1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
|
//------------------------------------------------------------------------------
// CCOLAMD/Source/ccolamd.c: constrained column ordering
//------------------------------------------------------------------------------
// CCOLAMD, Copyright (c) 2005-2022, Univ. of Florida, All Rights Reserved.
// Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore.
// SPDX-License-Identifier: BSD-3-clause
//------------------------------------------------------------------------------
/*
* ccolamd: a constrained approximate minimum degree column ordering
* algorithm, LU factorization of symmetric or unsymmetric matrices,
* QR factorization, least squares, interior point methods for
* linear programming problems, and other related problems.
*
* csymamd: a constrained approximate minimum degree ordering algorithm for
* Cholesky factorization of symmetric matrices.
*
* Purpose:
*
* CCOLAMD computes a permutation Q such that the Cholesky factorization of
* (AQ)'(AQ) has less fill-in and requires fewer floating point operations
* than A'A. This also provides a good ordering for sparse partial
* pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
* factorization, and P is computed during numerical factorization via
* conventional partial pivoting with row interchanges. CCOLAMD is an
* extension of COLAMD, available as built-in function in MATLAB Version 6,
* available from MathWorks, Inc. (http://www.mathworks.com). This
* routine can be used in place of COLAMD in MATLAB.
*
* CSYMAMD computes a permutation P of a symmetric matrix A such that the
* Cholesky factorization of PAP' has less fill-in and requires fewer
* floating point operations than A. CSYMAMD constructs a matrix M such
* that M'M has the same nonzero pattern of A, and then orders the columns
* of M using colmmd. The column ordering of M is then returned as the
* row and column ordering P of A. CSYMAMD is an extension of SYMAMD.
*
* Authors:
*
* Timothy A. Davis and S. Rajamanickam wrote CCOLAMD, based directly on
* COLAMD by Stefan I. Larimore and Timothy A. Davis, University of
* Florida. The algorithm was developed in collaboration with John
* Gilbert, (UCSB, then at Xerox PARC), and Esmond Ng, (Lawrence Berkeley
* National Lab, then at Oak Ridge National Laboratory).
*
* Acknowledgements:
*
* This work was supported by the National Science Foundation, under
* grants DMS-9504974 and DMS-9803599, CCR-0203270, and a grant from the
* Sandia National Laboratory (Dept. of Energy).
*
* Copyright and License:
*
* Copyright (c) 1998-2022 by the University of Florida.
* All Rights Reserved.
* CCOLAMD is also available under alternate licenses, contact T. Davis
* for details.
*
* See CCOLAMD/Doc/License.txt for the license.
*
* Availability:
*
* The CCOLAMD/CSYMAMD library is available at
*
* http://www.suitesparse.com
*
* See the ChangeLog file for changes since Version 1.0.
*/
/* ========================================================================== */
/* === Description of user-callable routines ================================ */
/* ========================================================================== */
/* CCOLAMD includes both int32_t and int64_t versions of all its routines.
* The description below is for the int32_t version. For int64_t, all
* int32_t arguments become int64_t integers. */
/* ----------------------------------------------------------------------------
* ccolamd_recommended:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
* size_t ccolamd_recommended (int32_t nnz, int32_t n_row, int32_t n_col) ;
* size_t ccolamd_l_recommended (int64_t nnz,
* int64_t n_row, int64_t n_col) ;
*
* Purpose:
*
* Returns recommended value of Alen for use by ccolamd. Returns 0
* if any input argument is negative. The use of this routine
* is optional. Not needed for csymamd, which dynamically allocates
* its own memory.
*
* Arguments (all input arguments):
*
* int32_t nnz ; Number of nonzeros in the matrix A. This must
* be the same value as p [n_col] in the call to
* ccolamd - otherwise you will get a wrong value
* of the recommended memory to use.
*
* int32_t n_row ; Number of rows in the matrix A.
*
* int32_t n_col ; Number of columns in the matrix A.
*
* ----------------------------------------------------------------------------
* ccolamd_set_defaults:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
* ccolamd_set_defaults (double knobs [CCOLAMD_KNOBS]) ;
* ccolamd_l_set_defaults (double knobs [CCOLAMD_KNOBS]) ;
*
* Purpose:
*
* Sets the default parameters. The use of this routine is optional.
* Passing a (double *) NULL pointer for the knobs results in the
* default parameter settings.
*
* Arguments:
*
* double knobs [CCOLAMD_KNOBS] ; Output only.
*
* knobs [0] and knobs [1] behave differently than they did in COLAMD.
* The other knobs are new to CCOLAMD.
*
* knobs [0]: dense row control
*
* For CCOLAMD, rows with more than
* max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n_col))
* entries are removed prior to ordering.
*
* For CSYMAMD, rows and columns with more than
* max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n))
* entries are removed prior to ordering, and placed last in the
* output ordering (subject to the constraints).
*
* If negative, only completely dense rows are removed. If you
* intend to use CCOLAMD for a Cholesky factorization of A*A', set
* knobs [CCOLAMD_DENSE_ROW] to -1, which is more appropriate for
* that case.
*
* Default: 10.
*
* knobs [1]: dense column control
*
* For CCOLAMD, columns with more than
* max (16, knobs [CCOLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
* entries are removed prior to ordering, and placed last in the
* output column ordering (subject to the constraints).
* Not used by CSYMAMD. If negative, only completely dense
* columns are removed. Default: 10.
*
* knobs [2]: aggressive absorption
*
* knobs [CCOLAMD_AGGRESSIVE] controls whether or not to do
* aggressive absorption during the ordering. Default is TRUE
* (nonzero). If zero, no aggressive absorption is performed.
*
* knobs [3]: optimize ordering for LU or Cholesky
*
* knobs [CCOLAMD_LU] controls an option that optimizes the
* ordering for the LU of A or the Cholesky factorization of A'A.
* If TRUE (nonzero), an ordering optimized for LU is performed.
* If FALSE (zero), an ordering for Cholesky is performed.
* Default is FALSE. CSYMAMD ignores this parameter; it always
* orders for Cholesky.
*
* ----------------------------------------------------------------------------
* ccolamd:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
* int ccolamd (int32_t n_row, int32_t n_col, int32_t Alen, int32_t *A,
* int32_t *p, double knobs [CCOLAMD_KNOBS],
* int32_t stats [CCOLAMD_STATS], int32_t *cmember) ;
*
* int64_t ccolamd_l (int64_t n_row,
* int64_t n_col, int64_t Alen,
* int64_t *A, int64_t *p,
* double knobs [CCOLAMD_KNOBS],
* int64_t stats [CCOLAMD_STATS],
* int64_t *cmember) ;
*
* Purpose:
*
* Computes a column ordering (Q) of A such that P(AQ)=LU or
* (AQ)'AQ=LL' have less fill-in and require fewer floating point
* operations than factorizing the unpermuted matrix A or A'A,
* respectively.
*
* Returns:
*
* TRUE (1) if successful, FALSE (0) otherwise.
*
* Arguments (for int32_t version):
*
* int32_t n_row ; Input argument.
*
* Number of rows in the matrix A.
* Restriction: n_row >= 0.
* ccolamd returns FALSE if n_row is negative.
*
* int32_t n_col ; Input argument.
*
* Number of columns in the matrix A.
* Restriction: n_col >= 0.
* ccolamd returns FALSE if n_col is negative.
*
* int32_t Alen ; Input argument.
*
* Restriction (see note):
* Alen >= MAX (2*nnz, 4*n_col) + 17*n_col + 7*n_row + 7, where
* nnz = p [n_col]. ccolamd returns FALSE if this condition is
* not met. We recommend about nnz/5 more space for better
* efficiency. This restriction makes an modest assumption
* regarding the size of two typedef'd structures in ccolamd.h.
* We do, however, guarantee that
*
* Alen >= ccolamd_recommended (nnz, n_row, n_col)
*
* will work efficiently.
*
* int32_t A [Alen] ; Input argument, undefined on output.
*
* A is an integer array of size Alen. Alen must be at least as
* large as the bare minimum value given above, but this is very
* low, and can result in excessive run time. For best
* performance, we recommend that Alen be greater than or equal to
* ccolamd_recommended (nnz, n_row, n_col), which adds
* nnz/5 to the bare minimum value given above.
*
* On input, the row indices of the entries in column c of the
* matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
* in a given column c need not be in ascending order, and
* duplicate row indices may be be present. However, ccolamd will
* work a little faster if both of these conditions are met
* (ccolamd puts the matrix into this format, if it finds that the
* the conditions are not met).
*
* The matrix is 0-based. That is, rows are in the range 0 to
* n_row-1, and columns are in the range 0 to n_col-1. ccolamd
* returns FALSE if any row index is out of range.
*
* The contents of A are modified during ordering, and are
* undefined on output.
*
* int32_t p [n_col+1] ; Both input and output argument.
*
* p is an integer array of size n_col+1. On input, it holds the
* "pointers" for the column form of the matrix A. Column c of
* the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
* entry, p [0], must be zero, and p [c] <= p [c+1] must hold
* for all c in the range 0 to n_col-1. The value nnz = p [n_col]
* is thus the total number of entries in the pattern of the
* matrix A. ccolamd returns FALSE if these conditions are not
* met.
*
* On output, if ccolamd returns TRUE, the array p holds the column
* permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
* the first column index in the new ordering, and p [n_col-1] is
* the last. That is, p [k] = j means that column j of A is the
* kth pivot column, in AQ, where k is in the range 0 to n_col-1
* (p [0] = j means that column j of A is the first column in AQ).
*
* If ccolamd returns FALSE, then no permutation is returned, and
* p is undefined on output.
*
* double knobs [CCOLAMD_KNOBS] ; Input argument.
*
* See ccolamd_set_defaults for a description.
*
* int32_t stats [CCOLAMD_STATS] ; Output argument.
*
* Statistics on the ordering, and error status.
* See ccolamd.h for related definitions.
* ccolamd returns FALSE if stats is not present.
*
* stats [0]: number of dense or empty rows ignored.
*
* stats [1]: number of dense or empty columns ignored (and
* ordered last in the output permutation p, subject to the
* constraints). Note that a row can become "empty" if it
* contains only "dense" and/or "empty" columns, and similarly
* a column can become "empty" if it only contains "dense"
* and/or "empty" rows.
*
* stats [2]: number of garbage collections performed. This can
* be excessively high if Alen is close to the minimum
* required value.
*
* stats [3]: status code. < 0 is an error code.
* > 1 is a warning or notice.
*
* 0 OK. Each column of the input matrix contained row
* indices in increasing order, with no duplicates.
*
* 1 OK, but columns of input matrix were jumbled (unsorted
* columns or duplicate entries). CCOLAMD had to do some
* extra work to sort the matrix first and remove
* duplicate entries, but it still was able to return a
* valid permutation (return value of ccolamd was TRUE).
*
* stats [4]: highest column index of jumbled columns
* stats [5]: last seen duplicate or unsorted row index
* stats [6]: number of duplicate or unsorted row indices
*
* -1 A is a null pointer
*
* -2 p is a null pointer
*
* -3 n_row is negative. stats [4]: n_row
*
* -4 n_col is negative. stats [4]: n_col
*
* -5 number of nonzeros in matrix is negative
*
* stats [4]: number of nonzeros, p [n_col]
*
* -6 p [0] is nonzero
*
* stats [4]: p [0]
*
* -7 A is too small
*
* stats [4]: required size
* stats [5]: actual size (Alen)
*
* -8 a column has a negative number of entries
*
* stats [4]: column with < 0 entries
* stats [5]: number of entries in col
*
* -9 a row index is out of bounds
*
* stats [4]: column with bad row index
* stats [5]: bad row index
* stats [6]: n_row, # of rows of matrx
*
* -10 (unused; see csymamd)
*
* int32_t cmember [n_col] ; Input argument.
*
* cmember is new to CCOLAMD. It did not appear in COLAMD.
* It places contraints on the output ordering. s = cmember [j]
* gives the constraint set s that contains the column j
* (Restriction: 0 <= s < n_col). In the output column
* permutation, all columns in set 0 appear first, followed by
* all columns in set 1, and so on. If NULL, all columns are
* treated as if they were in a single constraint set, and you
* will obtain the same ordering as COLAMD (with one exception:
* the dense row/column threshold and other default knobs in
* CCOLAMD and COLAMD are different).
*
* Example:
*
* See ccolamd_example.c for a complete example.
*
* To order the columns of a 5-by-4 matrix with 11 nonzero entries in
* the following nonzero pattern
*
* x 0 x 0
* x 0 x x
* 0 x x 0
* 0 0 x x
* x x 0 0
*
* with default knobs, no output statistics, and no ordering
* constraints, do the following:
*
* #include "ccolamd.h"
* #define ALEN 144
* int32_t A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
* int32_t p [ ] = {0, 3, 5, 9, 11} ;
* int32_t stats [CCOLAMD_STATS] ;
* ccolamd (5, 4, ALEN, A, p, (double *) NULL, stats, NULL) ;
*
* The permutation is returned in the array p, and A is destroyed.
*
* ----------------------------------------------------------------------------
* csymamd:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
*
* int csymamd (int32_t n, int32_t *A, int32_t *p, int32_t *perm,
* double knobs [CCOLAMD_KNOBS], int32_t stats [CCOLAMD_STATS],
* void (*allocate) (size_t, size_t), void (*release) (void *),
* int32_t *cmember, int32_t stype) ;
*
* int64_t csymamd_l (int64_t n,
* int64_t *A, int64_t *p,
* int64_t *perm, double knobs [CCOLAMD_KNOBS],
* int64_t stats [CCOLAMD_STATS], void (*allocate)
* (size_t, size_t), void (*release) (void *),
* int64_t *cmember, int64_t stype) ;
*
* Purpose:
*
* The csymamd routine computes an ordering P of a symmetric sparse
* matrix A such that the Cholesky factorization PAP' = LL' remains
* sparse. It is based on a column ordering of a matrix M constructed
* so that the nonzero pattern of M'M is the same as A. Either the
* lower or upper triangular part of A can be used, or the pattern
* A+A' can be used. You must pass your selected memory allocator
* (usually calloc/free or mxCalloc/mxFree) to csymamd, for it to
* allocate memory for the temporary matrix M.
*
* Returns:
*
* TRUE (1) if successful, FALSE (0) otherwise.
*
* Arguments:
*
* int32_t n ; Input argument.
*
* Number of rows and columns in the symmetrix matrix A.
* Restriction: n >= 0.
* csymamd returns FALSE if n is negative.
*
* int32_t A [nnz] ; Input argument.
*
* A is an integer array of size nnz, where nnz = p [n].
*
* The row indices of the entries in column c of the matrix are
* held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
* given column c need not be in ascending order, and duplicate
* row indices may be present. However, csymamd will run faster
* if the columns are in sorted order with no duplicate entries.
*
* The matrix is 0-based. That is, rows are in the range 0 to
* n-1, and columns are in the range 0 to n-1. csymamd
* returns FALSE if any row index is out of range.
*
* The contents of A are not modified.
*
* int32_t p [n+1] ; Input argument.
*
* p is an integer array of size n+1. On input, it holds the
* "pointers" for the column form of the matrix A. Column c of
* the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
* entry, p [0], must be zero, and p [c] <= p [c+1] must hold
* for all c in the range 0 to n-1. The value p [n] is
* thus the total number of entries in the pattern of the matrix A.
* csymamd returns FALSE if these conditions are not met.
*
* The contents of p are not modified.
*
* int32_t perm [n+1] ; Output argument.
*
* On output, if csymamd returns TRUE, the array perm holds the
* permutation P, where perm [0] is the first index in the new
* ordering, and perm [n-1] is the last. That is, perm [k] = j
* means that row and column j of A is the kth column in PAP',
* where k is in the range 0 to n-1 (perm [0] = j means
* that row and column j of A are the first row and column in
* PAP'). The array is used as a workspace during the ordering,
* which is why it must be of length n+1, not just n.
*
* double knobs [CCOLAMD_KNOBS] ; Input argument.
*
* See colamd_set_defaults for a description.
*
* int32_t stats [CCOLAMD_STATS] ; Output argument.
*
* Statistics on the ordering, and error status.
* See ccolamd.h for related definitions.
* csymand returns FALSE if stats is not present.
*
* stats [0]: number of dense or empty row and columns ignored
* (and ordered last in the output permutation perm, subject
* to the constraints). Note that a row/column can become
* "empty" if it contains only "dense" and/or "empty"
* columns/rows.
*
* stats [1]: (same as stats [0])
*
* stats [2]: number of garbage collections performed.
*
* stats [3]: status code. < 0 is an error code.
* > 1 is a warning or notice.
*
* 0 to -9: same as ccolamd, with n replacing n_col and n_row,
* and -3 and -7 are unused.
*
* -10 out of memory (unable to allocate temporary workspace
* for M or count arrays using the "allocate" routine
* passed into csymamd).
*
* void * (*allocate) (size_t, size_t)
*
* A pointer to a function providing memory allocation. The
* allocated memory must be returned initialized to zero. For a
* C application, this argument should normally be a pointer to
* calloc. For a MATLAB mexFunction, the routine mxCalloc is
* passed instead.
*
* void (*release) (size_t, size_t)
*
* A pointer to a function that frees memory allocated by the
* memory allocation routine above. For a C application, this
* argument should normally be a pointer to free. For a MATLAB
* mexFunction, the routine mxFree is passed instead.
*
* int32_t cmember [n] ; Input argument.
*
* Same as ccolamd, except that cmember is of size n, and it places
* contraints symmetrically, on both the row and column ordering.
* Entries in cmember must be in the range 0 to n-1.
*
* int32_t stype ; Input argument.
*
* If stype < 0, then only the strictly lower triangular part of
* A is accessed. The upper triangular part is assumed to be the
* transpose of the lower triangular part. This is the same as
* SYMAMD, which did not have an stype parameter.
*
* If stype > 0, only the strictly upper triangular part of A is
* accessed. The lower triangular part is assumed to be the
* transpose of the upper triangular part.
*
* If stype == 0, then the nonzero pattern of A+A' is ordered.
*
* ----------------------------------------------------------------------------
* ccolamd_report:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
* ccolamd_report (int32_t stats [CCOLAMD_STATS]) ;
* ccolamd_l_report (int64_t stats [CCOLAMD_STATS]) ;
*
* Purpose:
*
* Prints the error status and statistics recorded in the stats
* array on the standard error output (for a standard C routine)
* or on the MATLAB output (for a mexFunction).
*
* Arguments:
*
* int32_t stats [CCOLAMD_STATS] ; Input only. Statistics from ccolamd.
*
*
* ----------------------------------------------------------------------------
* csymamd_report:
* ----------------------------------------------------------------------------
*
* C syntax:
*
* #include "ccolamd.h"
* csymamd_report (int32_t stats [CCOLAMD_STATS]) ;
* csymamd_l_report (int64_t stats [CCOLAMD_STATS]) ;
*
* Purpose:
*
* Prints the error status and statistics recorded in the stats
* array on the standard error output (for a standard C routine)
* or on the MATLAB output (for a mexFunction).
*
* Arguments:
*
* int32_t stats [CCOLAMD_STATS] ; Input only. Statistics from csymamd.
*
*/
/* ========================================================================== */
/* === Scaffolding code definitions ======================================== */
/* ========================================================================== */
/* Ensure that debugging is turned off: */
#ifndef NDEBUG
#define NDEBUG
#endif
/* turn on debugging by uncommenting the following line
#undef NDEBUG
*/
/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */
#include "ccolamd.h"
#ifndef NULL
#define NULL ((void *) 0)
#endif
/* ========================================================================== */
/* === int32_t or int64_t ============================================== */
/* ========================================================================== */
#ifdef DLONG
#define Int int64_t
#define UInt uint64_t
#define ID "%" PRId64
#define Int_MAX INT64_MAX
#define CCOLAMD_recommended ccolamd_l_recommended
#define CCOLAMD_set_defaults ccolamd_l_set_defaults
#define CCOLAMD_2 ccolamd2_l
#define CCOLAMD_MAIN ccolamd_l
#define CCOLAMD_apply_order ccolamd_l_apply_order
#define CCOLAMD_postorder ccolamd_l_postorder
#define CCOLAMD_post_tree ccolamd_l_post_tree
#define CCOLAMD_fsize ccolamd_l_fsize
#define CSYMAMD_MAIN csymamd_l
#define CCOLAMD_report ccolamd_l_report
#define CSYMAMD_report csymamd_l_report
#else
#define Int int32_t
#define UInt uint32_t
#define ID "%d"
#define Int_MAX INT32_MAX
#define CCOLAMD_recommended ccolamd_recommended
#define CCOLAMD_set_defaults ccolamd_set_defaults
#define CCOLAMD_2 ccolamd2
#define CCOLAMD_MAIN ccolamd
#define CCOLAMD_apply_order ccolamd_apply_order
#define CCOLAMD_postorder ccolamd_postorder
#define CCOLAMD_post_tree ccolamd_post_tree
#define CCOLAMD_fsize ccolamd_fsize
#define CSYMAMD_MAIN csymamd
#define CCOLAMD_report ccolamd_report
#define CSYMAMD_report csymamd_report
#endif
/* ========================================================================== */
/* === Row and Column structures ============================================ */
/* ========================================================================== */
typedef struct CColamd_Col_struct
{
/* size of this struct is 8 integers if no padding occurs */
Int start ; /* index for A of first row in this column, or DEAD */
/* if column is dead */
Int length ; /* number of rows in this column */
union
{
Int thickness ; /* number of original columns represented by this */
/* col, if the column is alive */
Int parent ; /* parent in parent tree super-column structure, if */
/* the column is dead */
} shared1 ;
union
{
Int score ;
Int order ;
} shared2 ;
union
{
Int headhash ; /* head of a hash bucket, if col is at the head of */
/* a degree list */
Int hash ; /* hash value, if col is not in a degree list */
Int prev ; /* previous column in degree list, if col is in a */
/* degree list (but not at the head of a degree list) */
} shared3 ;
union
{
Int degree_next ; /* next column, if col is in a degree list */
Int hash_next ; /* next column, if col is in a hash list */
} shared4 ;
Int nextcol ; /* next column in this supercolumn */
Int lastcol ; /* last column in this supercolumn */
} CColamd_Col ;
typedef struct CColamd_Row_struct
{
/* size of this struct is 6 integers if no padding occurs */
Int start ; /* index for A of first col in this row */
Int length ; /* number of principal columns in this row */
union
{
Int degree ; /* number of principal & non-principal columns in row */
Int p ; /* used as a row pointer in init_rows_cols () */
} shared1 ;
union
{
Int mark ; /* for computing set differences and marking dead rows*/
Int first_column ;/* first column in row (used in garbage collection) */
} shared2 ;
Int thickness ; /* number of original rows represented by this row */
/* that are not yet pivotal */
Int front ; /* -1 if an original row */
/* k if this row represents the kth frontal matrix */
/* where k goes from 0 to at most n_col-1 */
} CColamd_Row ;
/* ========================================================================== */
/* === basic definitions ==================================================== */
/* ========================================================================== */
#define EMPTY (-1)
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
/* Routines are either public (user-callable) or PRIVATE (not user-callable) */
#define PRIVATE static
#define DENSE_DEGREE(alpha,n) \
((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
#define CMEMBER(c) ((cmember == (Int *) NULL) ? (0) : (cmember [c]))
/* True if x is NaN */
#define SCALAR_IS_NAN(x) ((x) != (x))
/* true if an integer (stored in double x) would overflow (or if x is NaN) */
#define INT_OVERFLOW(x) ((!((x) * (1.0+1e-8) <= (double) Int_MAX)) \
|| SCALAR_IS_NAN (x))
#define ONES_COMPLEMENT(r) (-(r)-1)
#undef TRUE
#undef FALSE
#define TRUE (1)
#define FALSE (0)
/* Row and column status */
#define ALIVE (0)
#define DEAD (-1)
/* Column status */
#define DEAD_PRINCIPAL (-1)
#define DEAD_NON_PRINCIPAL (-2)
/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
/* ========================================================================== */
/* === ccolamd reporting mechanism ========================================== */
/* ========================================================================== */
#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
#define INDEX(i) ((i)+1)
#else
/* In C, matrices are 0-based and indices are reported as such in *_report */
#define INDEX(i) (i)
#endif
/* ========================================================================== */
/* === Debugging prototypes and definitions ================================= */
/* ========================================================================== */
#ifndef NDEBUG
#include <assert.h>
/* debug print level, present only when debugging */
PRIVATE Int ccolamd_debug ;
/* debug print statements */
#define DEBUG0(params) { SUITESPARSE_PRINTF (params) ; }
#define DEBUG1(params) { if (ccolamd_debug >= 1) SUITESPARSE_PRINTF (params) ; }
#define DEBUG2(params) { if (ccolamd_debug >= 2) SUITESPARSE_PRINTF (params) ; }
#define DEBUG3(params) { if (ccolamd_debug >= 3) SUITESPARSE_PRINTF (params) ; }
#define DEBUG4(params) { if (ccolamd_debug >= 4) SUITESPARSE_PRINTF (params) ; }
#ifdef MATLAB_MEX_FILE
#define ASSERT(expression) (mxAssert ((expression), ""))
#else
#define ASSERT(expression) (assert (expression))
#endif
PRIVATE void ccolamd_get_debug
(
char *method
) ;
PRIVATE void debug_mark
(
Int n_row,
CColamd_Row Row [],
Int tag_mark,
Int max_mark
) ;
PRIVATE void debug_matrix
(
Int n_row,
Int n_col,
CColamd_Row Row [],
CColamd_Col Col [],
Int A []
) ;
PRIVATE void debug_structures
(
Int n_row,
Int n_col,
CColamd_Row Row [],
CColamd_Col Col [],
Int A [],
Int in_cset [],
Int cset_start []
) ;
PRIVATE void dump_super
(
Int super_c,
CColamd_Col Col [],
Int n_col
) ;
PRIVATE void debug_deg_lists
(
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int head [ ],
Int min_score,
Int should,
Int max_deg
) ;
#else
/* === No debugging ========================================================= */
#define DEBUG0(params) ;
#define DEBUG1(params) ;
#define DEBUG2(params) ;
#define DEBUG3(params) ;
#define DEBUG4(params) ;
#define ASSERT(expression)
#endif
/* ========================================================================== */
/* === Prototypes of PRIVATE routines ======================================= */
/* ========================================================================== */
PRIVATE Int init_rows_cols
(
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ],
Int p [ ],
Int stats [CCOLAMD_STATS]
) ;
PRIVATE void init_scoring
(
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ],
Int head [ ],
double knobs [CCOLAMD_KNOBS],
Int *p_n_row2,
Int *p_n_col2,
Int *p_max_deg,
Int cmember [ ],
Int n_cset,
Int cset_start [ ],
Int dead_cols [ ],
Int *p_ndense_row, /* number of dense rows */
Int *p_nempty_row, /* number of original empty rows */
Int *p_nnewlyempty_row, /* number of newly empty rows */
Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */
Int *p_nempty_col, /* number of original empty cols */
Int *p_nnewlyempty_col /* number of newly empty cols */
) ;
PRIVATE Int find_ordering
(
Int n_row,
Int n_col,
Int Alen,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ],
Int head [ ],
#ifndef NDEBUG
Int n_col2,
#endif
Int max_deg,
Int pfree,
Int cset [ ],
Int cset_start [ ],
#ifndef NDEBUG
Int n_cset,
#endif
Int cmember [ ],
Int Front_npivcol [ ],
Int Front_nrows [ ],
Int Front_ncols [ ],
Int Front_parent [ ],
Int Front_cols [ ],
Int *p_nfr,
Int aggressive,
Int InFront [ ],
Int order_for_lu
) ;
PRIVATE void detect_super_cols
(
#ifndef NDEBUG
Int n_col,
CColamd_Row Row [ ],
#endif
CColamd_Col Col [ ],
Int A [ ],
Int head [ ],
Int row_start,
Int row_length,
Int in_set [ ]
) ;
PRIVATE Int garbage_collection
(
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ],
Int *pfree
) ;
PRIVATE Int clear_mark
(
Int tag_mark,
Int max_mark,
Int n_row,
CColamd_Row Row [ ]
) ;
PRIVATE void print_report
(
char *method,
Int stats [CCOLAMD_STATS]
) ;
/* ========================================================================== */
/* === USER-CALLABLE ROUTINES: ============================================== */
/* ========================================================================== */
/* ========================================================================== */
/* === ccolamd_recommended ================================================== */
/* ========================================================================== */
/*
* The ccolamd_recommended routine returns the suggested size for Alen. This
* value has been determined to provide good balance between the number of
* garbage collections and the memory requirements for ccolamd. If any
* argument is negative, or if integer overflow occurs, a 0 is returned as
* an error condition.
*
* 2*nnz space is required for the row and column indices of the matrix
* (or 4*n_col, which ever is larger).
*
* CCOLAMD_C (n_col) + CCOLAMD_R (n_row) space is required for the Col and Row
* arrays, respectively, which are internal to ccolamd. This is equal to
* 8*n_col + 6*n_row if the structures are not padded.
*
* An additional n_col space is the minimal amount of "elbow room",
* and nnz/5 more space is recommended for run time efficiency.
*
* The remaining (((3 * n_col) + 1) + 5 * (n_col + 1) + n_row) space is
* for other workspace used in ccolamd which did not appear in colamd.
*/
/* add two values of type size_t, and check for integer overflow */
static size_t t_add (size_t a, size_t b, int *ok)
{
(*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
return ((*ok) ? (a + b) : 0) ;
}
/* compute a*k where k is a small integer, and check for integer overflow */
static size_t t_mult (size_t a, size_t k, int *ok)
{
size_t i, s = 0 ;
for (i = 0 ; i < k ; i++)
{
s = t_add (s, a, ok) ;
}
return (s) ;
}
/* size of the Col and Row structures */
#define CCOLAMD_C(n_col,ok) \
((t_mult (t_add (n_col, 1, ok), sizeof (CColamd_Col), ok) / sizeof (Int)))
#define CCOLAMD_R(n_row,ok) \
((t_mult (t_add (n_row, 1, ok), sizeof (CColamd_Row), ok) / sizeof (Int)))
/*
#define CCOLAMD_RECOMMENDED(nnz, n_row, n_col) \
MAX (2 * nnz, 4 * n_col) + \
CCOLAMD_C (n_col) + CCOLAMD_R (n_row) + n_col + (nnz / 5) \
+ ((3 * n_col) + 1) + 5 * (n_col + 1) + n_row
*/
static size_t ccolamd_need (Int nnz, Int n_row, Int n_col, int *ok)
{
/* ccolamd_need, compute the following, and check for integer overflow:
need = MAX (2*nnz, 4*n_col) + n_col +
Col_size + Row_size +
(3*n_col+1) + (5*(n_col+1)) + n_row ;
*/
size_t s, c, r, t ;
/* MAX (2*nnz, 4*n_col) */
s = t_mult (nnz, 2, ok) ; /* 2*nnz */
t = t_mult (n_col, 4, ok) ; /* 4*n_col */
s = MAX (s,t) ;
s = t_add (s, n_col, ok) ; /* bare minimum elbow room */
/* Col and Row arrays */
c = CCOLAMD_C (n_col, ok) ; /* size of column structures */
r = CCOLAMD_R (n_row, ok) ; /* size of row structures */
s = t_add (s, c, ok) ;
s = t_add (s, r, ok) ;
c = t_mult (n_col, 3, ok) ; /* 3*n_col + 1 */
c = t_add (c, 1, ok) ;
s = t_add (s, c, ok) ;
c = t_add (n_col, 1, ok) ; /* 5 * (n_col + 1) */
c = t_mult (c, 5, ok) ;
s = t_add (s, c, ok) ;
s = t_add (s, n_row, ok) ; /* n_row */
return (ok ? s : 0) ;
}
size_t CCOLAMD_recommended /* returns recommended value of Alen. */
(
/* === Parameters ======================================================= */
Int nnz, /* number of nonzeros in A */
Int n_row, /* number of rows in A */
Int n_col /* number of columns in A */
)
{
size_t s ;
int ok = TRUE ;
if (nnz < 0 || n_row < 0 || n_col < 0)
{
return (0) ;
}
s = ccolamd_need (nnz, n_row, n_col, &ok) ; /* bare minimum needed */
s = t_add (s, nnz/5, &ok) ; /* extra elbow room */
return (ok ? s : 0) ;
}
/* ========================================================================== */
/* === ccolamd_set_defaults ================================================= */
/* ========================================================================== */
/*
* The ccolamd_set_defaults routine sets the default values of the user-
* controllable parameters for ccolamd.
*/
void CCOLAMD_set_defaults
(
/* === Parameters ======================================================= */
double knobs [CCOLAMD_KNOBS] /* knob array */
)
{
/* === Local variables ================================================== */
Int i ;
if (!knobs)
{
return ; /* no knobs to initialize */
}
for (i = 0 ; i < CCOLAMD_KNOBS ; i++)
{
knobs [i] = 0 ;
}
knobs [CCOLAMD_DENSE_ROW] = 10 ;
knobs [CCOLAMD_DENSE_COL] = 10 ;
knobs [CCOLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
knobs [CCOLAMD_LU] = FALSE ; /* default: order for Cholesky */
}
/* ========================================================================== */
/* === symamd =============================================================== */
/* ========================================================================== */
int CSYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
(
/* === Parameters ======================================================= */
Int n, /* number of rows and columns of A */
Int A [ ], /* row indices of A */
Int p [ ], /* column pointers of A */
Int perm [ ], /* output permutation, size n+1 */
double knobs [CCOLAMD_KNOBS], /* parameters (uses defaults if NULL) */
Int stats [CCOLAMD_STATS], /* output statistics and error codes */
void * (*allocate) (size_t, size_t),/* pointer to calloc (ANSI C) or */
/* mxCalloc (for MATLAB mexFunction) */
void (*release) (void *), /* pointer to free (ANSI C) or */
/* mxFree (for MATLAB mexFunction) */
Int cmember [ ], /* constraint set */
Int stype /* stype of A */
)
{
/* === Local variables ================================================== */
double cknobs [CCOLAMD_KNOBS] ;
double default_knobs [CCOLAMD_KNOBS] ;
Int *count ; /* length of each column of M, and col pointer*/
Int *mark ; /* mark array for finding duplicate entries */
Int *M ; /* row indices of matrix M */
size_t Mlen ; /* length of M */
Int n_row ; /* number of rows in M */
Int nnz ; /* number of entries in A */
Int i ; /* row index of A */
Int j ; /* column index of A */
Int k ; /* row index of M */
Int mnz ; /* number of nonzeros in M */
Int pp ; /* index into a column of A */
Int last_row ; /* last row seen in the current column */
Int length ; /* number of nonzeros in a column */
Int both ; /* TRUE if ordering A+A' */
Int upper ; /* TRUE if ordering triu(A)+triu(A)' */
Int lower ; /* TRUE if ordering tril(A)+tril(A)' */
#ifndef NDEBUG
ccolamd_get_debug ("csymamd") ;
#endif
both = (stype == 0) ;
upper = (stype > 0) ;
lower = (stype < 0) ;
/* === Check the input arguments ======================================== */
if (!stats)
{
DEBUG1 (("csymamd: stats not present\n")) ;
return (FALSE) ;
}
for (i = 0 ; i < CCOLAMD_STATS ; i++)
{
stats [i] = 0 ;
}
stats [CCOLAMD_STATUS] = CCOLAMD_OK ;
stats [CCOLAMD_INFO1] = -1 ;
stats [CCOLAMD_INFO2] = -1 ;
if (!A)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_not_present ;
DEBUG1 (("csymamd: A not present\n")) ;
return (FALSE) ;
}
if (!p) /* p is not present */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p_not_present ;
DEBUG1 (("csymamd: p not present\n")) ;
return (FALSE) ;
}
if (n < 0) /* n must be >= 0 */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ;
stats [CCOLAMD_INFO1] = n ;
DEBUG1 (("csymamd: n negative "ID" \n", n)) ;
return (FALSE) ;
}
nnz = p [n] ;
if (nnz < 0) /* nnz must be >= 0 */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ;
stats [CCOLAMD_INFO1] = nnz ;
DEBUG1 (("csymamd: number of entries negative "ID" \n", nnz)) ;
return (FALSE) ;
}
if (p [0] != 0)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ;
stats [CCOLAMD_INFO1] = p [0] ;
DEBUG1 (("csymamd: p[0] not zero "ID"\n", p [0])) ;
return (FALSE) ;
}
/* === If no knobs, set default knobs =================================== */
if (!knobs)
{
CCOLAMD_set_defaults (default_knobs) ;
knobs = default_knobs ;
}
/* === Allocate count and mark ========================================== */
count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
if (!count)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
DEBUG1 (("csymamd: allocate count (size "ID") failed\n", n+1)) ;
return (FALSE) ;
}
mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
if (!mark)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
(*release) ((void *) count) ;
DEBUG1 (("csymamd: allocate mark (size "ID") failed\n", n+1)) ;
return (FALSE) ;
}
/* === Compute column counts of M, check if A is valid ================== */
stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
for (i = 0 ; i < n ; i++)
{
mark [i] = -1 ;
}
for (j = 0 ; j < n ; j++)
{
last_row = -1 ;
length = p [j+1] - p [j] ;
if (length < 0)
{
/* column pointers must be non-decreasing */
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ;
stats [CCOLAMD_INFO1] = j ;
stats [CCOLAMD_INFO2] = length ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG1 (("csymamd: col "ID" negative length "ID"\n", j, length)) ;
return (FALSE) ;
}
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
if (i < 0 || i >= n)
{
/* row index i, in column j, is out of bounds */
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ;
stats [CCOLAMD_INFO1] = j ;
stats [CCOLAMD_INFO2] = i ;
stats [CCOLAMD_INFO3] = n ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG1 (("csymamd: row "ID" col "ID" out of bounds\n", i, j)) ;
return (FALSE) ;
}
if (i <= last_row || mark [i] == j)
{
/* row index is unsorted or repeated (or both), thus col */
/* is jumbled. This is a notice, not an error condition. */
stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ;
stats [CCOLAMD_INFO1] = j ;
stats [CCOLAMD_INFO2] = i ;
(stats [CCOLAMD_INFO3]) ++ ;
DEBUG1 (("csymamd: row "ID" col "ID" unsorted/dupl.\n", i, j)) ;
}
if (mark [i] != j)
{
if ((both && i != j) || (lower && i > j) || (upper && i < j))
{
/* row k of M will contain column indices i and j */
count [i]++ ;
count [j]++ ;
}
}
/* mark the row as having been seen in this column */
mark [i] = j ;
last_row = i ;
}
}
/* === Compute column pointers of M ===================================== */
/* use output permutation, perm, for column pointers of M */
perm [0] = 0 ;
for (j = 1 ; j <= n ; j++)
{
perm [j] = perm [j-1] + count [j-1] ;
}
for (j = 0 ; j < n ; j++)
{
count [j] = perm [j] ;
}
/* === Construct M ====================================================== */
mnz = perm [n] ;
n_row = mnz / 2 ;
Mlen = CCOLAMD_recommended (mnz, n_row, n) ;
M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
DEBUG1 (("csymamd: M is "ID"-by-"ID" with "ID" entries, Mlen = %g\n",
n_row, n, mnz, (double) Mlen)) ;
if (!M)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG1 (("csymamd: allocate M (size %g) failed\n", (double) Mlen)) ;
return (FALSE) ;
}
k = 0 ;
if (stats [CCOLAMD_STATUS] == CCOLAMD_OK)
{
/* Matrix is OK */
for (j = 0 ; j < n ; j++)
{
ASSERT (p [j+1] - p [j] >= 0) ;
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
ASSERT (i >= 0 && i < n) ;
if ((both && i != j) || (lower && i > j) || (upper && i < j))
{
/* row k of M contains column indices i and j */
M [count [i]++] = k ;
M [count [j]++] = k ;
k++ ;
}
}
}
}
else
{
/* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
DEBUG1 (("csymamd: Duplicates in A.\n")) ;
for (i = 0 ; i < n ; i++)
{
mark [i] = -1 ;
}
for (j = 0 ; j < n ; j++)
{
ASSERT (p [j+1] - p [j] >= 0) ;
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
ASSERT (i >= 0 && i < n) ;
if (mark [i] != j)
{
if ((both && i != j) || (lower && i > j) || (upper && i<j))
{
/* row k of M contains column indices i and j */
M [count [i]++] = k ;
M [count [j]++] = k ;
k++ ;
mark [i] = j ;
}
}
}
}
}
/* count and mark no longer needed */
(*release) ((void *) mark) ;
(*release) ((void *) count) ;
ASSERT (k == n_row) ;
/* === Adjust the knobs for M =========================================== */
for (i = 0 ; i < CCOLAMD_KNOBS ; i++)
{
cknobs [i] = knobs [i] ;
}
/* there are no dense rows in M */
cknobs [CCOLAMD_DENSE_ROW] = -1 ;
cknobs [CCOLAMD_DENSE_COL] = knobs [CCOLAMD_DENSE_ROW] ;
/* ensure CCSYMAMD orders for Cholesky, not LU */
cknobs [CCOLAMD_LU] = FALSE ;
/* === Order the columns of M =========================================== */
(void) CCOLAMD_2 (n_row, n, (Int) Mlen, M, perm, cknobs, stats,
(Int *) NULL, (Int *) NULL, (Int *) NULL, (Int *) NULL,
(Int *) NULL, (Int *) NULL, (Int *) NULL, cmember) ;
/* === adjust statistics ================================================ */
/* a dense column in ccolamd means a dense row and col in csymamd */
stats [CCOLAMD_DENSE_ROW] = stats [CCOLAMD_DENSE_COL] ;
/* === Free M =========================================================== */
(*release) ((void *) M) ;
DEBUG1 (("csymamd: done.\n")) ;
return (TRUE) ;
}
/* ========================================================================== */
/* === ccolamd ============================================================== */
/* ========================================================================== */
/*
* The colamd routine computes a column ordering Q of a sparse matrix
* A such that the LU factorization P(AQ) = LU remains sparse, where P is
* selected via partial pivoting. The routine can also be viewed as
* providing a permutation Q such that the Cholesky factorization
* (AQ)'(AQ) = LL' remains sparse.
*/
int CCOLAMD_MAIN
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows in A */
Int n_col, /* number of columns in A */
Int Alen, /* length of A */
Int A [ ], /* row indices of A */
Int p [ ], /* pointers to columns in A */
double knobs [CCOLAMD_KNOBS],/* parameters (uses defaults if NULL) */
Int stats [CCOLAMD_STATS], /* output statistics and error codes */
Int cmember [ ] /* constraint set of A */
)
{
return (CCOLAMD_2 (n_row, n_col, Alen, A, p, knobs, stats,
(Int *) NULL, (Int *) NULL, (Int *) NULL, (Int *) NULL,
(Int *) NULL, (Int *) NULL, (Int *) NULL, cmember)) ;
}
/* ========================================================================== */
/* === ccolamd2 ============================================================= */
/* ========================================================================== */
/* Identical to ccolamd, except that additional information about each frontal
* matrix is returned to the caller. Not intended to be directly called by
* the user.
*/
int CCOLAMD_2 /* returns TRUE if successful, FALSE otherwise */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows in A */
Int n_col, /* number of columns in A */
Int Alen, /* length of A */
Int A [ ], /* row indices of A */
Int p [ ], /* pointers to columns in A */
double knobs [CCOLAMD_KNOBS],/* parameters (uses defaults if NULL) */
Int stats [CCOLAMD_STATS], /* output statistics and error codes */
/* each Front array is of size n_col+1. */
Int Front_npivcol [ ], /* # pivot cols in each front */
Int Front_nrows [ ], /* # of rows in each front (incl. pivot rows) */
Int Front_ncols [ ], /* # of cols in each front (incl. pivot cols) */
Int Front_parent [ ], /* parent of each front */
Int Front_cols [ ], /* link list of pivot columns for each front */
Int *p_nfr, /* total number of frontal matrices */
Int InFront [ ], /* InFront [row] = f if the original row was
* absorbed into front f. EMPTY if the row was
* empty, dense, or not absorbed. This array
* has size n_row+1 */
Int cmember [ ] /* constraint set of A */
)
{
/* === Local variables ================================================== */
Int i ; /* loop index */
Int nnz ; /* nonzeros in A */
size_t Row_size ; /* size of Row [ ], in integers */
size_t Col_size ; /* size of Col [ ], in integers */
size_t need ; /* minimum required length of A */
CColamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
CColamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
Int n_col2 ; /* number of non-dense, non-empty columns */
Int n_row2 ; /* number of non-dense, non-empty rows */
Int ngarbage ; /* number of garbage collections performed */
Int max_deg ; /* maximum row degree */
double default_knobs [CCOLAMD_KNOBS] ; /* default knobs array */
Int n_cset ; /* number of constraint sets */
Int *cset ; /* cset of A */
Int *cset_start ; /* pointer into cset */
Int *temp_cstart ; /* temp pointer to start of cset */
Int *csize ; /* temp pointer to cset size */
Int ap ; /* column index */
Int order_for_lu ; /* TRUE: order for LU, FALSE: for Cholesky */
Int ndense_row, nempty_row, parent, ndense_col,
nempty_col, k, col, nfr, *Front_child, *Front_sibling, *Front_stack,
*Front_order, *Front_size ;
Int nnewlyempty_col, nnewlyempty_row ;
Int aggressive ;
Int row ;
Int *dead_cols ;
Int set1 ;
Int set2 ;
Int cs ;
int ok ;
#ifndef NDEBUG
ccolamd_get_debug ("ccolamd") ;
#endif
/* === Check the input arguments ======================================== */
if (!stats)
{
DEBUG1 (("ccolamd: stats not present\n")) ;
return (FALSE) ;
}
for (i = 0 ; i < CCOLAMD_STATS ; i++)
{
stats [i] = 0 ;
}
stats [CCOLAMD_STATUS] = CCOLAMD_OK ;
stats [CCOLAMD_INFO1] = -1 ;
stats [CCOLAMD_INFO2] = -1 ;
if (!A) /* A is not present */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_not_present ;
DEBUG1 (("ccolamd: A not present\n")) ;
return (FALSE) ;
}
if (!p) /* p is not present */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p_not_present ;
DEBUG1 (("ccolamd: p not present\n")) ;
return (FALSE) ;
}
if (n_row < 0) /* n_row must be >= 0 */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nrow_negative ;
stats [CCOLAMD_INFO1] = n_row ;
DEBUG1 (("ccolamd: nrow negative "ID"\n", n_row)) ;
return (FALSE) ;
}
if (n_col < 0) /* n_col must be >= 0 */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ;
stats [CCOLAMD_INFO1] = n_col ;
DEBUG1 (("ccolamd: ncol negative "ID"\n", n_col)) ;
return (FALSE) ;
}
nnz = p [n_col] ;
if (nnz < 0) /* nnz must be >= 0 */
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ;
stats [CCOLAMD_INFO1] = nnz ;
DEBUG1 (("ccolamd: number of entries negative "ID"\n", nnz)) ;
return (FALSE) ;
}
if (p [0] != 0)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ;
stats [CCOLAMD_INFO1] = p [0] ;
DEBUG1 (("ccolamd: p[0] not zero "ID"\n", p [0])) ;
return (FALSE) ;
}
/* === If no knobs, set default knobs =================================== */
if (!knobs)
{
CCOLAMD_set_defaults (default_knobs) ;
knobs = default_knobs ;
}
aggressive = (knobs [CCOLAMD_AGGRESSIVE] != FALSE) ;
order_for_lu = (knobs [CCOLAMD_LU] != FALSE) ;
/* === Allocate workspace from array A ================================== */
ok = TRUE ;
Col_size = CCOLAMD_C (n_col, &ok) ;
Row_size = CCOLAMD_R (n_row, &ok) ;
/* min size of A is 2nnz+ncol. cset and cset_start are of size 2ncol+1 */
/* Each of the 5 fronts is of size n_col + 1. InFront is of size nrow. */
/*
need = MAX (2*nnz, 4*n_col) + n_col +
Col_size + Row_size +
(3*n_col+1) + (5*(n_col+1)) + n_row ;
*/
need = ccolamd_need (nnz, n_row, n_col, &ok) ;
if (!ok || need > (size_t) Alen)
{
/* not enough space in array A to perform the ordering */
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_too_small ;
stats [CCOLAMD_INFO1] = need ;
stats [CCOLAMD_INFO2] = Alen ;
DEBUG1 (("ccolamd: Need Alen >= "ID", given "ID"\n", need, Alen)) ;
return (FALSE) ;
}
/* since integer overflow has been check, the following cannot overflow: */
Alen -= Col_size + Row_size + (3*n_col + 1) + 5*(n_col+1) + n_row ;
/* Size of A is now Alen >= MAX (2*nnz, 4*n_col) + n_col. The ordering
* requires Alen >= 2*nnz + n_col, and the postorder requires
* Alen >= 5*n_col. */
ap = Alen ;
/* Front array workspace: 5*(n_col+1) + n_row */
if (!Front_npivcol || !Front_nrows || !Front_ncols || !Front_parent ||
!Front_cols || !Front_cols || !InFront)
{
Front_npivcol = &A [ap] ; ap += (n_col + 1) ;
Front_nrows = &A [ap] ; ap += (n_col + 1) ;
Front_ncols = &A [ap] ; ap += (n_col + 1) ;
Front_parent = &A [ap] ; ap += (n_col + 1) ;
Front_cols = &A [ap] ; ap += (n_col + 1) ;
InFront = &A [ap] ; ap += (n_row) ;
}
else
{
/* Fronts are present. Leave the additional space as elbow room. */
ap += 5*(n_col+1) + n_row ;
ap = Alen ;
}
/* Workspace for cset management: 3*n_col+1 */
/* cset_start is of size n_col + 1 */
cset_start = &A [ap] ;
ap += n_col + 1 ;
/* dead_col is of size n_col */
dead_cols = &A [ap] ;
ap += n_col ;
/* cset is of size n_col */
cset = &A [ap] ;
ap += n_col ;
/* Col is of size Col_size. The space is shared by temp_cstart and csize */
Col = (CColamd_Col *) &A [ap] ;
temp_cstart = (Int *) Col ; /* [ temp_cstart is of size n_col+1 */
csize = temp_cstart + (n_col+1) ; /* csize is of size n_col+1 */
ap += Col_size ;
ASSERT (Col_size >= 2*n_col+1) ;
/* Row is of size Row_size */
Row = (CColamd_Row *) &A [ap] ;
ap += Row_size ;
/* Initialize csize & dead_cols to zero */
for (i = 0 ; i < n_col ; i++)
{
csize [i] = 0 ;
dead_cols [i] = 0 ;
}
/* === Construct the constraint set ===================================== */
if (n_col == 0)
{
n_cset = 0 ;
}
else if (cmember == (Int *) NULL)
{
/* no constraint set; all columns belong to set zero */
n_cset = 1 ;
csize [0] = n_col ;
DEBUG1 (("no cmember present\n")) ;
}
else
{
n_cset = 0 ;
for (i = 0 ; i < n_col ; i++)
{
if (cmember [i] < 0 || cmember [i] > n_col)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_invalid_cmember ;
DEBUG1 (("ccolamd: malformed cmember \n")) ;
return (FALSE) ;
}
n_cset = MAX (n_cset, cmember [i]) ;
csize [cmember [i]]++ ;
}
/* cset is zero based */
n_cset++ ;
}
ASSERT ((n_cset >= 0) && (n_cset <= n_col)) ;
cset_start [0] = temp_cstart [0] = 0 ;
for (i = 1 ; i <= n_cset ; i++)
{
cset_start [i] = cset_start [i-1] + csize [i-1] ;
DEBUG4 ((" cset_start ["ID"] = "ID" \n", i , cset_start [i])) ;
temp_cstart [i] = cset_start [i] ;
}
/* do in reverse order to encourage natural tie-breaking */
if (cmember == (Int *) NULL)
{
for (i = n_col-1 ; i >= 0 ; i--)
{
cset [temp_cstart [0]++] = i ;
}
}
else
{
for (i = n_col-1 ; i >= 0 ; i--)
{
cset [temp_cstart [cmember [i]]++] = i ;
}
}
/* ] temp_cstart and csize are no longer used */
/* === Construct the row and column data structures ===================== */
if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
{
/* input matrix is invalid */
DEBUG1 (("ccolamd: Matrix invalid\n")) ;
return (FALSE) ;
}
/* === Initialize front info ============================================ */
for (col = 0 ; col < n_col ; col++)
{
Front_npivcol [col] = 0 ;
Front_nrows [col] = 0 ;
Front_ncols [col] = 0 ;
Front_parent [col] = EMPTY ;
Front_cols [col] = EMPTY ;
}
/* === Initialize scores, kill dense rows/columns ======================= */
init_scoring (n_row, n_col, Row, Col, A, p, knobs,
&n_row2, &n_col2, &max_deg, cmember, n_cset, cset_start, dead_cols,
&ndense_row, &nempty_row, &nnewlyempty_row,
&ndense_col, &nempty_col, &nnewlyempty_col) ;
ASSERT (n_row2 == n_row - nempty_row - nnewlyempty_row - ndense_row) ;
ASSERT (n_col2 == n_col - nempty_col - nnewlyempty_col - ndense_col) ;
DEBUG1 (("# dense rows "ID" cols "ID"\n", ndense_row, ndense_col)) ;
/* === Order the supercolumns =========================================== */
ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
#ifndef NDEBUG
n_col2,
#endif
max_deg, 2*nnz, cset, cset_start,
#ifndef NDEBUG
n_cset,
#endif
cmember, Front_npivcol, Front_nrows, Front_ncols, Front_parent,
Front_cols, &nfr, aggressive, InFront, order_for_lu) ;
ASSERT (Alen >= 5*n_col) ;
/* === Postorder ======================================================== */
/* A is no longer needed, so use A [0..5*nfr-1] as workspace [ [ */
/* This step requires Alen >= 5*n_col */
Front_child = A ;
Front_sibling = Front_child + nfr ;
Front_stack = Front_sibling + nfr ;
Front_order = Front_stack + nfr ;
Front_size = Front_order + nfr ;
CCOLAMD_fsize (nfr, Front_size, Front_nrows, Front_ncols,
Front_parent, Front_npivcol) ;
CCOLAMD_postorder (nfr, Front_parent, Front_npivcol, Front_size,
Front_order, Front_child, Front_sibling, Front_stack, Front_cols,
cmember) ;
/* Front_size, Front_stack, Front_child, Front_sibling no longer needed ] */
/* use A [0..nfr-1] as workspace */
CCOLAMD_apply_order (Front_npivcol, Front_order, A, nfr, nfr) ;
CCOLAMD_apply_order (Front_nrows, Front_order, A, nfr, nfr) ;
CCOLAMD_apply_order (Front_ncols, Front_order, A, nfr, nfr) ;
CCOLAMD_apply_order (Front_parent, Front_order, A, nfr, nfr) ;
CCOLAMD_apply_order (Front_cols, Front_order, A, nfr, nfr) ;
/* fix the parent to refer to the new numbering */
for (i = 0 ; i < nfr ; i++)
{
parent = Front_parent [i] ;
if (parent != EMPTY)
{
Front_parent [i] = Front_order [parent] ;
}
}
/* fix InFront to refer to the new numbering */
for (row = 0 ; row < n_row ; row++)
{
i = InFront [row] ;
ASSERT (i >= EMPTY && i < nfr) ;
if (i != EMPTY)
{
InFront [row] = Front_order [i] ;
}
}
/* Front_order longer needed ] */
/* === Order the columns in the fronts ================================== */
/* use A [0..n_col-1] as inverse permutation */
for (i = 0 ; i < n_col ; i++)
{
A [i] = EMPTY ;
}
k = 0 ;
set1 = 0 ;
for (i = 0 ; i < nfr ; i++)
{
ASSERT (Front_npivcol [i] > 0) ;
set2 = CMEMBER (Front_cols [i]) ;
while (set1 < set2)
{
k += dead_cols [set1] ;
DEBUG3 (("Skip null/dense columns of set "ID"\n",set1)) ;
set1++ ;
}
set1 = set2 ;
for (col = Front_cols [i] ; col != EMPTY ; col = Col [col].nextcol)
{
ASSERT (col >= 0 && col < n_col) ;
DEBUG1 (("ccolamd output ordering: k "ID" col "ID"\n", k, col)) ;
p [k] = col ;
ASSERT (A [col] == EMPTY) ;
cs = CMEMBER (col) ;
ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ;
A [col] = k ;
k++ ;
}
}
/* === Order the "dense" and null columns =============================== */
if (n_col2 < n_col)
{
for (col = 0 ; col < n_col ; col++)
{
if (A [col] == EMPTY)
{
k = Col [col].shared2.order ;
cs = CMEMBER (col) ;
#ifndef NDEBUG
dead_cols [cs]-- ;
#endif
ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ;
DEBUG1 (("ccolamd output ordering: k "ID" col "ID
" (dense or null col)\n", k, col)) ;
p [k] = col ;
A [col] = k ;
}
}
}
#ifndef NDEBUG
for (i = 0 ; i < n_cset ; i++)
{
ASSERT (dead_cols [i] == 0) ;
}
#endif
/* === Return statistics in stats ======================================= */
stats [CCOLAMD_DENSE_ROW] = ndense_row ;
stats [CCOLAMD_EMPTY_ROW] = nempty_row ; /* fixed in 2.7.3 */
stats [CCOLAMD_NEWLY_EMPTY_ROW] = nnewlyempty_row ;
stats [CCOLAMD_DENSE_COL] = ndense_col ;
stats [CCOLAMD_EMPTY_COL] = nempty_col ;
stats [CCOLAMD_NEWLY_EMPTY_COL] = nnewlyempty_col ;
ASSERT (ndense_col + nempty_col + nnewlyempty_col == n_col - n_col2) ;
if (p_nfr)
{
*p_nfr = nfr ;
}
stats [CCOLAMD_DEFRAG_COUNT] = ngarbage ;
DEBUG1 (("ccolamd: done.\n")) ;
return (TRUE) ;
}
/* ========================================================================== */
/* === colamd_report ======================================================== */
/* ========================================================================== */
void CCOLAMD_report
(
Int stats [CCOLAMD_STATS]
)
{
print_report ("ccolamd", stats) ;
}
/* ========================================================================== */
/* === symamd_report ======================================================== */
/* ========================================================================== */
void CSYMAMD_report
(
Int stats [CCOLAMD_STATS]
)
{
print_report ("csymamd", stats) ;
}
/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */
/* There are no user-callable routines beyond this point in the file */
/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */
/*
Takes the column form of the matrix in A and creates the row form of the
matrix. Also, row and column attributes are stored in the Col and Row
structs. If the columns are un-sorted or contain duplicate row indices,
this routine will also sort and remove duplicate row indices from the
column form of the matrix. Returns FALSE if the matrix is invalid,
TRUE otherwise. Not user-callable.
*/
PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
CColamd_Row Row [ ], /* of size n_row+1 */
CColamd_Col Col [ ], /* of size n_col+1 */
Int A [ ], /* row indices of A, of size Alen */
Int p [ ], /* pointers to columns in A, of size n_col+1 */
Int stats [CCOLAMD_STATS] /* colamd statistics */
)
{
/* === Local variables ================================================== */
Int col ; /* a column index */
Int row ; /* a row index */
Int *cp ; /* a column pointer */
Int *cp_end ; /* a pointer to the end of a column */
Int *rp ; /* a row pointer */
Int *rp_end ; /* a pointer to the end of a row */
Int last_row ; /* previous row */
/* === Initialize columns, and check column pointers ==================== */
for (col = 0 ; col < n_col ; col++)
{
Col [col].start = p [col] ;
Col [col].length = p [col+1] - p [col] ;
if (Col [col].length < 0)
{
/* column pointers must be non-decreasing */
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ;
stats [CCOLAMD_INFO1] = col ;
stats [CCOLAMD_INFO2] = Col [col].length ;
DEBUG1 (("ccolamd: col "ID" length "ID" < 0\n",
col, Col [col].length)) ;
return (FALSE) ;
}
Col [col].shared1.thickness = 1 ;
Col [col].shared2.score = 0 ;
Col [col].shared3.prev = EMPTY ;
Col [col].shared4.degree_next = EMPTY ;
Col [col].nextcol = EMPTY ;
Col [col].lastcol = col ;
}
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
/* === Scan columns, compute row degrees, and check row indices ========= */
stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
for (row = 0 ; row < n_row ; row++)
{
Row [row].length = 0 ;
Row [row].shared2.mark = -1 ;
Row [row].thickness = 1 ;
Row [row].front = EMPTY ;
}
for (col = 0 ; col < n_col ; col++)
{
DEBUG1 (("\nCcolamd input column "ID":\n", col)) ;
last_row = -1 ;
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
DEBUG1 (("row: "ID"\n", row)) ;
/* make sure row indices within range */
if (row < 0 || row >= n_row)
{
stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ;
stats [CCOLAMD_INFO1] = col ;
stats [CCOLAMD_INFO2] = row ;
stats [CCOLAMD_INFO3] = n_row ;
DEBUG1 (("row "ID" col "ID" out of bounds\n", row, col)) ;
return (FALSE) ;
}
if (row <= last_row || Row [row].shared2.mark == col)
{
/* row index are unsorted or repeated (or both), thus col */
/* is jumbled. This is a notice, not an error condition. */
stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ;
stats [CCOLAMD_INFO1] = col ;
stats [CCOLAMD_INFO2] = row ;
(stats [CCOLAMD_INFO3]) ++ ;
DEBUG1 (("row "ID" col "ID" unsorted/duplicate\n", row, col)) ;
}
if (Row [row].shared2.mark != col)
{
Row [row].length++ ;
}
else
{
/* this is a repeated entry in the column, */
/* it will be removed */
Col [col].length-- ;
}
/* mark the row as having been seen in this column */
Row [row].shared2.mark = col ;
last_row = row ;
}
}
/* === Compute row pointers ============================================= */
/* row form of the matrix starts directly after the column */
/* form of matrix in A */
Row [0].start = p [n_col] ;
Row [0].shared1.p = Row [0].start ;
Row [0].shared2.mark = -1 ;
for (row = 1 ; row < n_row ; row++)
{
Row [row].start = Row [row-1].start + Row [row-1].length ;
Row [row].shared1.p = Row [row].start ;
Row [row].shared2.mark = -1 ;
}
/* === Create row form ================================================== */
if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED)
{
/* if cols jumbled, watch for repeated row indices */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
if (Row [row].shared2.mark != col)
{
A [(Row [row].shared1.p)++] = col ;
Row [row].shared2.mark = col ;
}
}
}
}
else
{
/* if cols not jumbled, we don't need the mark (this is faster) */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
A [(Row [*cp++].shared1.p)++] = col ;
}
}
}
/* === Clear the row marks and set row degrees ========================== */
for (row = 0 ; row < n_row ; row++)
{
Row [row].shared2.mark = 0 ;
Row [row].shared1.degree = Row [row].length ;
}
/* === See if we need to re-create columns ============================== */
if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED)
{
DEBUG1 (("ccolamd: reconstructing column form, matrix jumbled\n")) ;
#ifndef NDEBUG
/* make sure column lengths are correct */
for (col = 0 ; col < n_col ; col++)
{
p [col] = Col [col].length ;
}
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
p [*rp++]-- ;
}
}
for (col = 0 ; col < n_col ; col++)
{
ASSERT (p [col] == 0) ;
}
/* now p is all zero (different than when debugging is turned off) */
#endif
/* === Compute col pointers ========================================= */
/* col form of the matrix starts at A [0]. */
/* Note, we may have a gap between the col form and the row */
/* form if there were duplicate entries, if so, it will be */
/* removed upon the first garbage collection */
Col [0].start = 0 ;
p [0] = Col [0].start ;
for (col = 1 ; col < n_col ; col++)
{
/* note that the lengths here are for pruned columns, i.e. */
/* no duplicate row indices will exist for these columns */
Col [col].start = Col [col-1].start + Col [col-1].length ;
p [col] = Col [col].start ;
}
/* === Re-create col form =========================================== */
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
A [(p [*rp++])++] = row ;
}
}
}
/* === Done. Matrix is not (or no longer) jumbled ====================== */
return (TRUE) ;
}
/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */
/*
Kills dense or empty columns and rows, calculates an initial score for
each column, and places all columns in the degree lists. Not user-callable.
*/
PRIVATE void init_scoring
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
CColamd_Row Row [ ], /* of size n_row+1 */
CColamd_Col Col [ ], /* of size n_col+1 */
Int A [ ], /* column form and row form of A */
Int head [ ], /* of size n_col+1 */
double knobs [CCOLAMD_KNOBS],/* parameters */
Int *p_n_row2, /* number of non-dense, non-empty rows */
Int *p_n_col2, /* number of non-dense, non-empty columns */
Int *p_max_deg, /* maximum row degree */
Int cmember [ ],
Int n_cset,
Int cset_start [ ],
Int dead_cols [ ],
Int *p_ndense_row, /* number of dense rows */
Int *p_nempty_row, /* number of original empty rows */
Int *p_nnewlyempty_row, /* number of newly empty rows */
Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */
Int *p_nempty_col, /* number of original empty cols */
Int *p_nnewlyempty_col /* number of newly empty cols */
)
{
/* === Local variables ================================================== */
Int c ; /* a column index */
Int r, row ; /* a row index */
Int *cp ; /* a column pointer */
Int deg ; /* degree of a row or column */
Int *cp_end ; /* a pointer to the end of a column */
Int *new_cp ; /* new column pointer */
Int col_length ; /* length of pruned column */
Int score ; /* current column score */
Int n_col2 ; /* number of non-dense, non-empty columns */
Int n_row2 ; /* number of non-dense, non-empty rows */
Int dense_row_count ; /* remove rows with more entries than this */
Int dense_col_count ; /* remove cols with more entries than this */
Int max_deg ; /* maximum row degree */
Int s ; /* a cset index */
Int ndense_row ; /* number of dense rows */
Int nempty_row ; /* number of empty rows */
Int nnewlyempty_row ; /* number of newly empty rows */
Int ndense_col ; /* number of dense cols (excl "empty" cols) */
Int nempty_col ; /* number of original empty cols */
Int nnewlyempty_col ; /* number of newly empty cols */
Int ne ;
#ifndef NDEBUG
Int debug_count ; /* debug only. */
#endif
/* === Extract knobs ==================================================== */
/* Note: if knobs contains a NaN, this is undefined: */
if (knobs [CCOLAMD_DENSE_ROW] < 0)
{
/* only remove completely dense rows */
dense_row_count = n_col-1 ;
}
else
{
dense_row_count = DENSE_DEGREE (knobs [CCOLAMD_DENSE_ROW], n_col) ;
}
if (knobs [CCOLAMD_DENSE_COL] < 0)
{
/* only remove completely dense columns */
dense_col_count = n_row-1 ;
}
else
{
dense_col_count =
DENSE_DEGREE (knobs [CCOLAMD_DENSE_COL], MIN (n_row, n_col)) ;
}
DEBUG1 (("densecount: "ID" "ID"\n", dense_row_count, dense_col_count)) ;
max_deg = 0 ;
n_col2 = n_col ;
n_row2 = n_row ;
/* Set the head array for bookkeeping of dense and empty columns. */
/* This will be used as hash buckets later. */
for (s = 0 ; s < n_cset ; s++)
{
head [s] = cset_start [s+1] ;
}
ndense_col = 0 ;
nempty_col = 0 ;
nnewlyempty_col = 0 ;
ndense_row = 0 ;
nempty_row = 0 ;
nnewlyempty_row = 0 ;
/* === Kill empty columns =============================================== */
/* Put the empty columns at the end in their natural order, so that LU */
/* factorization can proceed as far as possible. */
for (c = n_col-1 ; c >= 0 ; c--)
{
deg = Col [c].length ;
if (deg == 0)
{
/* this is a empty column, kill and order it last of its cset */
Col [c].shared2.order = --head [CMEMBER (c)] ;
--n_col2 ;
dead_cols [CMEMBER (c)] ++ ;
nempty_col++ ;
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG1 (("ccolamd: null columns killed: "ID"\n", n_col - n_col2)) ;
/* === Kill dense columns =============================================== */
/* Put the dense columns at the end, in their natural order */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip any dead columns */
if (COL_IS_DEAD (c))
{
continue ;
}
deg = Col [c].length ;
if (deg > dense_col_count)
{
/* this is a dense column, kill and order it last of its cset */
Col [c].shared2.order = --head [CMEMBER (c)] ;
--n_col2 ;
dead_cols [CMEMBER (c)] ++ ;
ndense_col++ ;
/* decrement the row degrees */
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
Row [*cp++].shared1.degree-- ;
}
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG1 (("Dense and null columns killed: "ID"\n", n_col - n_col2)) ;
/* === Kill dense and empty rows ======================================== */
/* Note that there can now be empty rows, since dense columns have
* been deleted. These are "newly" empty rows. */
ne = 0 ;
for (r = 0 ; r < n_row ; r++)
{
deg = Row [r].shared1.degree ;
ASSERT (deg >= 0 && deg <= n_col) ;
if (deg > dense_row_count)
{
/* There is at least one dense row. Continue ordering, but */
/* symbolic factorization will be redone after ccolamd is done.*/
ndense_row++ ;
}
if (deg == 0)
{
/* this is a newly empty row, or original empty row */
ne++ ;
}
if (deg > dense_row_count || deg == 0)
{
/* kill a dense or empty row */
KILL_ROW (r) ;
Row [r].thickness = 0 ;
--n_row2 ;
}
else
{
/* keep track of max degree of remaining rows */
max_deg = MAX (max_deg, deg) ;
}
}
nnewlyempty_row = ne - nempty_row ;
DEBUG1 (("ccolamd: Dense and null rows killed: "ID"\n", n_row - n_row2)) ;
/* === Compute initial column scores ==================================== */
/* At this point the row degrees are accurate. They reflect the number */
/* of "live" (non-dense) columns in each row. No empty rows exist. */
/* Some "live" columns may contain only dead rows, however. These are */
/* pruned in the code below. */
/* now find the initial COLMMD score for each column */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip dead column */
if (COL_IS_DEAD (c))
{
continue ;
}
score = 0 ;
cp = &A [Col [c].start] ;
new_cp = cp ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
/* skip if dead */
if (ROW_IS_DEAD (row))
{
continue ;
}
/* compact the column */
*new_cp++ = row ;
/* add row's external degree */
score += Row [row].shared1.degree - 1 ;
/* guard against integer overflow */
score = MIN (score, n_col) ;
}
/* determine pruned column length */
col_length = (Int) (new_cp - &A [Col [c].start]) ;
if (col_length == 0)
{
/* a newly-made null column (all rows in this col are "dense" */
/* and have already been killed) */
DEBUG1 (("Newly null killed: "ID"\n", c)) ;
Col [c].shared2.order = -- head [CMEMBER (c)] ;
--n_col2 ;
dead_cols [CMEMBER (c)] ++ ;
nnewlyempty_col++ ;
KILL_PRINCIPAL_COL (c) ;
}
else
{
/* set column length and set score */
ASSERT (score >= 0) ;
ASSERT (score <= n_col) ;
Col [c].length = col_length ;
Col [c].shared2.score = score ;
}
}
DEBUG1 (("ccolamd: Dense, null, and newly-null columns killed: "ID"\n",
n_col-n_col2)) ;
/* At this point, all empty rows and columns are dead. All live columns */
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
/* yet). Rows may contain dead columns, but all live rows contain at */
/* least one live column. */
#ifndef NDEBUG
debug_count = 0 ;
#endif
/* clear the hash buckets */
for (c = 0 ; c <= n_col ; c++)
{
head [c] = EMPTY ;
}
#ifndef NDEBUG
debug_structures (n_row, n_col, Row, Col, A, cmember, cset_start) ;
#endif
/* === Return number of remaining columns, and max row degree =========== */
*p_n_col2 = n_col2 ;
*p_n_row2 = n_row2 ;
*p_max_deg = max_deg ;
*p_ndense_row = ndense_row ;
*p_nempty_row = nempty_row ; /* original empty rows */
*p_nnewlyempty_row = nnewlyempty_row ;
*p_ndense_col = ndense_col ;
*p_nempty_col = nempty_col ; /* original empty cols */
*p_nnewlyempty_col = nnewlyempty_col ;
}
/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */
/*
* Order the principal columns of the supercolumn form of the matrix
* (no supercolumns on input). Uses a minimum approximate column minimum
* degree ordering method. Not user-callable.
*/
PRIVATE Int find_ordering /* return the number of garbage collections */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
Int Alen, /* size of A, 2*nnz + n_col or larger */
CColamd_Row Row [ ], /* of size n_row+1 */
CColamd_Col Col [ ], /* of size n_col+1 */
Int A [ ], /* column form and row form of A */
Int head [ ], /* of size n_col+1 */
#ifndef NDEBUG
Int n_col2, /* Remaining columns to order */
#endif
Int max_deg, /* Maximum row degree */
Int pfree, /* index of first free slot (2*nnz on entry) */
Int cset [ ], /* constraint set of A */
Int cset_start [ ], /* pointer to the start of every cset */
#ifndef NDEBUG
Int n_cset, /* number of csets */
#endif
Int cmember [ ], /* col -> cset mapping */
Int Front_npivcol [ ],
Int Front_nrows [ ],
Int Front_ncols [ ],
Int Front_parent [ ],
Int Front_cols [ ],
Int *p_nfr, /* number of fronts */
Int aggressive,
Int InFront [ ],
Int order_for_lu
)
{
/* === Local variables ================================================== */
Int k ; /* current pivot ordering step */
Int pivot_col ; /* current pivot column */
Int *cp ; /* a column pointer */
Int *rp ; /* a row pointer */
Int pivot_row ; /* current pivot row */
Int *new_cp ; /* modified column pointer */
Int *new_rp ; /* modified row pointer */
Int pivot_row_start ; /* pointer to start of pivot row */
Int pivot_row_degree ; /* number of columns in pivot row */
Int pivot_row_length ; /* number of supercolumns in pivot row */
Int pivot_col_score ; /* score of pivot column */
Int needed_memory ; /* free space needed for pivot row */
Int *cp_end ; /* pointer to the end of a column */
Int *rp_end ; /* pointer to the end of a row */
Int row ; /* a row index */
Int col ; /* a column index */
Int max_score ; /* maximum possible score */
Int cur_score ; /* score of current column */
UInt hash ; /* hash value for supernode detection */
Int head_column ; /* head of hash bucket */
Int first_col ; /* first column in hash bucket */
Int tag_mark ; /* marker value for mark array */
Int row_mark ; /* Row [row].shared2.mark */
Int set_difference ; /* set difference size of row with pivot row */
Int min_score ; /* smallest column score */
Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
Int max_mark ; /* maximum value of tag_mark */
Int pivot_col_thickness ; /* number of columns represented by pivot col */
Int prev_col ; /* Used by Dlist operations. */
Int next_col ; /* Used by Dlist operations. */
Int ngarbage ; /* number of garbage collections performed */
Int current_set ; /* consraint set that is being ordered */
Int score ; /* score of a column */
Int colstart ; /* pointer to first column in current cset */
Int colend ; /* pointer to last column in current cset */
Int deadcol ; /* number of dense & null columns in a cset */
#ifndef NDEBUG
Int debug_d ; /* debug loop counter */
Int debug_step = 0 ; /* debug loop counter */
Int cols_thickness = 0 ; /* the thickness of the columns in current */
/* cset degreelist and in pivot row pattern. */
#endif
Int pivot_row_thickness ; /* number of rows represented by pivot row */
Int nfr = 0 ; /* number of fronts */
Int child ;
/* === Initialization and clear mark ==================================== */
max_mark = Int_MAX - n_col ; /* Int_MAX defined in <limits.h> */
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
min_score = 0 ;
ngarbage = 0 ;
current_set = -1 ;
deadcol = 0 ;
DEBUG1 (("ccolamd: Ordering, n_col2="ID"\n", n_col2)) ;
for (row = 0 ; row < n_row ; row++)
{
InFront [row] = EMPTY ;
}
/* === Order the columns ================================================ */
for (k = 0 ; k < n_col ; /* 'k' is incremented below */)
{
/* make sure degree list isn't empty */
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (head [min_score] >= EMPTY) ;
#ifndef NDEBUG
for (debug_d = 0 ; debug_d < min_score ; debug_d++)
{
ASSERT (head [debug_d] == EMPTY) ;
}
#endif
/* Initialize the degree list with columns from next non-empty cset */
while ((k+deadcol) == cset_start [current_set+1])
{
current_set++ ;
DEBUG1 (("\n\n\n============ CSET: "ID"\n", current_set)) ;
k += deadcol ; /* jump to start of next cset */
deadcol = 0 ; /* reset dead column count */
ASSERT ((current_set == n_cset) == (k == n_col)) ;
/* return if all columns are ordered. */
if (k == n_col)
{
*p_nfr = nfr ;
return (ngarbage) ;
}
#ifndef NDEBUG
for (col = 0 ; col <= n_col ; col++)
{
ASSERT (head [col] == EMPTY) ;
}
#endif
min_score = n_col ;
colstart = cset_start [current_set] ;
colend = cset_start [current_set+1] ;
while (colstart < colend)
{
col = cset [colstart++] ;
if (COL_IS_DEAD(col))
{
DEBUG1 (("Column "ID" is dead\n", col)) ;
/* count dense and null columns */
if (Col [col].shared2.order != EMPTY)
{
deadcol++ ;
}
continue ;
}
/* only add principal columns in current set to degree lists */
ASSERT (CMEMBER (col) == current_set) ;
score = Col [col].shared2.score ;
DEBUG1 (("Column "ID" is alive, score "ID"\n", col, score)) ;
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (score >= 0) ;
ASSERT (score <= n_col) ;
ASSERT (head [score] >= EMPTY) ;
/* now add this column to dList at proper score location */
next_col = head [score] ;
Col [col].shared3.prev = EMPTY ;
Col [col].shared4.degree_next = next_col ;
/* if there already was a column with the same score, set its */
/* previous pointer to this new column */
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = col ;
}
head [score] = col ;
/* see if this score is less than current min */
min_score = MIN (min_score, score) ;
}
#ifndef NDEBUG
DEBUG1 (("degree lists initialized \n")) ;
debug_deg_lists (n_row, n_col, Row, Col, head, min_score,
((cset_start [current_set+1]-cset_start [current_set])-deadcol),
max_deg) ;
#endif
}
#ifndef NDEBUG
if (debug_step % 100 == 0)
{
DEBUG2 (("\n... Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
}
else
{
DEBUG3 (("\n------Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
}
debug_step++ ;
DEBUG1 (("start of step k="ID": ", k)) ;
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ;
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif
/* === Select pivot column, and order it ============================ */
while (head [min_score] == EMPTY && min_score < n_col)
{
min_score++ ;
}
pivot_col = head [min_score] ;
ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
next_col = Col [pivot_col].shared4.degree_next ;
head [min_score] = next_col ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = EMPTY ;
}
ASSERT (COL_IS_ALIVE (pivot_col)) ;
/* remember score for defrag check */
pivot_col_score = Col [pivot_col].shared2.score ;
/* the pivot column is the kth column in the pivot order */
Col [pivot_col].shared2.order = k ;
/* increment order count by column thickness */
pivot_col_thickness = Col [pivot_col].shared1.thickness ;
k += pivot_col_thickness ;
ASSERT (pivot_col_thickness > 0) ;
DEBUG3 (("Pivot col: "ID" thick "ID"\n", pivot_col,
pivot_col_thickness)) ;
/* === Garbage_collection, if necessary ============================= */
needed_memory = MIN (pivot_col_score, n_col - k) ;
if (pfree + needed_memory >= Alen)
{
pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
ngarbage++ ;
/* after garbage collection we will have enough */
ASSERT (pfree + needed_memory < Alen) ;
/* garbage collection has wiped out Row [ ].shared2.mark array */
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
#ifndef NDEBUG
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif
}
/* === Compute pivot row pattern ==================================== */
/* get starting location for this new merged row */
pivot_row_start = pfree ;
/* initialize new row counts to zero */
pivot_row_degree = 0 ;
pivot_row_thickness = 0 ;
/* tag pivot column as having been visited so it isn't included */
/* in merged pivot row */
Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
/* pivot row is the union of all rows in the pivot column pattern */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
ASSERT (row >= 0 && row < n_row) ;
DEBUG4 (("Pivcol pattern "ID" "ID"\n", ROW_IS_ALIVE (row), row)) ;
/* skip if row is dead */
if (ROW_IS_ALIVE (row))
{
/* sum the thicknesses of all the rows */
pivot_row_thickness += Row [row].thickness ;
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
/* add the column, if alive and untagged */
col_thickness = Col [col].shared1.thickness ;
if (col_thickness > 0 && COL_IS_ALIVE (col))
{
/* tag column in pivot row */
Col [col].shared1.thickness = -col_thickness ;
ASSERT (pfree < Alen) ;
/* place column in pivot row */
A [pfree++] = col ;
pivot_row_degree += col_thickness ;
DEBUG4 (("\t\t\tNew live col in pivrow: "ID"\n",col)) ;
}
#ifndef NDEBUG
if (col_thickness < 0 && COL_IS_ALIVE (col))
{
DEBUG4 (("\t\t\tOld live col in pivrow: "ID"\n",col)) ;
}
#endif
}
}
}
/* pivot_row_thickness is the number of rows in frontal matrix */
/* including both pivotal rows and nonpivotal rows */
/* clear tag on pivot column */
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
max_deg = MAX (max_deg, pivot_row_degree) ;
#ifndef NDEBUG
DEBUG3 (("check2\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif
/* === Kill all rows used to construct pivot row ==================== */
/* also kill pivot row, temporarily */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* may be killing an already dead row */
row = *cp++ ;
DEBUG3 (("Kill row in pivot col: "ID"\n", row)) ;
ASSERT (row >= 0 && row < n_row) ;
if (ROW_IS_ALIVE (row))
{
if (Row [row].front != EMPTY)
{
/* This row represents a frontal matrix. */
/* Row [row].front is a child of current front */
child = Row [row].front ;
Front_parent [child] = nfr ;
DEBUG1 (("Front "ID" => front "ID", normal\n", child, nfr));
}
else
{
/* This is an original row. Keep track of which front
* is its parent in the row-merge tree. */
InFront [row] = nfr ;
DEBUG1 (("Row "ID" => front "ID", normal\n", row, nfr)) ;
}
}
KILL_ROW (row) ;
Row [row].thickness = 0 ;
}
/* === Select a row index to use as the new pivot row =============== */
pivot_row_length = pfree - pivot_row_start ;
if (pivot_row_length > 0)
{
/* pick the "pivot" row arbitrarily (first row in col) */
pivot_row = A [Col [pivot_col].start] ;
DEBUG3 (("Pivotal row is "ID"\n", pivot_row)) ;
}
else
{
/* there is no pivot row, since it is of zero length */
pivot_row = EMPTY ;
ASSERT (pivot_row_length == 0) ;
}
ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
/* === Approximate degree computation =============================== */
/* Here begins the computation of the approximate degree. The column */
/* score is the sum of the pivot row "length", plus the size of the */
/* set differences of each row in the column minus the pattern of the */
/* pivot row itself. The column ("thickness") itself is also */
/* excluded from the column score (we thus use an approximate */
/* external degree). */
/* The time taken by the following code (compute set differences, and */
/* add them up) is proportional to the size of the data structure */
/* being scanned - that is, the sum of the sizes of each column in */
/* the pivot row. Thus, the amortized time to compute a column score */
/* is proportional to the size of that column (where size, in this */
/* context, is the column "length", or the number of row indices */
/* in that column). The number of row indices in a column is */
/* monotonically non-decreasing, from the length of the original */
/* column on input to colamd. */
/* === Compute set differences ====================================== */
DEBUG3 (("** Computing set differences phase. **\n")) ;
/* pivot row is currently dead - it will be revived later. */
DEBUG3 (("Pivot row: ")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
DEBUG3 (("Col: "ID"\n", col)) ;
/* clear tags used to construct pivot row pattern */
col_thickness = -Col [col].shared1.thickness ;
ASSERT (col_thickness > 0) ;
Col [col].shared1.thickness = col_thickness ;
/* === Remove column from degree list =========================== */
/* only columns in current_set will be in degree list */
if (CMEMBER (col) == current_set)
{
#ifndef NDEBUG
cols_thickness += col_thickness ;
#endif
cur_score = Col [col].shared2.score ;
prev_col = Col [col].shared3.prev ;
next_col = Col [col].shared4.degree_next ;
DEBUG3 ((" cur_score "ID" prev_col "ID" next_col "ID"\n",
cur_score, prev_col, next_col)) ;
ASSERT (cur_score >= 0) ;
ASSERT (cur_score <= n_col) ;
ASSERT (cur_score >= EMPTY) ;
if (prev_col == EMPTY)
{
head [cur_score] = next_col ;
}
else
{
Col [prev_col].shared4.degree_next = next_col ;
}
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = prev_col ;
}
}
/* === Scan the column ========================================== */
cp = &A [Col [col].start] ;
cp_end = cp + Col [col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
continue ;
}
ASSERT (row != pivot_row) ;
set_difference = row_mark - tag_mark ;
/* check if the row has been seen yet */
if (set_difference < 0)
{
ASSERT (Row [row].shared1.degree <= max_deg) ;
set_difference = Row [row].shared1.degree ;
}
/* subtract column thickness from this row's set difference */
set_difference -= col_thickness ;
ASSERT (set_difference >= 0) ;
/* absorb this row if the set difference becomes zero */
if (set_difference == 0 && aggressive)
{
DEBUG3 (("aggressive absorption. Row: "ID"\n", row)) ;
if (Row [row].front != EMPTY)
{
/* Row [row].front is a child of current front. */
child = Row [row].front ;
Front_parent [child] = nfr ;
DEBUG1 (("Front "ID" => front "ID", aggressive\n",
child, nfr)) ;
}
else
{
/* this is an original row. Keep track of which front
* assembles it, for the row-merge tree */
InFront [row] = nfr ;
DEBUG1 (("Row "ID" => front "ID", aggressive\n",
row, nfr)) ;
}
KILL_ROW (row) ;
/* sum the thicknesses of all the rows */
pivot_row_thickness += Row [row].thickness ;
Row [row].thickness = 0 ;
}
else
{
/* save the new mark */
Row [row].shared2.mark = set_difference + tag_mark ;
}
}
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head, min_score,
cset_start [current_set+1]-(k+deadcol)-(cols_thickness),
max_deg) ;
cols_thickness = 0 ;
#endif
/* === Add up set differences for each column ======================= */
DEBUG3 (("** Adding set differences phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
hash = 0 ;
cur_score = 0 ;
cp = &A [Col [col].start] ;
/* compact the column */
new_cp = cp ;
cp_end = cp + Col [col].length ;
DEBUG4 (("Adding set diffs for Col: "ID".\n", col)) ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
ASSERT (row >= 0 && row < n_row) ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
DEBUG4 ((" Row "ID", dead\n", row)) ;
continue ;
}
DEBUG4 ((" Row "ID", set diff "ID"\n", row, row_mark-tag_mark));
ASSERT (row_mark >= tag_mark) ;
/* compact the column */
*new_cp++ = row ;
/* compute hash function */
hash += row ;
/* add set difference */
cur_score += row_mark - tag_mark ;
/* integer overflow... */
cur_score = MIN (cur_score, n_col) ;
}
/* recompute the column's length */
Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
/* === Further mass elimination ================================= */
if (Col [col].length == 0 && CMEMBER (col) == current_set)
{
DEBUG4 (("further mass elimination. Col: "ID"\n", col)) ;
/* nothing left but the pivot row in this column */
KILL_PRINCIPAL_COL (col) ;
pivot_row_degree -= Col [col].shared1.thickness ;
ASSERT (pivot_row_degree >= 0) ;
/* order it */
Col [col].shared2.order = k ;
/* increment order count by column thickness */
k += Col [col].shared1.thickness ;
pivot_col_thickness += Col [col].shared1.thickness ;
/* add to column list of front */
#ifndef NDEBUG
DEBUG1 (("Mass")) ;
dump_super (col, Col, n_col) ;
#endif
Col [Col [col].lastcol].nextcol = Front_cols [nfr] ;
Front_cols [nfr] = col ;
}
else
{
/* === Prepare for supercolumn detection ==================== */
DEBUG4 (("Preparing supercol detection for Col: "ID".\n", col));
/* save score so far */
Col [col].shared2.score = cur_score ;
/* add column to hash table, for supercolumn detection */
hash %= n_col + 1 ;
DEBUG4 ((" Hash = "ID", n_col = "ID".\n", hash, n_col)) ;
ASSERT (((Int) hash) <= n_col) ;
head_column = head [hash] ;
if (head_column > EMPTY)
{
/* degree list "hash" is non-empty, use prev (shared3) of */
/* first column in degree list as head of hash bucket */
first_col = Col [head_column].shared3.headhash ;
Col [head_column].shared3.headhash = col ;
}
else
{
/* degree list "hash" is empty, use head as hash bucket */
first_col = - (head_column + 2) ;
head [hash] = - (col + 2) ;
}
Col [col].shared4.hash_next = first_col ;
/* save hash function in Col [col].shared3.hash */
Col [col].shared3.hash = (Int) hash ;
ASSERT (COL_IS_ALIVE (col)) ;
}
}
/* The approximate external column degree is now computed. */
/* === Supercolumn detection ======================================== */
DEBUG3 (("** Supercolumn detection phase. **\n")) ;
detect_super_cols (
#ifndef NDEBUG
n_col, Row,
#endif
Col, A, head, pivot_row_start, pivot_row_length, cmember) ;
/* === Kill the pivotal column ====================================== */
DEBUG1 ((" KILLING column detect supercols "ID" \n", pivot_col)) ;
KILL_PRINCIPAL_COL (pivot_col) ;
/* add columns to column list of front */
#ifndef NDEBUG
DEBUG1 (("Pivot")) ;
dump_super (pivot_col, Col, n_col) ;
#endif
Col [Col [pivot_col].lastcol].nextcol = Front_cols [nfr] ;
Front_cols [nfr] = pivot_col ;
/* === Clear mark =================================================== */
tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
#ifndef NDEBUG
DEBUG3 (("check3\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif
/* === Finalize the new pivot row, and column scores ================ */
DEBUG3 (("** Finalize scores phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
/* compact the pivot row */
new_rp = rp ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
/* skip dead columns */
if (COL_IS_DEAD (col))
{
continue ;
}
*new_rp++ = col ;
/* add new pivot row to column */
A [Col [col].start + (Col [col].length++)] = pivot_row ;
/* retrieve score so far and add on pivot row's degree. */
/* (we wait until here for this in case the pivot */
/* row's degree was reduced due to mass elimination). */
cur_score = Col [col].shared2.score + pivot_row_degree ;
/* calculate the max possible score as the number of */
/* external columns minus the 'k' value minus the */
/* columns thickness */
max_score = n_col - k - Col [col].shared1.thickness ;
/* make the score the external degree of the union-of-rows */
cur_score -= Col [col].shared1.thickness ;
/* make sure score is less or equal than the max score */
cur_score = MIN (cur_score, max_score) ;
ASSERT (cur_score >= 0) ;
/* store updated score */
Col [col].shared2.score = cur_score ;
/* === Place column back in degree list ========================= */
if (CMEMBER (col) == current_set)
{
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (cur_score >= 0) ;
ASSERT (cur_score <= n_col) ;
ASSERT (head [cur_score] >= EMPTY) ;
next_col = head [cur_score] ;
Col [col].shared4.degree_next = next_col ;
Col [col].shared3.prev = EMPTY ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = col ;
}
head [cur_score] = col ;
/* see if this score is less than current min */
min_score = MIN (min_score, cur_score) ;
}
else
{
Col [col].shared4.degree_next = EMPTY ;
Col [col].shared3.prev = EMPTY ;
}
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ;
#endif
/* frontal matrix can have more pivot cols than pivot rows for */
/* singular matrices. */
/* number of candidate pivot columns */
Front_npivcol [nfr] = pivot_col_thickness ;
/* all rows (not just size of contrib. block) */
Front_nrows [nfr] = pivot_row_thickness ;
/* all cols */
Front_ncols [nfr] = pivot_col_thickness + pivot_row_degree ;
Front_parent [nfr] = EMPTY ;
pivot_row_thickness -= pivot_col_thickness ;
DEBUG1 (("Front "ID" Pivot_row_thickness after pivot cols elim: "ID"\n",
nfr, pivot_row_thickness)) ;
pivot_row_thickness = MAX (0, pivot_row_thickness) ;
/* === Resurrect the new pivot row ================================== */
if ((pivot_row_degree > 0 && pivot_row_thickness > 0 && (order_for_lu))
|| (pivot_row_degree > 0 && (!order_for_lu)))
{
/* update pivot row length to reflect any cols that were killed */
/* during super-col detection and mass elimination */
Row [pivot_row].start = pivot_row_start ;
Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
Row [pivot_row].shared1.degree = pivot_row_degree ;
Row [pivot_row].shared2.mark = 0 ;
Row [pivot_row].thickness = pivot_row_thickness ;
Row [pivot_row].front = nfr ;
/* pivot row is no longer dead */
DEBUG1 (("Resurrect Pivot_row "ID" deg: "ID"\n",
pivot_row, pivot_row_degree)) ;
}
#ifndef NDEBUG
DEBUG1 (("Front "ID" : "ID" "ID" "ID" ", nfr,
Front_npivcol [nfr], Front_nrows [nfr], Front_ncols [nfr])) ;
DEBUG1 ((" cols:[ ")) ;
debug_d = 0 ;
for (col = Front_cols [nfr] ; col != EMPTY ; col = Col [col].nextcol)
{
DEBUG1 ((" "ID, col)) ;
ASSERT (col >= 0 && col < n_col) ;
ASSERT (COL_IS_DEAD (col)) ;
debug_d++ ;
ASSERT (debug_d <= pivot_col_thickness) ;
}
ASSERT (debug_d == pivot_col_thickness) ;
DEBUG1 ((" ]\n ")) ;
#endif
nfr++ ; /* one more front */
}
/* === All principal columns have now been ordered ====================== */
*p_nfr = nfr ;
return (ngarbage) ;
}
/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */
/*
* Detects supercolumns by finding matches between columns in the hash buckets.
* Check amongst columns in the set A [row_start ... row_start + row_length-1].
* The columns under consideration are currently *not* in the degree lists,
* and have already been placed in the hash buckets.
*
* The hash bucket for columns whose hash function is equal to h is stored
* as follows:
*
* if head [h] is >= 0, then head [h] contains a degree list, so:
*
* head [h] is the first column in degree bucket h.
* Col [head [h]].headhash gives the first column in hash bucket h.
*
* otherwise, the degree list is empty, and:
*
* -(head [h] + 2) is the first column in hash bucket h.
*
* For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
* column" pointer. Col [c].shared3.hash is used instead as the hash number
* for that column. The value of Col [c].shared4.hash_next is the next column
* in the same hash bucket.
*
* Assuming no, or "few" hash collisions, the time taken by this routine is
* linear in the sum of the sizes (lengths) of each column whose score has
* just been computed in the approximate degree computation.
* Not user-callable.
*/
PRIVATE void detect_super_cols
(
/* === Parameters ======================================================= */
#ifndef NDEBUG
/* these two parameters are only needed when debugging is enabled: */
Int n_col, /* number of columns of A */
CColamd_Row Row [ ], /* of size n_row+1 */
#endif
CColamd_Col Col [ ], /* of size n_col+1 */
Int A [ ], /* row indices of A */
Int head [ ], /* head of degree lists and hash buckets */
Int row_start, /* pointer to set of columns to check */
Int row_length, /* number of columns to check */
Int cmember [ ] /* col -> cset mapping */
)
{
/* === Local variables ================================================== */
Int hash ; /* hash value for a column */
Int *rp ; /* pointer to a row */
Int c ; /* a column index */
Int super_c ; /* column index of the column to absorb into */
Int *cp1 ; /* column pointer for column super_c */
Int *cp2 ; /* column pointer for column c */
Int length ; /* length of column super_c */
Int prev_c ; /* column preceding c in hash bucket */
Int i ; /* loop counter */
Int *rp_end ; /* pointer to the end of the row */
Int col ; /* a column index in the row to check */
Int head_column ; /* first column in hash bucket or degree list */
Int first_col ; /* first column in hash bucket */
/* === Consider each column in the row ================================== */
rp = &A [row_start] ;
rp_end = rp + row_length ;
while (rp < rp_end)
{
col = *rp++ ;
if (COL_IS_DEAD (col))
{
continue ;
}
/* get hash number for this column */
hash = Col [col].shared3.hash ;
ASSERT (hash <= n_col) ;
/* === Get the first column in this hash bucket ===================== */
head_column = head [hash] ;
if (head_column > EMPTY)
{
first_col = Col [head_column].shared3.headhash ;
}
else
{
first_col = - (head_column + 2) ;
}
/* === Consider each column in the hash bucket ====================== */
for (super_c = first_col ; super_c != EMPTY ;
super_c = Col [super_c].shared4.hash_next)
{
ASSERT (COL_IS_ALIVE (super_c)) ;
ASSERT (Col [super_c].shared3.hash == hash) ;
length = Col [super_c].length ;
/* prev_c is the column preceding column c in the hash bucket */
prev_c = super_c ;
/* === Compare super_c with all columns after it ================ */
for (c = Col [super_c].shared4.hash_next ;
c != EMPTY ; c = Col [c].shared4.hash_next)
{
ASSERT (c != super_c) ;
ASSERT (COL_IS_ALIVE (c)) ;
ASSERT (Col [c].shared3.hash == hash) ;
/* not identical if lengths or scores are different, */
/* or if in different constraint sets */
if (Col [c].length != length ||
Col [c].shared2.score != Col [super_c].shared2.score
|| CMEMBER (c) != CMEMBER (super_c))
{
prev_c = c ;
continue ;
}
/* compare the two columns */
cp1 = &A [Col [super_c].start] ;
cp2 = &A [Col [c].start] ;
for (i = 0 ; i < length ; i++)
{
/* the columns are "clean" (no dead rows) */
ASSERT (ROW_IS_ALIVE (*cp1)) ;
ASSERT (ROW_IS_ALIVE (*cp2)) ;
/* row indices will same order for both supercols, */
/* no gather scatter nessasary */
if (*cp1++ != *cp2++)
{
break ;
}
}
/* the two columns are different if the for-loop "broke" */
/* super columns should belong to the same constraint set */
if (i != length)
{
prev_c = c ;
continue ;
}
/* === Got it! two columns are identical =================== */
ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
Col [c].shared1.parent = super_c ;
KILL_NON_PRINCIPAL_COL (c) ;
/* order c later, in order_children() */
Col [c].shared2.order = EMPTY ;
/* remove c from hash bucket */
Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
/* add c to end of list of super_c */
ASSERT (Col [super_c].lastcol >= 0) ;
ASSERT (Col [super_c].lastcol < n_col) ;
Col [Col [super_c].lastcol].nextcol = c ;
Col [super_c].lastcol = Col [c].lastcol ;
#ifndef NDEBUG
/* dump the supercolumn */
DEBUG1 (("Super")) ;
dump_super (super_c, Col, n_col) ;
#endif
}
}
/* === Empty this hash bucket ======================================= */
if (head_column > EMPTY)
{
/* corresponding degree list "hash" is not empty */
Col [head_column].shared3.headhash = EMPTY ;
}
else
{
/* corresponding degree list "hash" is empty */
head [hash] = EMPTY ;
}
}
}
/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */
/*
* Defragments and compacts columns and rows in the workspace A. Used when
* all avaliable memory has been used while performing row merging. Returns
* the index of the first free position in A, after garbage collection. The
* time taken by this routine is linear is the size of the array A, which is
* itself linear in the number of nonzeros in the input matrix.
* Not user-callable.
*/
PRIVATE Int garbage_collection /* returns the new value of pfree */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows */
Int n_col, /* number of columns */
CColamd_Row Row [ ], /* row info */
CColamd_Col Col [ ], /* column info */
Int A [ ], /* A [0 ... Alen-1] holds the matrix */
Int *pfree /* &A [0] ... pfree is in use */
)
{
/* === Local variables ================================================== */
Int *psrc ; /* source pointer */
Int *pdest ; /* destination pointer */
Int j ; /* counter */
Int r ; /* a row index */
Int c ; /* a column index */
Int length ; /* length of a row or column */
#ifndef NDEBUG
Int debug_rows ;
DEBUG2 (("Defrag..\n")) ;
for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
debug_rows = 0 ;
#endif
/* === Defragment the columns =========================================== */
pdest = &A[0] ;
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
psrc = &A [Col [c].start] ;
/* move and compact the column */
ASSERT (pdest <= psrc) ;
Col [c].start = (Int) (pdest - &A [0]) ;
length = Col [c].length ;
for (j = 0 ; j < length ; j++)
{
r = *psrc++ ;
if (ROW_IS_ALIVE (r))
{
*pdest++ = r ;
}
}
Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
}
}
/* === Prepare to defragment the rows =================================== */
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_DEAD (r) || (Row [r].length == 0))
{
/* This row is already dead, or is of zero length. Cannot compact
* a row of zero length, so kill it. NOTE: in the current version,
* there are no zero-length live rows. Kill the row (for the first
* time, or again) just to be safe. */
KILL_ROW (r) ;
}
else
{
/* save first column index in Row [r].shared2.first_column */
psrc = &A [Row [r].start] ;
Row [r].shared2.first_column = *psrc ;
ASSERT (ROW_IS_ALIVE (r)) ;
/* flag the start of the row with the one's complement of row */
*psrc = ONES_COMPLEMENT (r) ;
#ifndef NDEBUG
debug_rows++ ;
#endif
}
}
/* === Defragment the rows ============================================== */
psrc = pdest ;
while (psrc < pfree)
{
/* find a negative number ... the start of a row */
if (*psrc++ < 0)
{
psrc-- ;
/* get the row index */
r = ONES_COMPLEMENT (*psrc) ;
ASSERT (r >= 0 && r < n_row) ;
/* restore first column index */
*psrc = Row [r].shared2.first_column ;
ASSERT (ROW_IS_ALIVE (r)) ;
/* move and compact the row */
ASSERT (pdest <= psrc) ;
Row [r].start = (Int) (pdest - &A [0]) ;
length = Row [r].length ;
for (j = 0 ; j < length ; j++)
{
c = *psrc++ ;
if (COL_IS_ALIVE (c))
{
*pdest++ = c ;
}
}
Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
#ifndef NDEBUG
debug_rows-- ;
#endif
}
}
/* ensure we found all the rows */
ASSERT (debug_rows == 0) ;
/* === Return the new value of pfree ==================================== */
return ((Int) (pdest - &A [0])) ;
}
/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */
/*
* Clears the Row [ ].shared2.mark array, and returns the new tag_mark.
* Return value is the new tag_mark. Not user-callable.
*/
PRIVATE Int clear_mark /* return the new value for tag_mark */
(
/* === Parameters ======================================================= */
Int tag_mark, /* new value of tag_mark */
Int max_mark, /* max allowed value of tag_mark */
Int n_row, /* number of rows in A */
CColamd_Row Row [ ] /* Row [0 ... n_row-1].shared2.mark is set to zero */
)
{
/* === Local variables ================================================== */
Int r ;
if (tag_mark <= 0 || tag_mark >= max_mark)
{
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
Row [r].shared2.mark = 0 ;
}
}
tag_mark = 1 ;
}
return (tag_mark) ;
}
/* ========================================================================== */
/* === print_report ========================================================= */
/* ========================================================================== */
/* No printing occurs if NPRINT is defined at compile time. */
PRIVATE void print_report
(
char *method,
Int stats [CCOLAMD_STATS]
)
{
Int i1, i2, i3 ;
SUITESPARSE_PRINTF (("\n%s version %d.%d.%d, %s: ", method,
CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION,
CCOLAMD_SUBSUB_VERSION, CCOLAMD_DATE)) ;
if (!stats)
{
SUITESPARSE_PRINTF (("No statistics available.\n")) ;
return ;
}
i1 = stats [CCOLAMD_INFO1] ;
i2 = stats [CCOLAMD_INFO2] ;
i3 = stats [CCOLAMD_INFO3] ;
if (stats [CCOLAMD_STATUS] >= 0)
{
SUITESPARSE_PRINTF(("OK. ")) ;
}
else
{
SUITESPARSE_PRINTF(("ERROR. ")) ;
}
switch (stats [CCOLAMD_STATUS])
{
case CCOLAMD_OK_BUT_JUMBLED:
SUITESPARSE_PRINTF((
"Matrix has unsorted or duplicate row indices.\n")) ;
SUITESPARSE_PRINTF((
"%s: duplicate or out-of-order row indices: "ID"\n",
method, i3)) ;
SUITESPARSE_PRINTF((
"%s: last seen duplicate or out-of-order row: "ID"\n",
method, INDEX (i2))) ;
SUITESPARSE_PRINTF((
"%s: last seen in column: "ID"",
method, INDEX (i1))) ;
/* no break - fall through to next case instead */
case CCOLAMD_OK:
SUITESPARSE_PRINTF(("\n")) ;
SUITESPARSE_PRINTF((
"%s: number of dense or empty rows ignored: "ID"\n",
method, stats [CCOLAMD_DENSE_ROW])) ;
SUITESPARSE_PRINTF((
"%s: number of dense or empty columns ignored: "ID"\n",
method, stats [CCOLAMD_DENSE_COL])) ;
SUITESPARSE_PRINTF((
"%s: number of garbage collections performed: "ID"\n",
method, stats [CCOLAMD_DEFRAG_COUNT])) ;
break ;
case CCOLAMD_ERROR_A_not_present:
SUITESPARSE_PRINTF((
"Array A (row indices of matrix) not present.\n")) ;
break ;
case CCOLAMD_ERROR_p_not_present:
SUITESPARSE_PRINTF((
"Array p (column pointers for matrix) not present.\n")) ;
break ;
case CCOLAMD_ERROR_nrow_negative:
SUITESPARSE_PRINTF(("Invalid number of rows ("ID").\n", i1)) ;
break ;
case CCOLAMD_ERROR_ncol_negative:
SUITESPARSE_PRINTF(("Invalid number of columns ("ID").\n", i1)) ;
break ;
case CCOLAMD_ERROR_nnz_negative:
SUITESPARSE_PRINTF((
"Invalid number of nonzero entries ("ID").\n", i1)) ;
break ;
case CCOLAMD_ERROR_p0_nonzero:
SUITESPARSE_PRINTF((
"Invalid column pointer, p [0] = "ID", must be 0.\n", i1)) ;
break ;
case CCOLAMD_ERROR_A_too_small:
SUITESPARSE_PRINTF(("Array A too small.\n")) ;
SUITESPARSE_PRINTF((
" Need Alen >= "ID", but given only Alen = "ID".\n",
i1, i2)) ;
break ;
case CCOLAMD_ERROR_col_length_negative:
SUITESPARSE_PRINTF((
"Column "ID" has a negative number of entries ("ID").\n",
INDEX (i1), i2)) ;
break ;
case CCOLAMD_ERROR_row_index_out_of_bounds:
SUITESPARSE_PRINTF((
"Row index (row "ID") out of bounds ("ID" to "ID") in"
"column "ID".\n", INDEX (i2), INDEX (0), INDEX (i3-1),
INDEX (i1))) ;
break ;
case CCOLAMD_ERROR_out_of_memory:
SUITESPARSE_PRINTF(("Out of memory.\n")) ;
break ;
case CCOLAMD_ERROR_invalid_cmember:
SUITESPARSE_PRINTF(("cmember invalid\n")) ;
break ;
}
}
/* ========================================================================= */
/* === "Expert" routines =================================================== */
/* ========================================================================= */
/* The following routines are visible outside this routine, but are not meant
* to be called by the user. They are meant for a future version of UMFPACK,
* to replace UMFPACK internal routines with a similar name.
*/
/* ========================================================================== */
/* === CCOLAMD_apply_order ================================================== */
/* ========================================================================== */
/*
* Apply post-ordering of supernodal elimination tree.
*/
void CCOLAMD_apply_order
(
Int Front [ ], /* of size nn on input, size nfr on output */
const Int Order [ ], /* Order [i] = k, i in the range 0..nn-1,
* and k in the range 0..nfr-1, means that node
* i is the kth node in the postordered tree. */
Int Temp [ ], /* workspace of size nfr */
Int nn, /* nodes are numbered in the range 0..nn-1 */
Int nfr /* the number of nodes actually in use */
)
{
Int i, k ;
for (i = 0 ; i < nn ; i++)
{
k = Order [i] ;
ASSERT (k >= EMPTY && k < nfr) ;
if (k != EMPTY)
{
Temp [k] = Front [i] ;
}
}
for (k = 0 ; k < nfr ; k++)
{
Front [k] = Temp [k] ;
}
}
/* ========================================================================== */
/* === CCOLAMD_fsize ======================================================== */
/* ========================================================================== */
/* Determine the largest frontal matrix size for each subtree.
* Only required to sort the children of each
* node prior to postordering the column elimination tree. */
void CCOLAMD_fsize
(
Int nn,
Int Fsize [ ],
Int Fnrows [ ],
Int Fncols [ ],
Int Parent [ ],
Int Npiv [ ]
)
{
double dr, dc ;
Int j, parent, frsize, r, c ;
for (j = 0 ; j < nn ; j++)
{
Fsize [j] = EMPTY ;
}
/* ---------------------------------------------------------------------- */
/* find max front size for tree rooted at node j, for each front j */
/* ---------------------------------------------------------------------- */
DEBUG1 (("\n\n========================================FRONTS:\n")) ;
for (j = 0 ; j < nn ; j++)
{
if (Npiv [j] > 0)
{
/* this is a frontal matrix */
parent = Parent [j] ;
r = Fnrows [j] ;
c = Fncols [j] ;
/* avoid integer overflow */
dr = (double) r ;
dc = (double) c ;
frsize = (INT_OVERFLOW (dr * dc)) ? Int_MAX : (r * c) ;
DEBUG1 ((""ID" : npiv "ID" size "ID" parent "ID" ",
j, Npiv [j], frsize, parent)) ;
Fsize [j] = MAX (Fsize [j], frsize) ;
DEBUG1 (("Fsize [j = "ID"] = "ID"\n", j, Fsize [j])) ;
if (parent != EMPTY)
{
/* find the maximum frontsize of self and children */
ASSERT (Npiv [parent] > 0) ;
ASSERT (parent > j) ;
Fsize [parent] = MAX (Fsize [parent], Fsize [j]) ;
DEBUG1 (("Fsize [parent = "ID"] = "ID"\n",
parent, Fsize [parent]));
}
}
}
DEBUG1 (("fsize done\n")) ;
}
/* ========================================================================= */
/* === CCOLAMD_postorder =================================================== */
/* ========================================================================= */
/* Perform a postordering (via depth-first search) of an assembly tree. */
void CCOLAMD_postorder
(
/* inputs, not modified on output: */
Int nn, /* nodes are in the range 0..nn-1 */
Int Parent [ ], /* Parent [j] is the parent of j, or EMPTY if root */
Int Nv [ ], /* Nv [j] > 0 number of pivots represented by node j,
* or zero if j is not a node. */
Int Fsize [ ], /* Fsize [j]: size of node j */
/* output, not defined on input: */
Int Order [ ], /* output post-order */
/* workspaces of size nn: */
Int Child [ ],
Int Sibling [ ],
Int Stack [ ],
Int Front_cols [ ],
/* input, not modified on output: */
Int cmember [ ]
)
{
Int i, j, k, parent, frsize, f, fprev, maxfrsize, bigfprev, bigf, fnext ;
for (j = 0 ; j < nn ; j++)
{
Child [j] = EMPTY ;
Sibling [j] = EMPTY ;
}
/* --------------------------------------------------------------------- */
/* place the children in link lists - bigger elements tend to be last */
/* --------------------------------------------------------------------- */
for (j = nn-1 ; j >= 0 ; j--)
{
if (Nv [j] > 0)
{
/* this is an element */
parent = Parent [j] ;
if (parent != EMPTY)
{
/* place the element in link list of the children its parent */
/* bigger elements will tend to be at the end of the list */
Sibling [j] = Child [parent] ;
if (CMEMBER (Front_cols[parent]) == CMEMBER (Front_cols[j]))
{
Child [parent] = j ;
}
}
}
}
#ifndef NDEBUG
{
Int nels, ff, nchild ;
DEBUG1 (("\n\n================================ ccolamd_postorder:\n"));
nels = 0 ;
for (j = 0 ; j < nn ; j++)
{
if (Nv [j] > 0)
{
DEBUG1 ((""ID" : nels "ID" npiv "ID" size "ID
" parent "ID" maxfr "ID"\n", j, nels,
Nv [j], Fsize [j], Parent [j], Fsize [j])) ;
/* this is an element */
/* dump the link list of children */
nchild = 0 ;
DEBUG1 ((" Children: ")) ;
for (ff = Child [j] ; ff != EMPTY ; ff = Sibling [ff])
{
DEBUG1 ((ID" ", ff)) ;
nchild++ ;
ASSERT (nchild < nn) ;
}
DEBUG1 (("\n")) ;
parent = Parent [j] ;
nels++ ;
}
}
}
#endif
/* --------------------------------------------------------------------- */
/* place the largest child last in the list of children for each node */
/* --------------------------------------------------------------------- */
for (i = 0 ; i < nn ; i++)
{
if (Nv [i] > 0 && Child [i] != EMPTY)
{
#ifndef NDEBUG
Int nchild ;
DEBUG1 (("Before partial sort, element "ID"\n", i)) ;
nchild = 0 ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
DEBUG1 ((" f: "ID" size: "ID"\n", f, Fsize [f])) ;
nchild++ ;
}
#endif
/* find the biggest element in the child list */
fprev = EMPTY ;
maxfrsize = EMPTY ;
bigfprev = EMPTY ;
bigf = EMPTY ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
frsize = Fsize [f] ;
if (frsize >= maxfrsize)
{
/* this is the biggest seen so far */
maxfrsize = frsize ;
bigfprev = fprev ;
bigf = f ;
}
fprev = f ;
}
fnext = Sibling [bigf] ;
DEBUG1 (("bigf "ID" maxfrsize "ID" bigfprev "ID" fnext "ID
" fprev " ID"\n", bigf, maxfrsize, bigfprev, fnext, fprev)) ;
if (fnext != EMPTY)
{
/* if fnext is EMPTY then bigf is already at the end of list */
if (bigfprev == EMPTY)
{
/* delete bigf from the element of the list */
Child [i] = fnext ;
}
else
{
/* delete bigf from the middle of the list */
Sibling [bigfprev] = fnext ;
}
/* put bigf at the end of the list */
Sibling [bigf] = EMPTY ;
Sibling [fprev] = bigf ;
}
#ifndef NDEBUG
DEBUG1 (("After partial sort, element "ID"\n", i)) ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
DEBUG1 ((" "ID" "ID"\n", f, Fsize [f])) ;
nchild-- ;
}
#endif
}
}
/* --------------------------------------------------------------------- */
/* postorder the assembly tree */
/* --------------------------------------------------------------------- */
for (i = 0 ; i < nn ; i++)
{
Order [i] = EMPTY ;
}
k = 0 ;
for (i = 0 ; i < nn ; i++)
{
if ((Parent [i] == EMPTY
|| (CMEMBER (Front_cols [Parent [i]]) != CMEMBER (Front_cols [i])))
&& Nv [i] > 0)
{
DEBUG1 (("Root of assembly tree "ID"\n", i)) ;
k = CCOLAMD_post_tree (i, k, Child, Sibling, Order, Stack) ;
}
}
}
/* ========================================================================= */
/* === CCOLAMD_post_tree =================================================== */
/* ========================================================================= */
/* Post-ordering of a supernodal column elimination tree. */
Int CCOLAMD_post_tree
(
Int root, /* root of the tree */
Int k, /* start numbering at k */
Int Child [ ], /* input argument of size nn, undefined on
* output. Child [i] is the head of a link
* list of all nodes that are children of node
* i in the tree. */
const Int Sibling [ ], /* input argument of size nn, not modified.
* If f is a node in the link list of the
* children of node i, then Sibling [f] is the
* next child of node i.
*/
Int Order [ ], /* output order, of size nn. Order [i] = k
* if node i is the kth node of the reordered
* tree. */
Int Stack [ ] /* workspace of size nn */
)
{
Int f, head, h, i ;
#if 0
/* --------------------------------------------------------------------- */
/* recursive version (Stack [ ] is not used): */
/* --------------------------------------------------------------------- */
/* this is simple, but can cause stack overflow if nn is large */
i = root ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
k = CCOLAMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ;
}
Order [i] = k++ ;
return (k) ;
#endif
/* --------------------------------------------------------------------- */
/* non-recursive version, using an explicit stack */
/* --------------------------------------------------------------------- */
/* push root on the stack */
head = 0 ;
Stack [0] = root ;
while (head >= 0)
{
/* get head of stack */
i = Stack [head] ;
DEBUG1 (("head of stack "ID" \n", i)) ;
if (Child [i] != EMPTY)
{
/* the children of i are not yet ordered */
/* push each child onto the stack in reverse order */
/* so that small ones at the head of the list get popped first */
/* and the biggest one at the end of the list gets popped last */
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
head++ ;
}
h = head ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
ASSERT (h > 0) ;
Stack [h--] = f ;
DEBUG1 (("push "ID" on stack\n", f)) ;
}
ASSERT (Stack [h] == i) ;
/* delete child list so that i gets ordered next time we see it */
Child [i] = EMPTY ;
}
else
{
/* the children of i (if there were any) are already ordered */
/* remove i from the stack and order it. Front i is kth front */
head-- ;
DEBUG1 (("pop "ID" order "ID"\n", i, k)) ;
Order [i] = k++ ;
}
#ifndef NDEBUG
DEBUG1 (("\nStack:")) ;
for (h = head ; h >= 0 ; h--)
{
Int j = Stack [h] ;
DEBUG1 ((" "ID, j)) ;
}
DEBUG1 (("\n\n")) ;
#endif
}
return (k) ;
}
/* ========================================================================== */
/* === CCOLAMD debugging routines =========================================== */
/* ========================================================================== */
/* When debugging is disabled, the remainder of this file is ignored. */
#ifndef NDEBUG
/* ========================================================================== */
/* === debug_structures ===================================================== */
/* ========================================================================== */
/*
* At this point, all empty rows and columns are dead. All live columns
* are "clean" (containing no dead rows) and simplicial (no supercolumns
* yet). Rows may contain dead columns, but all live rows contain at
* least one live column.
*/
PRIVATE void debug_structures
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ],
Int cmember [ ],
Int cset_start [ ]
)
{
/* === Local variables ================================================== */
Int i ;
Int c ;
Int *cp ;
Int *cp_end ;
Int len ;
Int score ;
Int r ;
Int *rp ;
Int *rp_end ;
Int deg ;
Int cs ;
/* === Check A, Row, and Col ============================================ */
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
len = Col [c].length ;
score = Col [c].shared2.score ;
DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
ASSERT (len > 0) ;
ASSERT (score >= 0) ;
ASSERT (Col [c].shared1.thickness == 1) ;
cp = &A [Col [c].start] ;
cp_end = cp + len ;
while (cp < cp_end)
{
r = *cp++ ;
ASSERT (ROW_IS_ALIVE (r)) ;
}
}
else
{
i = Col [c].shared2.order ;
cs = CMEMBER (c) ;
ASSERT (i >= cset_start [cs] && i < cset_start [cs+1]) ;
}
}
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
i = 0 ;
len = Row [r].length ;
deg = Row [r].shared1.degree ;
ASSERT (len > 0) ;
ASSERT (deg > 0) ;
rp = &A [Row [r].start] ;
rp_end = rp + len ;
while (rp < rp_end)
{
c = *rp++ ;
if (COL_IS_ALIVE (c))
{
i++ ;
}
}
ASSERT (i > 0) ;
}
}
}
/* ========================================================================== */
/* === debug_deg_lists ====================================================== */
/* ========================================================================== */
/*
* Prints the contents of the degree lists. Counts the number of columns
* in the degree list and compares it to the total it should have. Also
* checks the row degrees.
*/
PRIVATE void debug_deg_lists
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int head [ ],
Int min_score,
Int should,
Int max_deg
)
{
/* === Local variables ================================================== */
Int deg ;
Int col ;
Int have ;
Int row ;
/* === Check the degree lists =========================================== */
if (n_col > 10000 && ccolamd_debug <= 0)
{
return ;
}
have = 0 ;
DEBUG4 (("Degree lists: "ID"\n", min_score)) ;
for (deg = 0 ; deg <= n_col ; deg++)
{
col = head [deg] ;
if (col == EMPTY)
{
continue ;
}
DEBUG4 (("%d:", deg)) ;
ASSERT (Col [col].shared3.prev == EMPTY) ;
while (col != EMPTY)
{
DEBUG4 ((" "ID"", col)) ;
have += Col [col].shared1.thickness ;
ASSERT (COL_IS_ALIVE (col)) ;
col = Col [col].shared4.degree_next ;
}
DEBUG4 (("\n")) ;
}
DEBUG4 (("should "ID" have "ID"\n", should, have)) ;
ASSERT (should == have) ;
/* === Check the row degrees ============================================ */
if (n_row > 10000 && ccolamd_debug <= 0)
{
return ;
}
for (row = 0 ; row < n_row ; row++)
{
if (ROW_IS_ALIVE (row))
{
ASSERT (Row [row].shared1.degree <= max_deg) ;
}
}
}
/* ========================================================================== */
/* === debug_mark =========================================================== */
/* ========================================================================== */
/*
* Ensures that the tag_mark is less that the maximum and also ensures that
* each entry in the mark array is less than the tag mark.
*/
PRIVATE void debug_mark
(
/* === Parameters ======================================================= */
Int n_row,
CColamd_Row Row [ ],
Int tag_mark,
Int max_mark
)
{
/* === Local variables ================================================== */
Int r ;
/* === Check the Row marks ============================================== */
ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
if (n_row > 10000 && ccolamd_debug <= 0)
{
return ;
}
for (r = 0 ; r < n_row ; r++)
{
ASSERT (Row [r].shared2.mark < tag_mark) ;
}
}
/* ========================================================================== */
/* === debug_matrix ========================================================= */
/* ========================================================================== */
/* Prints out the contents of the columns and the rows. */
PRIVATE void debug_matrix
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
CColamd_Row Row [ ],
CColamd_Col Col [ ],
Int A [ ]
)
{
/* === Local variables ================================================== */
Int r ;
Int c ;
Int *rp ;
Int *rp_end ;
Int *cp ;
Int *cp_end ;
/* === Dump the rows and columns of the matrix ========================== */
if (ccolamd_debug < 3)
{
return ;
}
DEBUG3 (("DUMP MATRIX:\n")) ;
for (r = 0 ; r < n_row ; r++)
{
DEBUG3 (("Row "ID" alive? "ID"\n", r, ROW_IS_ALIVE (r))) ;
if (ROW_IS_DEAD (r))
{
continue ;
}
DEBUG3 (("start "ID" length "ID" degree "ID"\nthickness "ID"\n",
Row [r].start, Row [r].length, Row [r].shared1.degree,
Row [r].thickness)) ;
rp = &A [Row [r].start] ;
rp_end = rp + Row [r].length ;
while (rp < rp_end)
{
c = *rp++ ;
DEBUG4 ((" "ID" col "ID"\n", COL_IS_ALIVE (c), c)) ;
}
}
for (c = 0 ; c < n_col ; c++)
{
DEBUG3 (("Col "ID" alive? "ID"\n", c, COL_IS_ALIVE (c))) ;
if (COL_IS_DEAD (c))
{
continue ;
}
DEBUG3 (("start "ID" length "ID" shared1 "ID" shared2 "ID"\n",
Col [c].start, Col [c].length,
Col [c].shared1.thickness, Col [c].shared2.score)) ;
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
r = *cp++ ;
DEBUG4 ((" "ID" row "ID"\n", ROW_IS_ALIVE (r), r)) ;
}
}
}
/* ========================================================================== */
/* === dump_super =========================================================== */
/* ========================================================================== */
PRIVATE void dump_super
(
Int super_c,
CColamd_Col Col [ ],
Int n_col
)
{
Int col, ncols ;
DEBUG1 ((" =[ ")) ;
ncols = 0 ;
for (col = super_c ; col != EMPTY ; col = Col [col].nextcol)
{
DEBUG1 ((" "ID, col)) ;
ASSERT (col >= 0 && col < n_col) ;
if (col != super_c)
{
ASSERT (COL_IS_DEAD (col)) ;
}
if (Col [col].nextcol == EMPTY)
{
ASSERT (col == Col [super_c].lastcol) ;
}
ncols++ ;
ASSERT (ncols <= Col [super_c].shared1.thickness) ;
}
ASSERT (ncols == Col [super_c].shared1.thickness) ;
DEBUG1 (("]\n")) ;
}
/* ========================================================================== */
/* === ccolamd_get_debug ==================================================== */
/* ========================================================================== */
PRIVATE void ccolamd_get_debug
(
char *method
)
{
FILE *debug_file ;
ccolamd_debug = 0 ; /* no debug printing */
/* Read debug info from the debug file. */
debug_file = fopen ("debug", "r") ;
if (debug_file)
{
(void) fscanf (debug_file, ""ID"", &ccolamd_debug) ;
(void) fclose (debug_file) ;
}
DEBUG0 ((":")) ;
DEBUG1 (("%s: debug version, D = "ID" (THIS WILL BE SLOW!)\n",
method, ccolamd_debug)) ;
DEBUG1 ((" Debug printing level: "ID"\n", ccolamd_debug)) ;
}
#endif
|