additional argument, the
\verb'name' string. The \verb'name' is printed at the beginning of the display
(assuming the print level is not \verb'GxB_SILENT') so that the object can be
more easily identified in the output. For the type-generic methods
\verb'GxB_fprint' and \verb'GxB_print', the \verb'name' string is the variable
name of the object itself.
If the file \verb'f' is \verb'NULL', nothing is printed (\verb'pr' is
effectively \verb'GxB_SILENT'). If \verb'name' is \verb'NULL', it is treated
as the empty string. These are not error conditions.
The methods check their input objects carefully and extensively, even when
\verb'pr' is equal to \verb'GxB_SILENT'. The following error codes can be
returned:
\begin{packed_itemize}
\item \verb'GrB_SUCCESS': object is valid
\item \verb'GrB_UNINITIALIZED_OBJECT': object is not initialized
\item \verb'GrB_INVALID_OBJECT': object is not valid
\item \verb'GrB_NULL_POINTER': object is a NULL pointer
\item \verb'GrB_INVALID_VALUE': \verb'fprintf' returned an I/O error;
see the ANSI C \verb'errno' or \verb'GrB_error( )' for details.
\end{packed_itemize}
The content of any GraphBLAS object is opaque, and subject to change. As a
result, the exact content and format of what is printed is
implementation-dependent, and will change from version to version of
SuiteSparse:GraphBLAS. Do not attempt to rely on the exact content or format
by trying to parse the resulting output via another program. The intent of
these functions is to produce a report of an object for visual inspection. If
the user application needs to extract content from a GraphBLAS matrix or
vector, use \verb'GrB_*_extractTuples' or the import/export methods instead.
\newpage
%===============================================================================
\subsection{{\sf GxB\_fprint:} Print a GraphBLAS object to a file} %============
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_fprint // print and check a GraphBLAS object
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
The \verb'GxB_fprint' function prints the contents of any of the ten GraphBLAS
objects to the file \verb'f'. If \verb'f' is \verb'NULL', the results are
printed to \verb'stdout'. For example, to print the entire contents of a
matrix \verb'A' to the file \verb'f', use
\verb'GxB_fprint (A, GxB_COMPLETE, f)'.
%===============================================================================
\subsection{{\sf GxB\_print:} Print a GraphBLAS object to {\sf stdout}} %=======
%===============================================================================
\label{gxb_print}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_print // print and check a GrB_Vector
(
GrB_<objecttype> object, // object to print and check
GxB_Print_Level pr // print level
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_print' is the same as \verb'GxB_fprint', except that it prints the
contents of the object to \verb'stdout' instead of a file \verb'f'. For
example, to print the entire contents of a matrix \verb'A', use
\verb'GxB_print (A, GxB_COMPLETE)'.
%===============================================================================
\subsection{{\sf GxB\_Type\_fprint:} Print a {\sf GrB\_Type}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Type_fprint // print and check a GrB_Type
(
GrB_Type type, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)'
prints the contents of the \verb'GrB_BOOL' object to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_UnaryOp\_fprint:} Print a {\sf GrB\_UnaryOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_UnaryOp_fprint // print and check a GrB_UnaryOp
(
GrB_UnaryOp unaryop, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)'
prints the \verb'GrB_LNOT' unary operator to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_BinaryOp\_fprint:} Print a {\sf GrB\_BinaryOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_BinaryOp_fprint // print and check a GrB_BinaryOp
(
GrB_BinaryOp binaryop, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)' prints the
\verb'GrB_PLUS_FP64' binary operator to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_SelectOp\_fprint:} Print a {\sf GxB\_SelectOp}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_SelectOp_fprint // print and check a GxB_SelectOp
(
GxB_SelectOp selectop, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_SelectOp_fprint (GxB_TRIL, "tril", GxB_COMPLETE, f)' prints the
\verb'GxB_TRIL' select operator to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Monoid\_fprint:} Print a {\sf GrB\_Monoid}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid
(
GrB_Monoid monoid, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_FP64_MONOID' (based on the binary
operator \verb'GrB_PLUS_FP64') to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Semiring\_fprint:} Print a {\sf GrB\_Semiring}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring
(
GrB_Semiring semiring, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",'
\verb'GxB_COMPLETE, f)'
prints the predefined \verb'GxB_PLUS_TIMES_FP64' semiring to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Descriptor\_fprint:} Print a {\sf GrB\_Descriptor}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor
(
GrB_Descriptor descriptor, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example,
\verb'GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)'
prints the descriptor \verb'd' to the file \verb'f'.
\newpage
%===============================================================================
\subsection{{\sf GxB\_Matrix\_fprint:} Print a {\sf GrB\_Matrix}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix
(
GrB_Matrix A, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f)'
prints about 30 entries from the matrix \verb'A' to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Vector\_fprint:} Print a {\sf GrB\_Vector}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_fprint // print and check a GrB_Vector
(
GrB_Vector v, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Vector_fprint (v, "my vector", GxB_SHORT, f)'
prints about 30 entries from the vector \verb'v' to the file \verb'f'.
%===============================================================================
\subsection{{\sf GxB\_Scalar\_fprint:} Print a {\sf GxB\_Scalar}}
%===============================================================================
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Scalar_fprint // print and check a GrB_Scalar
(
GxB_Sclarr s, // object to print and check
const char *name, // name of the object
GxB_Print_Level pr, // print level
FILE *f // file for output
) ;
\end{verbatim} } \end{mdframed}
For example, \verb'GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f)'
prints a short description of the sparse scalar \verb's' to the file \verb'f'.
\newpage
%===============================================================================
\subsection{Performance and portability considerations}
%===============================================================================
Even when the print level is \verb'GxB_SILENT', these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.
The return value of the \verb'GxB_*print' methods can be relied upon, but the
output to the file (or \verb'stdout') can change from version to version. If
these methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of the
\verb'pr' value. This may be essential if the GraphBLAS library is installed
in a dedicated device, with no file output, for example.
Some implementations may wish to print nothing at all if the matrix is not yet
completed, or just an indication that the matrix has pending operations and
cannot be printed, when non-blocking mode is employed. In this case, use
\verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', or \verb'GxB_Scalar_wait' to
finish all pending computations first. If a matrix or vector has pending
operations, SuiteSparse:GraphBLAS prints a list of the {\em pending tuples},
which are the entries not yet inserted into the primary data structure. It can
also print out entries that remain in the data structure but are awaiting
deletion; these are called {\em zombies} in the output report.
Most of the rest of the report is self-explanatory.
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Examples} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{examples}
Several examples of how to use GraphBLAS are listed below. They all
appear in the \verb'Demo' folder of SuiteSparse:GraphBLAS.
\begin{enumerate}
\item performing a breadth-first search,
\item finding a maximal independent set,
\item creating a random matrix,
\item creating a finite-element matrix,
\item reading a matrix from a file, and
\item complex numbers as a user-defined type.
\item triangle counting
\item PageRank
\item matrix import/export
\end{enumerate}
Additional examples appear in the newly created LAGraph project, currently in
progress. Finally, the \verb'Extras' folder includes triangle counting and
k-truss algorithms in GraphBLAS, and methods that do not GraphBLAS (both simple
sequential methods, and methods that use OpenMP).
%-------------------------------------------------------------------------------
\subsection{LAGraph}
%-------------------------------------------------------------------------------
\label{lagraph}
The LAGraph project is a community-wide effort to create graph algorithms based
on GraphBLAS (any implementation of the API, not just SuiteSparse: GraphBLAS).
As of Oct, 2019, the library includes the algorithms and utilities listed in
the table below. Many additional algorithms are planned, such as betweenness
centrality, PageRank, single-source shortest path (via delta stepping), minimum
spanning trees, connected components, and many more. Refer to
\url{https://github.com/GraphBLAS/LAGraph} for a current list of algorithms
(the one below will soon be out of date). Most of the functions in the
\verb'Demo/' and the \verb'Extras' folder in SuiteSparse:GraphBLAS will
eventually be translated into algorithms or utilities for LAGraph.
To use LAGraph with SuiteSparse:GraphBLAS, place the two folders \verb'LAGraph'
and \verb'GraphBLAS' in the same parent directory. This allows the
\verb'cmake' script in LAGraph to find the copy of GraphBLAS. Alternatively,
the GraphBLAS source could be placed anywhere, as long as
\verb'sudo make install' is performed.
Build \verb'GraphBLAS' first, then the \verb'LAGraph' library, and then the
tests in \verb'LAGraph/Test'.
Many of these algorithms are described in \cite{Davis20}.
\vspace{0.1in}
{\small
\begin{tabular}{ll}
\hline
\hline
Algorithms & description \\
\hline
\hline
\verb'LAGraph_bfs_pushpull' & a direction-optimized BFS
\cite{Beamer:2012:DOB,Yang:2018:IPE}, \\
& typically 2x faster than \verb'bfs5m' \\
\verb'LAGraph_bfs_simple' & a simple BFS (about the same as \verb'bfs5m') \\
\verb'LAGraph_bc_batch' & batched betweenness-centrality \\
\verb'LAGraph_bc' & betweenness-centrality \\
\verb'LAGraph_cdlp' & community detection via label propagation \\
\verb'LAGraph_cc' & connected components \\
\verb'LAGraph_BF_*' & three variants of Bellman-Ford \\
\verb'LAGraph_allktruss' & construct all $k$-trusses \\
\verb'LAGraph_dnn' & sparse deep neural network \cite{DavisAznavehKolodziej19} \\
\verb'LAGraph_ktruss' & construct a $k$-trusses \\
\verb'LAGraph_lcc' & local clustering coefficient \\
\verb'LAGraph_pagerank' & PageRank \\
\verb'LAGraph_pagerank2' & PageRank variant \\
\verb'LAGraph_tricount' & triangle counting \\
\end{tabular}}
\vspace{0.1in}
{\small
\begin{tabular}{ll}
\hline
\hline
Utilities & description \\
\hline
\hline
\verb'LAGraph_Vector_isall' & tests 2 vectors with a binary operator \\
\verb'LAGraph_Vector_isequal' & tests if 2 vectors are equal \\
\verb'LAGraph_Vector_to_dense' & converts a vector to dense \\
\verb'LAGraph_alloc_global' & types, operators, monoids, and semirings \\
\verb'LAGraph_finalize' & ends LAGraph \\
\verb'LAGraph_free' & wrapper for \verb'free' \\
\verb'LAGraph_free_global' & frees objects created by \verb'_alloc_global'\\
\verb'LAGraph_get_nthreads' & get \# of threads used \\
\verb'LAGraph_grread' & read a binary matrix in Galois format \\
\verb'LAGraph_init' & starts LAGraph \\
\verb'LAGraph_isall' & tests 2 matrices with a binary operator \\
\verb'LAGraph_isequal' & tests if 2 matrices are equal \\
\verb'LAGraph_ispattern' & tests if all entries in a matrix are 1 \\
\verb'LAGraph_malloc' & wrapper for \verb'malloc' \\
\verb'LAGraph_mmread' & read a Matrix Market file \\
\verb'LAGraph_mmwrite' & write a Matrix Market file \\
\verb'LAGraph_pattern' & extracts the pattern of a matrix \\
\verb'LAGraph_prune_diag' & diagonal entries from a matrix \\
\verb'LAGraph_rand' & simple random number generator \\
\verb'LAGraph_rand64' & \verb'int64_t' random number generator \\
\verb'LAGraph_random' & random matrix generator \\
\verb'LAGraph_randx' & \verb'double' random number generator \\
\verb'LAGraph_set_nthreads' & set \# of threads to use \\
\verb'LAGraph_tic' & start a timer \\
\verb'LAGraph_toc' & end a timer \\
\verb'LAGraph_tsvread' & read a TSV file \\
\verb'LAGraph_xinit' & starts LAGraph, with different malloc \\
\verb'LAgraph_1_to_n' & construct the vector \verb'1:n' \\
\verb'GB_*sort*' & sorting for \verb'LAGraph_cdlp' \\
% \verb'LAGraph_internal.h'
\end{tabular}}
\newpage
%-------------------------------------------------------------------------------
\subsection{Breadth-first search}
%-------------------------------------------------------------------------------
\label{bfs}
The \verb'bfs' examples in the \verb'Demo' folder provide several examples of
how to compute a breadth-first search (BFS) in GraphBLAS. Additional BFS
examples are in LAGraph, shown below. The \verb'LAGraph_bfs_simple' function
starts at a given source node \verb's' of an undirected graph with \verb'n'
nodes. The graph is represented as an \verb'n'-by-\verb'n' matrix, \verb'A',
where \verb'A(i,j)' is the edge $(i,j)$. The matrix \verb'A' can have any type
(even a user-defined type), since the \verb'PAIR' operator does not access its
values. No typecasting will be done.
The vector \verb'v' of size \verb'n' holds the level of each node in the BFS,
where \verb'v(i)=0' if the node has not yet been seen. This particular value
makes \verb'v' useful for another role. It can be used as a Boolean mask,
since \verb'0' is \verb'false' and nonzero is \verb'true'. Initially the
entire \verb'v' vector is zero. It is initialized as a dense vector, with all
entries present, to improve performance (otherwise, it will slowly grow,
incrementally, and this will take a lot of time if the number of BFS levels is
high).
The vector \verb'q' is the set of nodes just discovered at the current level,
where \verb'q(i)=true' if node \verb'i' is in the current level. It starts out
with just a single entry set to true, \verb'q(s)', the starting node.
Each iteration of the BFS consists of three calls to GraphBLAS. The first one
uses \verb'q' as a mask. It modifies all positions in \verb'v' where \verb'q'
has an entry, setting them all to the current \verb'level'.
{\footnotesize
\begin{verbatim}
// v<q> = level, using vector assign with q as the mask
GrB_assign (v, q, NULL, level, GrB_ALL, n, GrB_DESC_S) ; \end{verbatim}}
The next call to GraphBLAS is the heart of the algorithm:
{\footnotesize
\begin{verbatim}
// q<!v> = q ||.&& A ; finds all the unvisited
// successors from current q, using !v as the mask
GrB_vxm (q, v, NULL, GxB_ANY_PAIR_BOOL, q, A, GrB_DESC_RC) ; \end{verbatim}}
The vector \verb'q' is all the set of nodes at the current level. Suppose
\verb'q(j)' is true, and it has a neighbor \verb'i'. Then \verb'A(i,j)=1', and
the dot product of \verb'A(i,:)*q' using the \verb'ANY_PAIR' semiring will use
the \verb'PAIR' multiplier on these two terms, \verb'f (A(i,j), q(j))', resulting
in a value \verb'1'. The \verb'ANY' monoid will ``sum'' up all the results
in this single row \verb'i'; note that the \verb'OR' monoid would compute the
same thing. If the result is a column vector \verb't=A*q',
then this \verb't(i)' will be true. The vector \verb't' will be true for
any node adjacent to any node in the set \verb'q'.
Some of these neighbors of the nodes in \verb'q' have already been visited by
the BFS, either in the current level or in a prior level. These results must
be discarded; what is desired is the set of all nodes \verb'i' for which
\verb't(i)' is true, and yet \verb'v(i)' is still zero.
Enter the mask. The vector \verb'v' is complemented for use a mask, via the
\verb'desc' descriptor. This means that wherever the vector is true, that
position in the result is protected and will not be modified by the assignment.
Only where \verb'v' is false will the result be modified. This is exactly the
desired result, since these represent newly seen nodes for the next level of
the BFS. A node \verb'k' already visited will have a nonzero \verb'v(k)', and
thus \verb'q(k)' will not be modified by the assignment.
The result \verb't' is written back into the vector \verb'q', through the mask,
but to do this correctly, another descriptor parameter is used:
\verb'GrB_REPLACE'. The vector \verb'q' was used to compute \verb't=A*q', and
after using it to compute \verb't', the entire \verb'q' vector needs to be
cleared. Only new nodes are desired, for the next level. This is exactly what
the \verb'REPLACE' option does.
As a result, the vector \verb'q' now contains the set of nodes at the new
level of the BFS. It contains all those nodes (and only those nodes)
that are neighbors of the prior set and that have not already been seen in
any prior level.
A single call to \verb'GrB_Vector_nvals' finds how many entries are in the
current level. If this is zero, the BFS can terminate.
\newpage
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
#include "LAGraph_internal.h"
#define LAGRAPH_FREE_ALL { GrB_free (&v) ; GrB_free (&q) ; }
GrB_Info LAGraph_bfs_simple // push-only BFS
(
GrB_Vector *v_output, // v(i) is the BFS level of node i in the graph
GrB_Matrix A, // input graph, treated as if boolean in semiring
GrB_Index source // starting node of the BFS
)
{
GrB_Info info ;
GrB_Vector q = NULL ; // nodes visited at each level
GrB_Vector v = NULL ; // result vector
if (v_output == NULL) LAGRAPH_ERROR ("argument missing", GrB_NULL_POINTER) ;
GrB_Index n, nvals ;
GrB_Matrix_nrows (&n, A) ;
// create an empty vector v, and make it dense
GrB_Vector_new (&v, (n > INT32_MAX) ? GrB_INT64 : GrB_INT32, n) ;
GrB_assign (v, NULL, NULL, 0, GrB_ALL, n, NULL) ;
// create a boolean vector q, and set q(source) to true
GrB_Vector_new (&q, GrB_BOOL, n) ;
GrB_Vector_setElement (q, true, source) ;
// BFS traversal and label the nodes
for (int64_t level = 1 ; level <= n ; level++)
{
// v<q> = level
GrB_assign (v, q, NULL, level, GrB_ALL, n, GrB_DESC_S) ;
// break if q is empty
GrB_Vector_nvals (&nvals, q) ;
if (nvals == 0) break ;
// q'<!v> = q'*A
GrB_vxm (q, v, NULL, GxB_ANY_PAIR_BOOL, q, A, GrB_DESC_RC) ;
}
// free workspace and return result
(*v_output) = v ; // return result
v = NULL ; // set to NULL so LAGRAPH_FREE_ALL doesn't free it
LAGRAPH_FREE_ALL ; // free all workspace (except for result v)
return (GrB_SUCCESS) ;
}
\end{verbatim}}
\end{mdframed}
\newpage
%-------------------------------------------------------------------------------
\subsection{Maximal independent set}
%-------------------------------------------------------------------------------
\label{mis}
The {\em maximal independent set} problem is to find a set of nodes $S$ such
that no two nodes in $S$ are adjacent to each other (an independent set), and
all nodes not in $S$ are adjacent to at least one node in $S$ (and thus $S$ is
maximal since it cannot be augmented by any node while remaining an independent
set). The \verb'mis' function in the \verb'Demo' folder solves this problem
using Luby's method \cite{Luby86}. The key operations in the method are
replicated on the next page.
The gist of the algorithm is this. In each phase, all candidate nodes are
given a random score. If a node has a score higher than all its neighbors,
then it is added to the independent set. All new nodes added to the set cause
their neighbors to be removed from the set of candidates. The process must be
repeated for multiple phases until no new nodes can be added. This is because
in one phase, a node \verb'i' might not be added because one of its neighbors
\verb'j' has a higher score, yet that neighbor \verb'j' might not be added
because one of its neighbors \verb'k' is added to the independent set instead.
The node \verb'j' is no longer a candidate and can never be added to the
independent set, but node \verb'i' could be added to $S$ in a subsequent phase.
The initialization step, before the \verb'while' loop, computes the degree of
each node with a \verb'PLUS' reduction. The set of \verb'candidates' is
Boolean vector, the \verb'i'th component is true if node \verb'i' is a
candidate. A node with no neighbors causes the algorithm to stall, so these
nodes are not candidates. Instead, they are immediately added to the
independent set, represented by another Boolean vector \verb'iset'. Both steps
are done with an \verb'assign', using the \verb'degree' as a mask, except the
assignment to \verb'iset' uses the complement of the mask, via the
\verb'sr_desc' descriptor. Finally, the \verb'GrB_Vector_nvals' statement
counts how many candidates remain.
Each phase of Luby's algorithm consists of 11 calls to GraphBLAS operations,
all of which are either parallel, or take $O(1)$ time.
Not all of them are described here since they are commented in the code itself.
The two matrix-vector multiplications are the important parts and also take the
most time. They also make interesting use of semirings and masks. The first
one computes the largest score of all the neighbors of each node in the
candidate set:
{\footnotesize
\begin{verbatim}
// compute the max probability of all neighbors
GrB_vxm (neighbor_max, candidates, NULL, maxFirst, prob, A, r_desc) ; \end{verbatim}}
\newpage
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
// compute the degree of each node
GrB_reduce (degrees, NULL, NULL, GrB_PLUS_FP64, A, NULL) ;
// singletons are not candidates; they are added to iset first instead
// candidates[degree != 0] = 1
GrB_assign (candidates, degrees, NULL, true, GrB_ALL, n, NULL);
// add all singletons to iset
// iset[degree == 0] = 1
GrB_assign (iset, degrees, NULL, true, GrB_ALL, n, sr_desc) ;
// Iterate while there are candidates to check.
GrB_Index nvals ;
GrB_Vector_nvals (&nvals, candidates) ;
while (nvals > 0)
{
// sparsify the random number seeds (just keep it for each candidate)
GrB_assign (Seed, candidates, NULL, Seed, GrB_ALL, n, r_desc) ;
// compute a random probability scaled by inverse of degree
prand_xget (X, Seed) ; // two calls to GrB_apply
GrB_eWiseMult (prob, candidates, NULL, set_random, degrees, X, r_desc) ;
// compute the max probability of all neighbors
GrB_vxm (neighbor_max, candidates, NULL, maxFirst, prob, A, r_desc) ;
// select node if its probability is > than all its active neighbors
GrB_eWiseAdd (new_members, NULL,NULL, GrB_GT_FP64, prob, neighbor_max,0);
// add new members to independent set.
GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;
// remove new members from set of candidates c = c & !new
GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL,
candidates, sr_desc) ;
GrB_Vector_nvals (&nvals, candidates) ;
if (nvals == 0) { break ; } // early exit condition
// Neighbors of new members can also be removed from candidates
GrB_vxm (new_neighbors, candidates, NULL, Boolean,
new_members, A, NULL) ;
GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL,
candidates, sr_desc) ;
GrB_Vector_nvals (&nvals, candidates) ;
}
\end{verbatim}}
\end{mdframed}
\verb'A' is a symmetric Boolean matrix and \verb'prob' is a sparse real vector
(of type \verb'FP32'), where \verb'prob(i)' is nonzero only if node \verb'i' is
a candidate. The \verb'prob' vector is computed from a random vector computed
by a utility function \verb'prand_xget', in the \verb'Demo' folder. It uses
two calls to \verb'GrB_apply' to construct \verb'n' random numbers in parallel,
using a repeatable pseudo-random number generator.
The \verb'maxFirst' semiring uses \verb'z=FIRST(x,y)' as the multiplier
operator. The column \verb'A(:,j)' is the adjacency of node \verb'j', and the
dot product \verb"prob'*A(:,j)" applies the \verb'FIRST' operator on all
entries that appear in the intersection of \verb'prob' and \verb'A(:,j)', where
\verb'z=FIRST(prob(i),A(i,j))' which is just \verb'prob(i)' if \verb'A(i,j)' is
present. If \verb'A(i,j)' not an explicit entry in the matrix, then this term
is not computed and does not take part in the reduction by the \verb'MAX'
monoid.
Thus, each term \verb'z=FIRST(prob(i),A(i,j))' is the score, \verb'prob(i)',
of all neighbors \verb'i' of node \verb'j' that have a score. Node \verb'i'
does not have a score if it is not also a candidate and so this is skipped.
These terms are then ``summed'' up by taking the maximum score, using
\verb'MAX' as the additive monoid.
Finally, the results of this matrix-vector multiply are written to the result,
\verb'neighbor_max'. The \verb'r_desc' descriptor has the \verb'REPLACE'
option enabled. Since \verb'neighbor_max' does not also take part in the
computation \verb"prob'*A", it is simply cleared first. Next, is it modified
only in those positions \verb'i' where \verb'candidates(i)' is true, using
\verb'candidates' as a mask. This sets the \verb'neighbor_max' only for
candidate nodes, and leaves the other components of \verb'neighbor_max' as zero
(implicit values not in the pattern of the vector).
All of the above work is done in a single matrix-vector multiply, with an
elegant use of the \verb'maxFirst' semiring coupled with a mask. The
matrix-vector multiplication is described above as if it uses dot products of
rows of \verb'A' with the column vector \verb'prob', but SuiteSparse:GraphBLAS
does not compute it that way. Sparse dot products are much slower the optimal
method for multiplying a sparse matrix times a sparse vector. The result is
the same, however.
The second matrix-vector multiplication is more straight-forward. Once the set
of new members in the independent is found, it is used to remove all neighbors
of those new members from the set of candidates.
The resulting method is very efficient. For the \verb'Freescale2' matrix, the
algorithm finds an independent set of size 1.6 million in 1.7 seconds (on the
same MacBook Pro referred to in Section~\ref{bfs}, using a single core), taking
four iterations of the \verb'while' loop. For comparison, removing its
diagonal entries (required for the algorithm to work) takes 0.3 seconds in
GraphBLAS (see Section~\ref{transpose}), and simply transposing the matrix
takes 0.24 seconds in both MATLAB and GraphBLAS.
\newpage
%-------------------------------------------------------------------------------
\subsection{Creating a random matrix}
%-------------------------------------------------------------------------------
\label{random}
The \verb'random_matrix' function in the \verb'Demo' folder generates a random
matrix with a specified dimension and number of entries, either symmetric or
unsymmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on \verb'simple_rand*' functions in the \verb'Demo' folder to provide
a portable random number generator that creates the same sequence on any
computer and operating system.
\verb'random_matrix' can use one of two methods: \verb'GrB_Matrix_setElement'
and \verb'GrB_Matrix_build'. The former method is very simple to use:
{\footnotesize
\begin{verbatim}
GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;
for (int64_t k = 0 ; k < ntuples ; k++)
{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x ( ) ;
// A (i,j) = x
GrB_Matrix_setElement (A, x, i, j) ;
if (make_symmetric)
{
// A (j,i) = x
GrB_Matrix_setElement (A, x, j, i) ;
}
} \end{verbatim}}
The above code can generate a million-by-million sparse \verb'double' matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random \verb'i', \verb'j', and \verb'x'), including the time
to finish all pending computations. The user application does not need to
create a list of all the tuples, nor does it need to know how many entries will
appear in the matrix. It just starts from an empty matrix and adds them one at
a time in arbitrary order. GraphBLAS handles the rest. This method is not
feasible in MATLAB.
The next method uses \verb'GrB_Matrix_build'. It is more complex to use than
\verb'setElement' since it requires the user application to allocate and fill
the tuple lists, and it requires knowledge of how many entries will appear in
the matrix, or at least a good upper bound, before the matrix is constructed.
It is slightly faster, creating the same matrix in 60 seconds, 51 seconds
of which is spent in \verb'GrB_Matrix_build'.
\newpage
{\footnotesize
\begin{verbatim}
GrB_Index *I, *J ;
double *X ;
int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;
I = malloc (s * sizeof (GrB_Index)) ;
J = malloc (s * sizeof (GrB_Index)) ;
X = malloc (s * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{
// out of memory
if (I != NULL) free (I) :
if (J != NULL) free (J) :
if (X != NULL) free (X) :
return (GrB_OUT_OF_MEMORY) ;
}
int64_t ntuples = 0 ;
for (int64_t k = 0 ; k < nedges ; k++)
{
GrB_Index i = simple_rand_i ( ) % nrows ;
GrB_Index j = simple_rand_i ( ) % ncols ;
if (no_self_edges && (i == j)) continue ;
double x = simple_rand_x ( ) ;
// A (i,j) = x
I [ntuples] = i ;
J [ntuples] = j ;
X [ntuples] = x ;
ntuples++ ;
if (make_symmetric)
{
// A (j,i) = x
I [ntuples] = j ;
J [ntuples] = i ;
X [ntuples] = x ;
ntuples++ ;
}
}
GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ; \end{verbatim}}
The equivalent \verb'sprandsym' function in MATLAB takes 150 seconds, but
\verb'sprandsym' uses a much higher-quality random number generator to create
the tuples \verb'[I,J,X]'. Considering just the time for
\verb'sparse(I,J,X,n,n)' in \verb'sprandsym' (equivalent to
\verb'GrB_Matrix_build'), the time is 70 seconds. That is, each of these three
methods, \verb'setElement' and \verb'build' in SuiteSparse:GraphBLAS, and
\verb'sparse' in MATLAB, are equally fast.
% It is not possible to build such a matrix one entry at a time in MATLAB.
% using a comparable method. The MATLAB equivalent to \verb'setElement',
% below, takes 105 seconds for the first 200,000 entries and 381 seconds for
% the last 1,000. The time complexity is $O(nz^2)$. Extrapolation from this
% data gives an estimated run time of $4 \times 10^7$ seconds (462 days),
% which is nearly a million times slower than the other three methods.
%
% {\footnotesize
% \begin{verbatim}
% A = sparse (n,n) ;
% for k = 1:length (I)
% A (I (k), J (k)) = X (k) ;
% end \end{verbatim}}
% The problem is not the time spent in interpreting the \verb'for' loop. A
% \verb'for' loop over 200 million iterations takes only 8 seconds. The
% problem is that the sparse matrices in MATLAB do not allow computations to be
% left pending.
\newpage
%-------------------------------------------------------------------------------
\subsection{Creating a finite-element matrix}
%-------------------------------------------------------------------------------
\label{fem}
Suppose a finite-element matrix is being constructed, with \verb'k=40,000'
finite-element matrices, each of size \verb'8'-by-\verb'8'. The following
operations (in pseudo-MATLAB notation) are very efficient in
SuiteSparse:GraphBLAS.
{\footnotesize
\begin{verbatim}
A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix
for i = 1:k
construct a 8-by-8 sparse or dense finite-element F
I and J define where the matrix F is to be added:
I = a list of 8 row indices
J = a list of 8 column indices
% using GrB_assign, with the 'plus' accum operator:
A (I,J) = A (I,J) + F
end \end{verbatim}}
If this were done in MATLAB or in GraphBLAS with blocking mode enabled, the
computations would be extremely slow. This example is taken from Loren Shure's
blog on MATLAB Central, {\em Loren on the Art of MATLAB} \cite{Davis07},
which discusses the built-in \verb'wathen' function. In
MATLAB, a far better approach is to construct a list of tuples \verb'[I,J,X]'
and to use \verb'sparse(I,J,X,n,n)'. This is identical to creating the same
list of tuples in GraphBLAS and using the \verb'GrB_Matrix_build', which is
equally fast. The difference in time between using \verb'sparse' or
\verb'GrB_Matrix_build', and using submatrix assignment with blocking mode (or
in MATLAB which does not have a nonblocking mode) can be extreme. For the
example matrix discussed in \cite{Davis07}, using \verb'sparse' instead of
submatrix assignment in MATLAB cut the run time of \verb'wathen' from 305
seconds down to 1.6 seconds.
In SuiteSparse:GraphBLAS, the performance of both methods is essentially
identical, and roughly as fast as \verb'sparse' in MATLAB. Inside
SuiteSparse:GraphBLAS, \verb'GrB_assign' is doing the same thing. When
performing \verb'A(I,J)=A(I,J)+F', if it finds that it cannot quickly insert an
update into the \verb'A' matrix, it creates a list of pending tuples to be
assembled later on. When the matrix is ready for use in a subsequent
GraphBLAS operation (one that normally cannot use a matrix with pending
computations), the tuples are assembled all at once via
\verb'GrB_Matrix_build'.
GraphBLAS operations on other matrices have no effect on when the pending
updates of a matrix are completed. Thus, any GraphBLAS method or operation can
be used to construct the \verb'F' matrix in the example above, without
affecting when the pending updates to \verb'A' are completed.
The MATLAB \verb'wathen.m' script is part of Higham's \verb'gallery' of
matrices \cite{Higham}. It creates a finite-element matrix with random
coefficients for a 2D mesh of size \verb'nx'-by-\verb'ny', a matrix formulation
by Wathen \cite{Wathen}. The pattern of the matrix is fixed; just the values
are randomized. The GraphBLAS equivalent can use either
\verb'GrB_Matrix_build', or \verb'GrB_assign'. Both methods have good
performance. The \verb'GrB_Matrix_build' version below is about 15\% to 20\%
faster than the MATLAB \verb'wathen.m' function, regardless of the problem
size. It uses the identical algorithm as \verb'wathen.m'.
{\footnotesize
\begin{verbatim}
int64_t ntriplets = nx*ny*64 ;
I = malloc (ntriplets * sizeof (int64_t)) ;
J = malloc (ntriplets * sizeof (int64_t)) ;
X = malloc (ntriplets * sizeof (double )) ;
if (I == NULL || J == NULL || X == NULL)
{
FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
ntriplets = 0 ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
I [ntriplets] = nn [krow] ;
J [ntriplets] = nn [kcol] ;
X [ntriplets] = em (krow,kcol) ;
ntriplets++ ;
}
}
}
}
// A = sparse (I,J,X,n,n) ;
GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ; \end{verbatim}}
The \verb'GrB_assign' version has the advantage of not requiring the
user application to construct the tuple list, and is almost as fast as using
\verb'GrB_Matrix_build'. The code is more elegant than either the MATLAB
\verb'wathen.m' function or its GraphBLAS equivalent above. Its performance is
comparable with the other two methods, but slightly slower, being about 5\%
slower than the MATLAB \verb'wathen', and 20\% slower than the GraphBLAS
method above.
{\footnotesize
\begin{verbatim}
GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;
for (int j = 1 ; j <= ny ; j++)
{
for (int i = 1 ; i <= nx ; i++)
{
nn [0] = 3*j*nx + 2*i + 2*j + 1 ;
nn [1] = nn [0] - 1 ;
nn [2] = nn [1] - 1 ;
nn [3] = (3*j-1)*nx + 2*j + i - 1 ;
nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;
nn [5] = nn [4] + 1 ;
nn [6] = nn [5] + 1 ;
nn [7] = nn [3] + 1 ;
for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;
for (int krow = 0 ; krow < 8 ; krow++)
{
for (int kcol = 0 ; kcol < 8 ; kcol++)
{
// F (krow,kcol) = em (krow, kcol)
GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;
}
}
// A (nn,nn) += F
GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;
}
} \end{verbatim}}
Since there is no \verb'Mask', and since \verb'GrB_REPLACE' is not used, the call
to \verb'GrB_assign' in the example above is identical to \verb'GxB_subassign'.
Either one can be used, and their performance would be identical.
Refer to the \verb'wathen.c' function in the \verb'Demo' folder, which
uses GraphBLAS to implement the two methods above, and two additional ones.
\newpage
%-------------------------------------------------------------------------------
\subsection{Reading a matrix from a file}
%-------------------------------------------------------------------------------
\label{read}
{\bf NOTE:} see also \verb'LAGraph_mmread' and \verb'LAGraph_mmwrite', which
can read and write any matrix in Matrix Market format, and
\verb'LAGraph_binread' and \verb'LAGraph_binwrite', which read/write a matrix
from a binary file. The binary file I/O functions are much faster than
the \verb'read_matrix' function described here, and also much faster than
\verb'LAGraph_mmread' and \verb'LAGraph_mmwrite'.
The \verb'read_matrix' function in the \verb'Demo' reads in a triplet matrix
from a file, one line per entry, and then uses \verb'GrB_Matrix_build' to
create the matrix. It creates a second copy with \verb'GrB_Matrix_setElement',
just to test that method and compare the run times. A comparison of
\verb'build' versus \verb'setElement' has already been discussed in
Section~\ref{random}.
The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
\verb'read_matrix' computes \verb"A=(A+A')/2" if \verb'A' is square (turning
all directed edges into undirected ones. If \verb'A' is rectangular, it
creates a bipartite graph, which is the same as the augmented matrix,
\verb"A = [0 A ; A' 0]".
If \verb'C' is an \verb'n'-by-\verb'n' matrix, then \verb"C=(C+C')/2" can be
computed as follows in GraphBLAS, (the \verb'scale2' function divides an entry
by 2):
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
GrB_Descriptor_new (&dt2) ;
GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;
GrB_Matrix_new (&A, GrB_FP64, n, n) ;
GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C'
GrB_free (&C) ;
GrB_Matrix_new (&C, GrB_FP64, n, n) ;
GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;
GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2
GrB_free (&A) ;
GrB_free (&scale2_op) ; \end{verbatim}}
This is of course not nearly as elegant as \verb"A=(A+A')/2" in MATLAB, but
with minor changes it can work on any type and use any built-in operators
instead of \verb'PLUS', or it can use any user-defined operators and types.
The above code in SuiteSparse:GraphBLAS takes 0.60 seconds for the
\verb'Freescale2' matrix, slightly slower than MATLAB (0.55 seconds).
Constructing the augmented system is more complicated using the GraphBLAS C API
Specification since it does not yet have a simple way of specifying a range of
row and column indices, as in \verb'A(10:20,30:50)' in MATLAB (\verb'GxB_RANGE'
is a SuiteSparse:GraphBLAS extension that is not in the Specification). Using
the C API in the Specification, the application must instead build a list of
indices first, \verb'I=[10, 11' \verb'...' \verb'20]'.
Thus, to compute the MATLAB equivalent of \verb"A = [0 A ; A' 0]", index lists
\verb'I' and \verb'J' must first be constructed:
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
int64_t n = nrows + ncols ;
I = malloc (nrows * sizeof (int64_t)) ;
J = malloc (ncols * sizeof (int64_t)) ;
// I = 0:nrows-1
// J = nrows:n-1
if (I == NULL || J == NULL)
{
if (I != NULL) free (I) ;
if (J != NULL) free (J) ;
return (GrB_OUT_OF_MEMORY) ;
}
for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;
for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ; \end{verbatim}}
Once the index lists are generated, however, the resulting GraphBLAS operations
are fairly straightforward, computing \verb"A=[0 C ; C' 0]".
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
GrB_Descriptor_new (&dt1) ;
GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;
GrB_Matrix_new (&A, GrB_FP64, n, n) ;
// A (nrows:n-1, 0:nrows-1) = C'
GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;
// A (0:nrows-1, nrows:n-1) = C
GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ; \end{verbatim}}
This takes 1.38 seconds for the \verb'Freescale2' matrix, almost as fast as
\verb"A=[sparse(m,m) C ; C' sparse(n,n)]" in MATLAB (1.25 seconds).
Both calls to \verb'GrB_assign' use no accumulator, so the second one
causes the partial matrix \verb"A=[0 0 ; C' 0]" to be built first, followed by
the final build of \verb"A=[0 C ; C' 0]". A better method, but not an obvious
one, is to use the \verb'GrB_FIRST_FP64' accumulator for both assignments. An
accumulator enables SuiteSparse:GraphBLAS to determine that that entries
created by the first assignment cannot be deleted by the second, and thus it
need not force completion of the pending updates prior to the second
assignment.
SuiteSparse:GraphBLAS also adds a \verb'GxB_RANGE' mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute \verb"A=[0 C ; C' 0]":
\vspace{-0.05in}
{\footnotesize
\begin{verbatim}
int64_t n = nrows + ncols ;
GrB_Matrix_new (&A, xtype, n, n) ;
GrB_Index I_range [3], J_range [3] ;
I_range [GxB_BEGIN] = 0 ;
I_range [GxB_END ] = nrows-1 ;
J_range [GxB_BEGIN] = nrows ;
J_range [GxB_END ] = ncols+nrows-1 ;
// A (nrows:n-1, 0:nrows-1) += C'
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;
// A (0:nrows-1, nrows:n-1) += C
GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,
C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ; \end{verbatim}}
Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an \verb'accum' operator is used, only the final matrix is built, and the
time in GraphBLAS drops slightly to 1.25 seconds. This is a very small
improvement because in this particular case, SuiteSparse:GraphBLAS is able to
detect that no sorting is required for the first build, and the second one is a
simple concatenation. In general, however, allowing GraphBLAS to postpone
pending updates can lead to significant reductions in run time.
%-------------------------------------------------------------------------------
\subsection{PageRank}
%-------------------------------------------------------------------------------
\label{pagerank}
The \verb'Demo' folder contains three methods for computing the PageRank of the
nodes of a graph. One uses floating-point arithmetic (\verb'GrB_FP64') and two
user-defined unary operators (\verb'dpagerank.c'). The second
(\verb'ipagerank.c') is very similar, relying on integer arithmetic instead
(\verb'GrB_UINT64'). Neither method include a stopping condition. They simply
compute a fixed number of iterations. The third example is more extensive
(\verb'dpagerank2.c'), and serves as an example of the power and flexibility of
user-defined types, operators, monoids, and semirings. It creates a semiring
for the entire PageRank computation. It terminates if the 2-norm of the change
in the rank vector \verb'r' is below a threshold.
\newpage
%-------------------------------------------------------------------------------
\subsection{Triangle counting}
%-------------------------------------------------------------------------------
\label{triangle}
A triangle in an undirected graph is a clique of size three: three nodes $i$,
$j$, and $k$ that are all pairwise connected. There are many ways of counting
the number of triangles in a graph. Let \verb'A' be a symmetric matrix with
values 0 and 1, and no diagonal entries; this matrix is the adjacency matrix of
the graph. Let \verb'E' be the edge incidence matrix with exactly two 1's per
column. A column of \verb'E' with entries in rows \verb'i' and \verb'j'
represents the edge $(i,j)$ in the graph, \verb'A(i,j)=1' where \verb'i<j'.
Let \verb'L' and \verb'U' be the strictly lower and upper triangular parts of
\verb'A', respectively.
The methods are listed in the table below. Most of them use a form of masked
matrix-matrix multiplication. The methods are implemented in MATLAB in the
\verb'tricount.m' file, and in GraphBLAS in the \verb'tricount.c' file, both in
the \verb'GraphBLAS/Demo' folder. Refer to the comments in those two files for
details and derivations on how these methods work.
When the matrix is stored by row, and a mask is present and not complemented,
\verb'GrB_INP1' is \verb'GrB_TRAN', and \verb'GrB_INP0' is \verb'GxB_DEFAULT',
the SuiteSparse:GraphBLAS implementation of \verb'GrB_mxm' always uses a
dot-product formulation. Thus, the ${\bf C \langle L \rangle} = {\bf L}{\bf
U}^{\sf T}$ method uses dot products. This provides a mechanism for the
end-user to select a masked dot product matrix multiplication method in
SuiteSparse:GraphBLAS, which is occasionally faster than the outer product
method. The MATLAB form assumes the matrices are stored by column
(the only option in MATLAB).
Each method is followed by a reduction to a scalar, via \verb'GrB_reduce' in
GraphBLAS or by \verb'nnz' or \verb'sum(sum(...))' in MATLAB.
\vspace{0.05in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
method and & in MATLAB & in GraphBLAS \\
citation & & \\
\hline
minitri \cite{WolfBerryStark15} & \verb"nnz(A*E==2)/3"
& ${\bf C}={\bf AE}$, then \verb'GrB_apply' \\
Burkhardt \cite{Burkhardt16} & \verb"sum(sum((A^2).*A))/6"
& ${\bf C \langle A \rangle} = {\bf A}^2$ \\
Cohen \cite{AzadBulucGilbert15,Cohen09} & \verb"sum(sum((L*U).*A))/2"
& ${\bf C \langle A \rangle} = {\bf LU}$ \\
Sandia \cite{WolfDeveciBerryHammondRajamanickam17} & \verb"sum(sum((U*U).*U))"
& ${\bf C \langle L \rangle} = {\bf LL}$ (outer product) \\
SandiaDot & \verb"sum(sum((U'*L).*L))"
& ${\bf C \langle U \rangle} = {\bf L}{\bf U}^{\sf T}$ (dot product) \\
Sandia2 & \verb"sum(sum((L*L).*L))"
& ${\bf C \langle U \rangle} = {\bf UU}$ (outer product) \\
\hline
\end{tabular}
}
\vspace{0.05in}
In general, the Sandia methods are the fastest of the 6 methods when
implemented in GraphBLAS. For full details on the triangle counting and
$k$-truss algorithms, and performance results, see \cite{Davis18b}, a copy of
which appears in the \verb'SuiteSparse/GraphBLAS/Doc' folder. The code appears
in \verb'Extras'. That paper uses an earlier version of SuiteSparse:GraphBLAS
in which all matrices are stored by column.
\newpage
%-------------------------------------------------------------------------------
\subsection{User-defined types and operators}
%-------------------------------------------------------------------------------
\label{user}
The \verb'Demo' folder contains two working examples of user-defined types,
first discussed in Section~\ref{type_new}: \verb'double complex', and a
user-defined \verb'typedef' called \verb'wildtype' with a \verb'struct'
containing a string and a 4-by-4 \verb'float' matrix.
{\bf Double Complex:}
Prior to v3.3, GraphBLAS did not have a native complex type. It now appears as
the \verb'GxB_FC64' predefined type, but a complex type can also easily added
as a user-defined type. The \verb'Complex_init' function in the
\verb'usercomplex.c' file in the \verb'Demo' folder creates the \verb'Complex'
type based on the ANSI C11 \verb'double complex' type.
It creates a full suite of operators that correspond to every
built-in GraphBLAS operator, both binary and unary. In addition, it
creates the operators listed in the following table, where $D$ is
\verb'double' and $C$ is \verb'Complex'.
\vspace{0.1in}
{\footnotesize
\begin{tabular}{llll}
\hline
name & types & MATLAB & description \\
& & equivalent & \\
\hline
\verb'Complex_complex' & $D \times D \rightarrow C$ & \verb'z=complex(x,y)' & complex from real and imag. \\
\hline
\verb'Complex_conj' & $C \rightarrow C$ & \verb'z=conj(x)' & complex conjugate \\
\verb'Complex_real' & $C \rightarrow D$ & \verb'z=real(x)' & real part \\
\verb'Complex_imag' & $C \rightarrow D$ & \verb'z=imag(x)' & imaginary part \\
\verb'Complex_angle' & $C \rightarrow D$ & \verb'z=angle(x)' & phase angle \\
\verb'Complex_complex_real' & $D \rightarrow C$ & \verb'z=complex(x,0)' & real to complex real \\
\verb'Complex_complex_imag' & $D \rightarrow C$ & \verb'z=complex(0,x)' & real to complex imag. \\
\hline
\end{tabular}
}
The \verb'Complex_init' function creates two monoids (\verb'Complex_add_monoid'
and \verb'Complex_times_monoid') and a semiring \verb'Complex_plus_times' that
corresponds to the conventional linear algebra for complex matrices. The
include file \verb'usercomplex.h' in the \verb'Demo' folder is available so
that this user-defined \verb'Complex' type can easily be imported into any
other user application. When the user application is done, the
\verb'Complex_finalize' function frees the \verb'Complex' type and its
operators, monoids, and semiring.
NOTE: the \verb'Complex' type is not supported in this Demo in Microsoft
Visual Studio.
{\bf Struct-based:}
In addition, the \verb'wildtype.c' program creates a user-defined
\verb'typedef' of a \verb'struct' containing a dense 4-by-4 \verb'float'
matrix, and a 64-character string. It constructs an additive monoid that adds
two 4-by-4 dense matrices, and a multiplier operator that multiplies two 4-by-4
matrices. Each of these 4-by-4 matrices is treated by GraphBLAS as a
``scalar'' value, and they can be manipulated in the same way any other
GraphBLAS type can be manipulated. The purpose of this type is illustrate the
endless possibilities of user-defined types and their use in GraphBLAS.
\newpage
%-------------------------------------------------------------------------------
\subsection{User applications using OpenMP or POSIX pthreads}
%-------------------------------------------------------------------------------
\label{threads}
Two example demo programs are included that illustrate how a multi-threaded
user application can use GraphBLAS: \verb'openmp_demo' uses OpenMP for its
user threads and \verb'pthread_demo' uses POSIX pthreads.
% TODO in 4.0: delete this note in bold:
{\bf To be thread-safe, SuiteSparse:GraphBLAS must be compiled with a threading
library, either OpenMP or POSIX}. Either option used inside GraphBLAS can
typically be combined with any user threading model. See
Section~\ref{sec:install}.
The \verb'openmp_demo' can be compiled without OpenMP, in which case it
becomes single-threaded. GraphBLAS can be compiled with OpenMP, POSIX
pthreads, or no threading support (and is not thread-safe in this latter
case). This gives 9 different combinations:
\vspace{0.1in}
{\footnotesize
\begin{tabular}{llll}
\hline
User & GraphBLAS & \verb'Demo/Output' file & comments \\
applic. & & & \\
\hline
none & none & \verb'user_none_grb_none.out' & OK \\
none & OpenMP & \verb'user_none_grb_openmp.out' & OK \\
none & pthread & \verb'user_none_grb_pthread.out' & OK \\
\hline
OpenMP & none & \verb'user_openmp_grb_none.out' & fail \\
OpenMP & OpenMP & \verb'user_openmp_grb_openmp.out' & OK, random \\
OpenMP & pthread & \verb'user_openmp_grb_pthread.out' & OK, random \\
\hline
pthread & none & \verb'user_pthread_grb_none.out' & fail \\
pthread & OpenMP & \verb'user_pthread_grb_openmp.out' & OK, random \\
pthread & pthread & \verb'user_pthread_grb_pthread.out'& OK, random \\
\hline
\end{tabular}}
\vspace{0.1in}
\noindent
When the user application is multithreaded, GraphBLAS must be compiled with a
threading library to be thread-safe. The results listed above as {\em OK,
random} mean that the output of the program will appear out of order. This is
by design, simply to show that the user application is running in parallel.
The output of each thread should be the same. In particular, each thread
generates an intentional error, and later on prints it with \verb'GrB_error'.
It will print its own error, not an error from another thread. When all the
threads finish, the master thread prints out each matrix generated by each
thread, and these results are identical for all 7 cases listed above as OK.
% TODO in 4.0: remove this; GraphBLAS will always be thread-safe:
The GraphBLAS C API requires GraphBLAS to be thread-safe. If
SuiteSparse:GraphBLAS is not compiled with a threading library it will not be
thread-safe (the two {\em fail} cases above). For these cases, a thread will
not retrieve its own error, but the last error of any thread. In addition,
since there is no critical section that SuiteSparse:GraphBLAS can use, the
output will include errors about an invalid state of the global matrix queue.
These errors are to be expected if SuiteSparse:GraphBLAS is not thread-safe.
\newpage
%-------------------------------------------------------------------------------
\section{Compiling and Installing SuiteSparse:GraphBLAS}
%-------------------------------------------------------------------------------
\label{sec:install}
%----------------------------------------
\subsection{On Linux and Mac}
%----------------------------------------
GraphBLAS makes extensive use of features in the ANSI C11 standard, and thus a
C compiler supporting this version of the C standard is required to use
all features of GraphBLAS. On the Mac
(OS X), \verb'clang' 8.0.0 in \verb'Xcode' version 8.2.1 is sufficient,
although earlier versions of \verb'Xcode' may work as well. For the GNU
\verb'gcc' compiler, version 4.9 or later is required. For the Intel
\verb'icc' compiler, version 18.0 or later is required. Version 2.8.12 or
later of \verb'cmake' is required; version 3.0.0 is preferred.
If you are using a pre-C11 ANSI C compiler, or Microsoft Visual Studio,
then the \verb'_Generic' keyword is not available. SuiteSparse:GraphBLAS
will still compile, but you will not have access to polymorphic functions
such as \verb'GrB_assign'. You will need to use the non-polymorphic functions
instead.
{\bf NOTE: icc is generally an excellent compiler, but it will generate slower
code than gcc for v3.2.0 and later. This is merely because of how the two
compilers treat \verb'#pragma omp atomic read' and \verb'#pragma omp atomic write'.
The use of gcc for SuiteSparse:GraphBLAS v3.2.0 and later is recommended. This
difference in performance should be resolved in a future version.}
To compile SuiteSparse:GraphBLAS and the demo programs, simply type \verb'make'
in the main GraphBLAS folder, which compiles the library. To use a
non-default compiler:
{\small
\begin{verbatim}
make CC=icc CXX=icc JOBS=4 \end{verbatim} }
After compiling the library, you can run the demos by typing \verb'./demo'
in the Demo folder.
If \verb'cmake' or \verb'make' fail, it might be that your default compiler
does not support ANSI C11. Try another compiler. For example, try one of
these options. Go into the \verb'build' directory and type one of these:
{\small
\begin{verbatim}
CC=gcc cmake ..
CC=gcc-6 cmake ..
CC=xlc cmake ..
CC=icc cmake .. \end{verbatim} }
You can also do the following in the top-level GraphBLAS folder instead:
{\small
\begin{verbatim}
CC=gcc make
CC=gcc-6 cmake
CC=xlc cmake
CC=icc cmake \end{verbatim} }
For faster compilation, you can specify a parallel make. For example,
to use 32 parallel jobs and the \verb'gcc' compiler, do the following:
{\small
\begin{verbatim}
JOBS=32 CC=gcc make \end{verbatim} }
%----------------------------------------
\subsection{On Microsoft Windows}
\label{sec:windows}
%----------------------------------------
SuiteSparse:GraphBLAS is now ported to Microsoft Visual Studio. However, that
compiler is not ANSI C11 compliant and does not support OpenMP v4.0. As a
result, GraphBLAS on Windows will have a few limitations.
\begin{itemize}
\item The MS Visual Studio compiler does not support the \verb'_Generic'
keyword, required for the polymorphic GraphBLAS functions. So for example, you
will need to use \verb'GrB_Matrix_free' instead of just \verb'GrB_free'.
\item Another limitation is the lack of support for OpenMP tasking, used in the
parallel sort inside GraphBLAS. With Microsoft Visual Studio, the sort is
compiled to use just a single thread. The sort is used for
\verb'GrB_Matrix_build' and \verb'GrB_Vector_build', and for \verb'GrB_assign'
and \verb'GxB_subassign' when the index lists are unsorted on input. The
internal sort still works as specified; it will just be single-threaded and
thus these GraphBLAS functions will be slower on Windows as compared to Linux
or MacOS.
\item In addition, variable-length arrays are not supported, so user-defined
types are limited to 128 bytes in size.
\end{itemize}
If you use a recent \verb'gcc' or \verb'icc' compiler on Windows other than the
Microsoft Compiler (\verb'cl'), these limitations can be avoided.
The following instructions apply to Windows 10, CMake 3.16, and
Visual Studio 2019, but may work for earlier versions.
\begin{enumerate}
\item Install CMake 3.16 or later, if not already installed.
See \url{https://cmake.org/} for details.
\item Install Microsoft Visual Studio, if not already installed.
See \url{https://visualstudio.microsoft.com/} for details.
Version 2019 is preferred, but earlier versions may also work.
\item Open a terminal window and type this in the
\verb'SuiteSparse/GraphBLAS/build' folder:
\vspace{-0.1in}
{\small
\begin{verbatim}
cmake .. \end{verbatim} }
\vspace{-0.1in}
\item The \verb'cmake' command generates many files in
\verb'SuiteSparse/GraphBLAS/build', and the file \verb'graphblas.sln' in
particular. Open the generated \verb'graphblas.sln' file in Visual Studio.
\item Optionally: right-click \verb'graphblas' in the left panel (Solution
Explorer) and select properties; then navigate to \verb'Configuration'
\verb'Properties', \verb'C/C++', \verb'General' and change the parameter
\verb'Multiprocessor Compilation' to \verb'Yes (/MP)'. Click \verb'OK'.
This will significantly speed up the compilation of GraphBLAS.
\item Select the \verb'Build' menu item at the top of the window and
select \verb'Build Solution'. This should create a folder called
\verb'Release' and place the compiled \verb'graphblas.dll',
\verb'graphblas.lib', and \verb'graphblas.exp' files there. Please be
patient; some files may take a while to compile and sometimes may appear to
be stalled. Just wait.
% Alternatively, type this command in the terminal window:
% {\small
% \begin{verbatim}
% devenv graphblas.sln /build "release|x64" /project graphblas \end{verbatim}}
\item Add the \verb'GraphBLAS/build/Release' folder to the Windows System path:
\begin{itemize}
\item Open the \verb'Start Menu' and type \verb'Control Panel'.
\item Select the \verb'Control Panel' app.
\item When the app opens, select \verb'System'.
\item From the top left side of the \verb'System' window, select
\verb'Advanced System Settings'. You may have to authenticate
at this step.
\item The \verb'Systems Properties' window should appear with the
\verb'Advanced' tab selected;
select \verb'Environment Variables'.
\item The \verb'Environment Variables' window displays 2 sections, one for
\verb'User' variables and the other for \verb'System' variables. Under
the \verb'Systems' variable section, scroll to and select \verb'Path',
then select \verb'Edit'. A editor window appears allowing to add,
modify, delete or re-order the parts of the \verb'Path'.
\item Add the full path of the \verb'GraphBLAS\build\Release' folder
(typically starting with \verb'C:\Users\you\'..., where \verb'you' is
your Windows username) to the \verb'Path'.
\item If the above steps do not work, you can instead copy the
\verb'graphblas.*' files from \verb'GraphBLAS\build\Release' into any
existing folder listed in your \verb'Path'.
\end{itemize}
\item The \verb'GraphBLAS/Include/GraphBLAS.h' file must be included in user
applications via \verb'#include "GraphBLAS.h"'. This is already done for
you in the MATLAB interface discussed in the next section.
\end{enumerate}
%----------------------------------------
\subsection{Compiling the MATLAB interface}
%----------------------------------------
First, compile the SuiteSparse:GraphBLAS dynamic library
(\verb'libgraphblas.so' for Linux, \verb'libgraphblas.dylib' for Mac,
or \verb'graphblas.dll' for Windows), as described in the prior two
subsections. Next:
\begin{enumerate}
\item In the MATLAB command window:
{\small
\begin{verbatim}
cd GraphBLAS/GraphBLAS/@GrB/private
gbmake \end{verbatim} }
\item Follow the remaining instructions in the
\verb'GraphBLAS/GraphBLAS/README.md' file, to revise your
MATLAB path and \verb'startup.m' file.
\item As a quick test, try the MATLAB command \verb'GrB(1)', which
creates and displays a 1-by-1 GraphBLAS matrix. For a longer test, do the
following:
{\small
\begin{verbatim}
cd GraphBLAS/GraphBLAS/test
gbtest \end{verbatim} }
\item In Windows, if the tests fail with an error stating that the
mex file is invalid because the module could not be found, it means
that MATLAB could not find the compiled \verb'graphblas.lib', \verb'*.dll'
or \verb'*.exp' files in the \verb'build/Release' folder. This can happen
if your Windows System path is not set properly, or if Windows is not
recognizing the \verb'GraphBLAS/build/Release' folder (see
Section~\ref{sec:windows}) Or, you might have permission to change your
Windows System path. In this case, do the following in the MATLAB Command
\vspace{-0.1in}
Window:
\vspace{-0.1in}
{\small
\begin{verbatim}
cd GraphBLAS/build/Release
GrB(1) \end{verbatim} }
\vspace{-0.1in}
After this step, the GraphBLAS library will be loaded into MATLAB. You may
need to add the above lines in your \verb'Documents/MATLAB/startup.m' file,
so that they are done each time MATLAB starts. You will also need to do
this after \verb'clear all' or \verb'clear mex', since those MATLAB
commands remove all loaded libraries from MATLAB.
You might also get an error ``the specified procedure cannot be found.''
This can occur if you have upgraded your GraphBLAS library from a prior
version, and some of the compiled files \verb'@GrB/private/*.mex*'
are stale. Try the command \verb'gbmake all' in the MATLAB Command
Window, which forces all of the MATLAB interface to be recompiled.
Or, try deleting all \verb'@GrB/private/*.mex*' files and running
\verb'gbmake' again.
\item On Windows, the \verb'casin', \verb'casinf', \verb'casinh', and
\verb'casinhf' functions provided by Microsoft do not return the correct
imaginary part. As a result, \verb'GxB_ASIN_FC32', \verb'GxB_ASIN_FC64'
\verb'GxB_ASINH_FC32', and \verb'GxB_ASINH_FC64' do not work properly on
Windows. This affects the \verb'GrB/asin', \verb'GrB/acsc',
\verb'GrB/asinh', and \verb'GrB/acsch', functions in the MATLAB interface.
See the MATLAB tests bypassed in \verb'gbtest76.m' for details, in the
\verb'GraphBLAS/GraphBLAS/test' folder.
%% FUTURE: fix asin and acsc on Windows for the complex case.
\end{enumerate}
%----------------------------------------
\subsection{Thread-safety in multithreaded user applications}
\label{sec:threads}
%----------------------------------------
% TODO in 4.0: this entire section will likely be deleted, with the
% pending change to GrB_wait and GrB_error.
SuiteSparse:GraphBLAS is parallel, based on OpenMP. It is thread-safe if
multiple simultaneous calls are made to GraphBLAS functions, from user threads
that rely on either OpenMP or POSIX pthreads. The output variables of those
calls to GraphBLAS must be unique; you cannot safely modify one GraphBLAS
object in parallel, with two or more simultaneous GraphBLAS functions operating
on the same output object. In addition, all pending operations of objects that
appear in parallel calls to GraphBLAS must be complete. This can be done for
all objects via \verb'GrB_Matrix_wait', \verb'GrB_Vector_wait', and
\verb'GxB_Scalar_wait', which force completion of a particular object. If
multiple parallel calls to GraphBLAS functions operate on unique inputs, then
those input objects can safely have pending operations.
% TODO in 4.0: delete this for V4.0 when GrB_wait is removed:
{\bf NOTE: the following will no longer be required in a future version,
when \verb'GrB_wait()' is removed.}
To use GraphBLAS from a multithreaded user application, GraphBLAS requires
access to a critical section for the (now deprecated) \verb'GrB_wait()' queue
of matrices with pending operations, and to a thread-local storage space so
that each user thread can safely retrieve its own error message with
\verb'GrB_error'. In v4.0, the no-argument \verb'GrB_wait()' function will be
removed, and thus the user-thread-based critical section will be no longer
needed.
SuiteSparse:GraphBLAS supports the following user threading models. By
default, the \verb'cmake' script detects the presence of OpenMP and POSIX
pthreads. If OpenMP is present, it uses OpenMP critical sections for
\verb'GrB_wait()' and OpenMP \verb'threadprivate(...)' for thread-local storage
for \verb'GrB_error'. Otherwise, if POSIX pthreads are available, it uses a
POSIX \verb'mutex', and POSIX thread-local storage via
\verb'pthread_key_create'.
These methods used inside GraphBLAS can typically inter-operate with any user
threading model. That is, a user application that relies on POSIX threads,
OpenMP, ANSI C11 threads, or Microsoft Windows threads will find GraphBLAS
thread-safe, even though GraphBLAS uses OpenMP or POSIX internally to
synchronize the user threads. However, for the most reliable results, the
preferred approach is to use the same threading model in GraphBLAS as is used
in the user application.
You can modify the automatic selection of a user thread synchronization model
by adding the following settings for \verb'cmake'. This setting does not
determine how SuiteSparse:GraphBLAS creates and exploits multiple threads {\em
inside} any given GraphBLAS operation. Rather, it determines which threading
library it will use to synchronize multiple calls to GraphBLAS from more than
one user thread.
\begin{itemize}
\item OpenMP: this is the default if your compiler supports OpenMP.
It can also be specified with \verb'cmake -DUSER_OPENMP=1' in the
\verb'cmake' command line. Internal parallelism in
SuiteSparse:GraphBLAS version is based on OpenMP. This is
typically safe to use with any user threading models.
\item POSIX: this is used if OpenMP is not available.
If OpenMP is available but you still want GraphBLAS to use POSIX
synchronization, compile with \verb'cmake -DUSER_POSIX=1'
\item no user threading: compile with \verb'cmake -DUSER_NONE=1'.
{\bf GraphBLAS will not be thread-safe}.
\end{itemize}
%----------------------------------------
\subsection{Default matrix format}
%----------------------------------------
By default, SuiteSparse:GraphBLAS stores its matrices by row, using the
\verb'GxB_BY_ROW' format. You can change the default at compile time to
\verb'GxB_BY_COL' using \verb'cmake -DBYCOL=1'. For example:
{\small
\begin{verbatim}
cmake -DBYCOL=1 .. \end{verbatim} }
The user application can also use \verb'GxB_get' and \verb'GxB_set' to set and
query the global option (see also Sections~\ref{gxbset} and \ref{gxbget}):
{\small
\begin{verbatim}
GxB_Format_Value s ;
GxB_get (GxB_FORMAT, &s) ;
if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") :
else printf ("all new matrices are stored by row\n") ; \end{verbatim} }
%----------------------------------------
\subsection{Setting the C flags and using CMake}
%----------------------------------------
The above options can also be combined. For example, to use the \verb'gcc'
compiler, to change the default format \verb'GxB_FORMAT_DEFAULT' to
\verb'GxB_BY_COL', and to use a POSIX mutex inside GraphBLAS to synchronize
user threads, use the following \verb'cmake' command while in the
\verb'GraphBLAS/build' directory:
{\small
\begin{verbatim}
CC=gcc cmake -DBYCOL=1 -DUSER_POSIX=1 .. \end{verbatim}}
\noindent
Then do \verb'make' in the \verb'build' directory. If this still fails, see
the \verb'CMakeLists.txt' file. You can edit that file to pass
compiler-specific options to your compiler. Locate this section in the
\verb'CMakeLists.txt' file. Use the \verb'set' command in \verb'cmake', as in
the example below, to set the compiler flags you need.
{\small
\begin{verbatim}
# check which compiler is being used. If you need to make
# compiler-specific modifications, here is the place to do it.
if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")
# cmake 2.8 workaround: gcc needs to be told to do ANSI C11.
# cmake 3.0 doesn't have this problem.
set ( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11 -lm " )
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
...
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")
...
endif ( )
\end{verbatim} }
To compile SuiteSparse:GraphBLAS without running the demos, use \newline
\verb'make library' in the top-level directory, or \verb'make' in the
\verb'build' directory.
Several compile-time options can be selected by editing the \verb'Source/GB.h'
file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.
One particularly useful option is the \verb'BURBLE' setting. It must be
enabled both at compile time and then at run time with \verb'GxB_set'
\verb'(GxB_BURBLE, true)', or \verb'GrB.burble(1)' in the MATLAB interface. If
enabled, SuiteSparse:GraphBLAS will print out a report as to which internal
kernels it uses, and how much time is spent. If you see the word
\verb'generic', it means that SuiteSparse:GraphBLAS was unable to use is faster
kernels in \verb'Source/Generated', but used a generic kernel that relies on
function pointers. This is done for user-defined types and operators, and when
typecasting is performed, and it is typically slower than the kernels in
\verb'Source/Generated'. If you see a lot of \verb'wait' statements, it may
mean that a lot of time is spent finishing a matrix or vector. This may be
the result of an inefficient use of the \verb'setElement' and \verb'assign'
methods.
%----------------------------------------
\subsection{Using a plain makefile}
%----------------------------------------
The \verb'GraphBLAS/alternative' directory contains a simple \verb'Makefile'
that can be used to compile SuiteSparse:GraphBLAS. This is a useful option
if you do not have the required version of \verb'cmake'. This \verb'Makefile'
can even compile the entire library with a C++ compiler, which cannot be
done with \verb'CMake'.
%----------------------------------------
\subsection{Running the Demos}
%----------------------------------------
By default, \verb'make' in the top-level directory compiles the library
and runs the demos. You can also run the demos after compiling:
{\small
\begin{verbatim}
cd Demo
./demo \end{verbatim} }
The \verb'./demo' command is a script that runs the demos with various input
matrices in the \verb'Demo/Matrix' folder. The output of the demos will be
compared with expected output files in \verb'Demo/Output'.
%----------------------------------------
\subsection{Installing SuiteSparse:GraphBLAS}
%----------------------------------------
To install the library (typically in \verb'/usr/local/lib' and
\verb'/usr/local/include' for Linux systems), go to the top-level GraphBLAS
folder and type:
{\small
\begin{verbatim}
sudo make install \end{verbatim} }
%----------------------------------------
\subsection{Running the tests}
%----------------------------------------
To run a short test, type \verb'make run' at the top-level \verb'GraphBLAS'
folder. This will run all the demos in \verb'GraphBLAS/Demos'. MATLAB is not
required.
To perform the extensive tests in the \verb'Test' folder, and the statement
coverage tests in \verb'Tcov', MATLAB R2017A is required. See the
\verb'README.txt' files in those two folders for instructions on how to run the
tests. The tests in the \verb'Test' folder have been ported to MATLAB on
Linux, MacOS, and Windows. The \verb'Tcov' tests do not work on Windows. The
MATLAB interface test (\verb'gbtest') works on all platforms; see the
\verb'GraphBLAS/GraphBLAS' folder for more details.
%----------------------------------------
\subsection{Cleaning up}
%----------------------------------------
To remove all compiled files, type \verb'make' \verb'distclean' in the top-level
GraphBLAS folder.
\newpage
%-------------------------------------------------------------------------------
\section{Acknowledgments}
%-------------------------------------------------------------------------------
I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomputing
Center), and the GraphBLAS API Committee: Ayd\i n Bulu\c{c} (Lawrence Berkeley
National Laboratory), Timothy G. Mattson (Intel Corporation) Scott McMillan
(Software Engineering Institute at Carnegie Mellon University), Jos\'e Moreira
(IBM Corporation), and Carl Yang (UC Davis), for creating the GraphBLAS
specification and for patiently answering my many questions while I was
implementing it.
I would like to thank Tim Mattson and Henry Gabb, Intel, Inc., for their
collaboration and for the support of Intel. In particular, I would like to
thank Tim Mattson for parallelizing the merge sort using OpenMP tasks. The
parallel merge sort is used for \verb'GrB_Matrix_build',
\verb'GrB_Vector_build', and some instances of \verb'GrB_transpose'
I would like to thank John Gilbert (UC Santa Barbara) for our many discussions
on GraphBLAS, and for our decades-long conversation and collaboration on sparse
matrix computations, and sparse matrices in MATLAB in particular.
I would like to thank Cleve Moler (MathWorks) for our many discussions on
MATLAB, and for creating MATLAB in the first place. Without MATLAB,
SuiteSparse:GraphBLAS would have been impossible to implement and test.
I would like to thank S\'ebastien Villemot (Debian Developer,
\url{http://sebastien.villemot.name}) for helping me with various build issues
and other code issues with GraphBLAS (and all of SuiteSparse) for its packaging
in Debian Linux.
I would like to thank Roi Lipman, Redis Labs (\url{https://redislabs.com}), for
our many discussions on GraphBLAS and its use in RedisGraph
(\url{https://redislabs.com/redis-enterprise/technology/redisgraph/}), a graph
database module for Redis. Based on SuiteSparse:GraphBLAS, RedisGraph is up
600x faster than the fastest graph databases ({\footnotesize
\url{https://youtu.be/9h3Qco_x0QE} \newline
\url{https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/}}).
I would like to thank Lucas Jarman, MathWorks (\url{http://mathworks.com}),
for his help in porting GraphBLAS to Microsoft Windows.
SuiteSparse:GraphBLAS was developed with support from
NVIDIA, Intel, MIT Lincoln Lab, Redis Labs, IBM,
and the National Science Foundation (1514406, 1835499).
%-------------------------------------------------------------------------------
\section{Additional Resources}
%-------------------------------------------------------------------------------
See \url{http://graphblas.org} for the GraphBLAS community page. See
\url{https://github.com/GraphBLAS/GraphBLAS-Pointers} for an up-to-date list of
additional resources on GraphBLAS, maintained by G{\'{a}}bor Sz{\'{a}}rnyas.
\newpage
%-------------------------------------------------------------------------------
% References
%-------------------------------------------------------------------------------
{\small
\addcontentsline{toc}{section}{References}
\bibliographystyle{annotate}
\bibliography{GraphBLAS_UserGuide.bib}
}
\end{document}
|