File: csymamdtestmex.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (501 lines) | stat: -rw-r--r-- 12,367 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
//------------------------------------------------------------------------------
// CCOLAMD/Source/csymamdtestmex.c: MATLAB test for CSYMAMD
//------------------------------------------------------------------------------

// CCOLAMD, Copyright (c) 2005-2022, Univ. of Florida, All Rights Reserved.
// Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore.
// SPDX-License-Identifier: BSD-3-clause

//------------------------------------------------------------------------------

/*
 *  This MATLAB mexFunction is for testing only.  It is not meant for
 *  production use.  See csymamdmex.c and csymamd.m instead.
 *
 *  Usage:
 *
 *	[ P, stats ] = csymamdtest (A, knobs, cmember) ;
 *
 *  The knobs and stats vectors are optional:
 *
 *	knobs (1)	dense row/col control. default 10
 *	knobs (2)	spumoni, default 0.
 *	knobs (3)	aggresive absorption if nonzero.  default 1
 *
 *	knobs (4)	for testing only.  Controls how the input matrix is
 *			jumbled prior to calling colamd, to test its error
 *			handling capability.
 */

/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */

#include "ccolamd.h"
#include "mex.h"
#include "matrix.h"
#include <stdlib.h>
#include <string.h>

#ifdef MIN
#undef MIN
#endif
#define MIN(a,b) (((a) < (b)) ? (a) : (b))


static void dump_matrix
(
    int64_t A [ ],
    int64_t p [ ],
    int64_t n_row,
    int64_t n_col,
    int64_t Alen,
    int64_t limit
)
{
    int64_t col, k, row ;

    mexPrintf ("dump matrix: nrow %d ncol %d Alen %d\n", n_row, n_col, Alen) ;

    if (!A)
    {
    	mexPrintf ("A not present\n") ;
	return ;
    }

    if (!p)
    {
    	mexPrintf ("p not present\n") ;
	return ;
    }

    for (col = 0 ; col < MIN (n_col, limit) ; col++)
    {
	mexPrintf ("column %d, p[col] %d, p [col+1] %d, length %d\n",
		col, p [col], p [col+1], p [col+1] - p [col]) ;
    	for (k = p [col] ; k < p [col+1] ; k++)
	{
	    row = A [k] ;
	    mexPrintf (" %d", row) ;
	}
	mexPrintf ("\n") ;
    }
}

/* ========================================================================== */
/* === csymamd mexFunction ================================================== */
/* ========================================================================== */

void mexFunction
(
    /* === Parameters ======================================================= */

    int nargout,		/* number of left-hand sides */
    mxArray *pargout [ ],	/* left-hand side matrices */
    int nargin,			/* number of right--hand sides */
    const mxArray *pargin [ ]	/* right-hand side matrices */
)
{
    /* === Local variables ================================================== */

    int64_t *perm ;         /* column ordering of M and ordering of A */
    int64_t *A ;            /* row indices of input matrix A */
    int64_t *p ;            /* column pointers of input matrix A */
    int64_t n_col ;         /* number of columns of A */
    int64_t n_row ;         /* number of rows of A */
    int full ;              /* TRUE if input matrix full, FALSE if sparse */
    double knobs [CCOLAMD_KNOBS] ; /* ccolamd user-controllable parameters */
    double *out_perm ;      /* output permutation vector */
    double *out_stats ;     /* output stats vector */
    double *in_knobs ;      /* input knobs vector */
    int64_t i ;             /* loop counter */
    mxArray *Ainput ;       /* input matrix handle */
    int spumoni ;           /* verbosity variable */
    int64_t stats2 [CCOLAMD_STATS] ;    /* stats for csymamd */

    int64_t *cp, *cp_end, nnz, col, length ;
    int64_t *stats ;
    int result, ok ;
    stats = stats2 ;

    /* === Check inputs ===================================================== */

    if (nargin != 3 || nargout > 2)
    {
	mexErrMsgTxt (
	"csymamdtest: incorrect number of input and/or output arguments.") ;
    }
    /* for testing we require all 4 knobs */
    if (mxGetNumberOfElements (pargin [1]) != 4)
    {
	mexErrMsgTxt ("csymamdtest: must have 4 knobs for testing") ;
    }

    /* === Get knobs ======================================================== */

    ccolamd_l_set_defaults (knobs) ;
    spumoni = 0 ;

    in_knobs = mxGetPr (pargin [1]) ;

    i = mxGetNumberOfElements (pargin [1]) ;
    knobs [CCOLAMD_DENSE_ROW] = in_knobs [0] ;
    knobs [CCOLAMD_DENSE_COL] = in_knobs [0] ;
    knobs [CCOLAMD_AGGRESSIVE] = (in_knobs [1] != 0) ;
    spumoni = (in_knobs [2] != 0) ;

    /* print knob settings if spumoni is set */
    if (spumoni)
    {
	mexPrintf ("\ncsymamd version %d.%d, %s:\n",
	    CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE) ;
	if (knobs [CCOLAMD_DENSE_ROW] >= 0)
	{
	    mexPrintf ("knobs(1): %g, rows/cols with > "
		"max(16,%g*sqrt(size(A,2))) entries removed\n",
		in_knobs [0], knobs [CCOLAMD_DENSE_ROW]) ;
	}
	else
	{
	    mexPrintf ("knobs(1): %g, no dense rows removed\n",
		in_knobs [0]) ;
	}
	mexPrintf ("knobs(2): %g, aggressive absorption: %s\n",
	    in_knobs [1], (knobs [CCOLAMD_AGGRESSIVE] != 0) ? "yes" : "no") ;
	mexPrintf ("knobs(3): %g, statistics and knobs printed\n",
		in_knobs [2]) ;
	mexPrintf ("Testing: %g\n", in_knobs [3]) ;
    }

    /* === If A is full, convert to a sparse matrix ========================= */

    Ainput = (mxArray *) pargin [0] ;
    if (mxGetNumberOfDimensions (Ainput) != 2)
    {
	mexErrMsgTxt ("csymamd: input matrix must be 2-dimensional.") ;
    }
    full = !mxIsSparse (Ainput) ;
    if (full)
    {
	mexCallMATLAB (1, &Ainput, 1, (mxArray **) pargin, "sparse") ;
    }

    /* === Allocate workspace for csymamd =================================== */

    /* get size of matrix */
    n_row = mxGetM (Ainput) ;
    n_col = mxGetN (Ainput) ;
    if (n_col != n_row)
    {
	mexErrMsgTxt ("csymamd: matrix must be square.") ;
    }

    /* p = mxGetJc (Ainput) ; */
    p = (int64_t *) mxCalloc (n_col+1, sizeof (int64_t)) ;
    (void) memcpy (p, mxGetJc (Ainput), (n_col+1)*sizeof (int64_t)) ;

    nnz = p [n_col] ;
    if (spumoni)
    {
	mexPrintf ("csymamdtest: nnz %d\n", nnz) ;
    }

    /* A = mxGetIr (Ainput) ; */
    A = (int64_t *) mxCalloc (nnz+1, sizeof (int64_t)) ;
    (void) memcpy (A, mxGetIr (Ainput), nnz*sizeof (int64_t)) ;

    perm = (int64_t *) mxCalloc (n_col+1, sizeof (int64_t)) ;

    /* === Jumble matrix ==================================================== */


    /*
	knobs [4]	FOR TESTING ONLY: Specifies how to jumble matrix
			0 : No jumbling
			1 : (no errors)
			2 : Make first pointer non-zero
			3 : Make column pointers not non-decreasing
			4 : (no errors)
			5 : Make row indices not strictly increasing
			6 : Make a row index greater or equal to n_row
			7 : Set A = NULL
			8 : Set p = NULL
			9 : Repeat row index
			10: make row indices not sorted
			11: jumble columns massively (note this changes
				the pattern of the matrix A.)
			12: Set stats = NULL
			13: Make n_col less than zero
    */

    /* jumble appropriately */
    switch ((int) in_knobs [3])
    {

	case 0 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: no errors expected\n") ;
	    }
	    result = 1 ;		/* no errors */
	    break ;

	case 1 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: no errors expected (1)\n") ;
	    }
	    result = 1 ;
	    break ;

	case 2 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: p [0] nonzero\n") ;
	    }
	    result = 0 ;		/* p [0] must be zero */
	    p [0] = 1 ;
	    break ;

	case 3 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: negative length last column\n") ;
	    }
	    result = (n_col == 0) ;	/* p must be monotonically inc. */
	    p [n_col] = p [0] ;
	    break ;

	case 4 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: no errors expected (4)\n") ;
	    }
	    result = 1 ;
	    break ;

	case 5 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: row index out of range (-1)\n") ;
	    }
	    if (nnz > 0)		/* row index out of range */
	    {
		result = 0 ;
		A [nnz-1] = -1 ;
	    }
	    else
	    {
	        if (spumoni)
		{
		    mexPrintf ("Note: no row indices to put out of range\n") ;
		}
		result = 1 ;
	    }
	    break ;

	case 6 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: row index out of range (ncol)\n") ;
	    }
	    if (nnz > 0)		/* row index out of range */
	    {
		result = 0 ;
		A [nnz-1] = n_col ;
	    }
	    else
	    {
	        if (spumoni)
		{
		    mexPrintf ("Note: no row indices to put out of range\n") ;
		}
		result = 1 ;
	    }
	    break ;

	case 7 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: A not present\n") ;
	    }
	    result = 0 ;		/* A not present */
	    A = (int64_t *) NULL ;
	    break ;

	case 8 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: p not present\n") ;
	    }
	    result = 0 ;		/* p not present */
	    p = (int64_t *) NULL ;
	    break ;

	case 9 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: duplicate row index\n") ;
	    }
	    result = 1 ;		/* duplicate row index */

	    for (col = 0 ; col < n_col ; col++)
	    {
		length = p [col+1] - p [col] ;
	    	if (length > 1)
		{
		    A [p [col+1]-2] = A [p [col+1] - 1] ;
		    if (spumoni)
		    {
			mexPrintf ("Made duplicate row %d in col %d\n",
		    	 A [p [col+1] - 1], col) ;
		    }
		    break ;
		}
	    }

	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, col+2) ;
	    }
	    break ;

	case 10 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: unsorted column\n") ;
	    }
	    result = 1 ;		/* jumbled columns */

	    for (col = 0 ; col < n_col ; col++)
	    {
		length = p [col+1] - p [col] ;
	    	if (length > 1)
		{
		    i = A[p [col]] ;
		    A [p [col]] = A[p [col] + 1] ;
		    A [p [col] + 1] = i ;
		    if (spumoni)
		    {
			mexPrintf ("Unsorted column %d \n", col) ;
		    }
		    break ;
		}
	    }

	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, col+2) ;
	    }
	    break ;

	case 11 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: massive jumbling\n") ;
	    }
	    result = 1 ;		/* massive jumbling, but no errors */
	    srand (1) ;
	    for (i = 0 ; i < n_col ; i++)
	    {
		cp = &A [p [i]] ;
		cp_end = &A [p [i+1]] ;
		while (cp < cp_end)
		{
		    *cp++ = rand() % n_row ;
		}
	    }
	    if (spumoni > 1)
	    {
		dump_matrix (A, p, n_row, n_col, nnz, n_col) ;
	    }
	    break ;

	case 12 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: stats not present\n") ;
	    }
	    result = 0 ;		/* stats not present */
	    stats = (int64_t *) NULL ;
	    break ;

	case 13 :
	    if (spumoni)
	    {
		mexPrintf ("csymamdtest: ncol out of range\n") ;
	    }
	    result = 0 ;		/* ncol out of range */
	    n_col = -1 ;
	    break ;

    }

    /* === Order the rows and columns of A (does not destroy A) ============= */

    ok = csymamd_l (n_col, A, p, perm, knobs, stats, &mxCalloc, &mxFree,
	    NULL, -1) ;

    if (full)
    {
	mxDestroyArray (Ainput) ;
    }

    if (spumoni)
    {
	csymamd_l_report (stats) ;
    }

    /* === Return the stats vector ========================================== */

    if (nargout == 2)
    {
	pargout [1] = mxCreateDoubleMatrix (1, CCOLAMD_STATS, mxREAL) ;
	out_stats = mxGetPr (pargout [1]) ;
	for (i = 0 ; i < CCOLAMD_STATS ; i++)
	{
	    out_stats [i] = (stats == NULL) ? (-1) : (stats [i]) ;
	}
	/* fix stats (5) and (6), for 1-based information on jumbled matrix. */
	/* note that this correction doesn't occur if csymamd returns FALSE */
	out_stats [CCOLAMD_INFO1] ++ ; 
	out_stats [CCOLAMD_INFO2] ++ ; 
    }

    mxFree (A) ;

    if (ok)
    {

	/* === Return the permutation vector ================================ */

	pargout [0] = mxCreateDoubleMatrix (1, n_col, mxREAL) ;
	out_perm = mxGetPr (pargout [0]) ;
	for (i = 0 ; i < n_col ; i++)
	{
	    /* csymamd is 0-based, but MATLAB expects this to be 1-based */
	    out_perm [i] = perm [i] + 1 ;
	}
	if (!result)
	{
	    csymamd_l_report (stats) ;
	    mexErrMsgTxt ("csymamd should have returned TRUE\n") ;
	}
    }
    else
    {

	/* return p = -1 if csymamd failed */
	pargout [0] = mxCreateDoubleMatrix (1, 1, mxREAL) ;
	out_perm = mxGetPr (pargout [0]) ;
	out_perm [0] = -1 ;
	if (result)
	{
	    csymamd_l_report (stats) ;
	    mexErrMsgTxt ("csymamd should have returned FALSE\n") ;
	}
    }

    mxFree (p) ;
    mxFree (perm) ;
}