1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
%CCOLAMD_DEMO demo for ccolamd and csymamd
% minimum degree ordering algorithm.
%
% Example:
% ccolamd_demo
%
% See also ccolamd
% CCOLAMD, Copyright (c) 2005-2022, Univ. of Florida, All Rights Reserved.
% Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore.
% SPDX-License-Identifier: BSD-3-clause
%-------------------------------------------------------------------------------
% Print the introduction, the help info, and compile the mexFunctions
%-------------------------------------------------------------------------------
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'ccolamd/csymamd demo.') ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
help ccolamd_demo ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'ccolamd help information:') ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
help ccolamd ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'csymamd help information:') ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
help csymamd ;
%-------------------------------------------------------------------------------
% Solving Ax=b
%-------------------------------------------------------------------------------
n = 100 ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'Solving Ax=b for a small %d-by-%d random matrix:', n, n) ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, '\nNote: Random sparse matrices are AWFUL test cases.\n') ;
fprintf (1, 'They''re just easy to generate in a demo.\n') ;
% set up the system
rand ('state', 0) ;
randn ('state', 0) ;
spparms ('default') ;
A = sprandn (n, n, 2/n) + speye (n) ;
b = (1:n)' ;
clf ;
subplot (3,4,1)
spy (A)
title ('original matrix')
fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from ccolamd:\n') ;
q = ccolamd (A, 1) ;
I = speye (n) ;
Q = I (:, q) ;
[L,U,P] = lu (A*Q) ;
fl = luflops (L, U) ;
x = Q * (U \ (L \ (P * b))) ;
fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ;
fprintf (1, 'residual: %e\n', norm (A*x-b));
subplot (3,4,2) ;
spy (L|U) ;
title ('LU with ccolamd') ;
try
fprintf (1, '\n\nSolving via lu (PAQ = LU), where Q is from colamd:\n') ;
q = colamd (A) ;
I = speye (n) ;
Q = I (:, q) ;
[L,U,P] = lu (A*Q) ;
fl = luflops (L, U) ;
x = Q * (U \ (L \ (P * b))) ;
fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ;
fprintf (1, 'residual: %e\n', norm (A*x-b));
subplot (3,4,3) ;
spy (L|U) ;
title ('LU with colamd') ;
catch
fprintf (1, 'You have a very old version of MATLAB (no colamd) \n') ;
end
fprintf (1, '\n\nSolving via lu (PA = LU), without regard for sparsity:\n') ;
[L,U,P] = lu (A) ;
fl = luflops (L, U) ;
x = U \ (L \ (P * b)) ;
fprintf (1, '\nFlop count for [L,U,P] = lu (A*Q): %d\n', fl) ;
fprintf (1, 'residual: %e\n', norm (A*x-b));
subplot (3,4,4) ;
spy (L|U) ;
title ('LU with no ordering') ;
%-------------------------------------------------------------------------------
% Large demo for ccolamd
%-------------------------------------------------------------------------------
% Since the analysis will be done on the Cholesky factorization of A'A,
% set the knob to tell ccolamd to order for Cholesky, not LU.
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'Large demo for ccolamd (symbolic analysis only):') ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
rand ('state', 0) ;
randn ('state', 0) ;
spparms ('default') ;
n = 1000 ;
fprintf (1, 'Generating a random %d-by-%d sparse matrix.\n', n, n) ;
A = sprandn (n, n, 2/n) + speye (n) ;
subplot (3,4,5)
spy (A)
title ('original matrix')
fprintf (1, '\n\nUnordered matrix:\n') ;
[lnz,h,parent,post,R] = symbfact (A, 'col') ;
fprintf (1, 'nz in Cholesky factors of A''A: %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A''A: %d\n', sum (lnz.^2)) ;
subplot (3,4,6) ;
spy (R) ;
title ('Cholesky with no ordering') ;
tic ;
p = ccolamd (A) ;
t = toc ;
[lnz,h,parent,post,R] = symbfact (A (:,p), 'col') ;
fprintf (1, '\n\nccolamd run time: %f\n', t) ;
fprintf (1, 'ccolamd ordering quality: \n') ;
fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ;
subplot (3,4,7) ;
spy (R) ;
title ('Cholesky with ccolamd') ;
try
tic ;
p = colamd (A) ;
t = toc ;
[lnz,h,parent,post,R] = symbfact (A (:,p), 'col') ;
fprintf (1, '\n\ncolamd run time: %f\n', t) ;
fprintf (1, 'colamd ordering quality: \n') ;
fprintf (1, 'nz in Cholesky factors of A(:,p)''A(:,p): %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A(:,p)''A(:,p): %d\n', sum (lnz.^2)) ;
subplot (3,4,8) ;
spy (R) ;
title ('Cholesky with colamd') ;
catch
fprintf (1, 'You have a very old version of MATLAB (no colamd) \n') ;
end
%-------------------------------------------------------------------------------
% Large demo for csymamd
%-------------------------------------------------------------------------------
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'Large demo for csymamd (symbolic analysis only):') ;
fprintf (1, '\n-----------------------------------------------------------\n') ;
fprintf (1, 'Generating a random symmetric %d-by-%d sparse matrix.\n', n, n) ;
A = A+A' ;
subplot (3,4,9) ;
spy (A)
title ('original matrix')
fprintf (1, '\n\nUnordered matrix:\n') ;
[lnz,h,parent,post,R] = symbfact (A, 'sym') ;
fprintf (1, 'nz in Cholesky factors of A: %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A: %d\n', sum (lnz.^2)) ;
subplot (3,4,10) ;
spy (R) ;
title ('Cholesky with no ordering') ;
tic ;
p = csymamd (A) ;
t = toc ;
[lnz,h,parent,post,R] = symbfact (A (p,p), 'sym') ;
fprintf (1, '\n\ncsymamd run time: %f\n', t) ;
fprintf (1, 'csymamd ordering quality: \n') ;
fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ;
subplot (3,4,11) ;
spy (R) ;
title ('Cholesky with csymamd') ;
try
tic ;
p = symamd (A) ;
t = toc ;
lnz = symbfact (A (p,p), 'sym') ;
fprintf (1, '\n\nsymamd run time: %f\n', t) ;
fprintf (1, 'symamd ordering quality: \n') ;
fprintf (1, 'nz in Cholesky factors of A(p,p): %d\n', sum (lnz)) ;
fprintf (1, 'flop count for Cholesky of A(p,p): %d\n', sum (lnz.^2)) ;
subplot (3,4,12) ;
spy (R) ;
title ('Cholesky with symamd') ;
catch
fprintf (1, 'You have a very old version of MATLAB (no symamd) \n') ;
end
drawnow
|