1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
// CXSparse/MATLAB/CSparse/cs_lsolve_mex: x=L\b where x,b are sparse or dense
// CXSparse, Copyright (c) 2006-2022, Timothy A. Davis. All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
#include "cs_mex.h"
/* cs_lsolve: x=L\b. L must be sparse and lower triangular. b must be a
* full or sparse vector. x is full or sparse, depending on b.
*
* Time taken is O(flop count), which may be less than n if b is sparse,
* depending on L and b.
*
* This function works with MATLAB 7.2, but is not perfectly compatible with
* the requirements of a MATLAB mexFunction when b is sparse. X is returned
* as an unsorted sparse vector. Also, this mexFunction temporarily modifies
* its input, L, by modifying L->p (in the cs_dfs function) and then restoring
* it. This could be corrected by creating a copy of L->p
* (see cs_dmperm_mex.c), but this would take O(n) time, destroying the
* O(flop count) time complexity of this function.
*
* Note that b cannot be sparse complex. This function does not support
* sparse complex L and b because the sparse x=L\b only accesses part of the
* matrix L. Converting L from a MATLAB complex matrix to a CXSparse complex
* matrix requires all of L to be accessed, defeating the purpose of this
* function.
*
* L can be sparse complex, but in that case b must be full real or complex,
* not sparse.
*/
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
int64_t top, nz, p, *xi, n ;
if (nargout > 1 || nargin != 2)
{
mexErrMsgTxt ("Usage: x = cs_lsolve(L,b)") ;
}
if (mxIsSparse (pargin [1]))
{
cs_dl Lmatrix, Bmatrix, *L, *B, *X ;
double *x ;
if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]))
{
mexErrMsgTxt ("sparse complex case not supported") ;
}
L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ;/* get L */
n = L->n ;
B = cs_dl_mex_get_sparse (&Bmatrix, 0, 1, pargin [1]) ;/* get sparse b*/
cs_mex_check (0, n, 1, 0, 1, 1, pargin [1]) ;
xi = cs_dl_malloc (2*n, sizeof (int64_t)) ; /* get workspace */
x = cs_dl_malloc (n, sizeof (double)) ;
top = cs_dl_spsolve (L, B, 0, xi, x, NULL, 1) ; /* x = L\b */
X = cs_dl_spalloc (n, 1, n-top, 1, 0) ; /* create sparse x*/
X->p [0] = 0 ;
nz = 0 ;
for (p = top ; p < n ; p++)
{
X->i [nz] = xi [p] ;
X->x [nz++] = x [xi [p]] ;
}
X->p [1] = nz ;
pargout [0] = cs_dl_mex_put_sparse (&X) ;
cs_dl_free (x) ;
cs_dl_free (xi) ;
}
else if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]))
{
#ifndef NCOMPLEX
cs_cl Lmatrix, *L ;
cs_complex_t *x ;
L = cs_cl_mex_get_sparse (&Lmatrix, 1, pargin [0]) ; /* get L */
n = L->n ;
x = cs_cl_mex_get_double (n, pargin [1]) ; /* x = b */
cs_cl_lsolve (L, x) ; /* x = L\x */
cs_cl_free (L->x) ;
pargout [0] = cs_cl_mex_put_double (n, x) ; /* return x */
#else
mexErrMsgTxt ("complex matrices not supported") ;
#endif
}
else
{
cs_dl Lmatrix, *L ;
double *x, *b ;
L = cs_dl_mex_get_sparse (&Lmatrix, 1, 1, pargin [0]) ; /* get L */
n = L->n ;
b = cs_dl_mex_get_double (n, pargin [1]) ; /* get b */
x = cs_dl_mex_put_double (n, b, &(pargout [0])) ; /* x = b */
cs_dl_lsolve (L, x) ; /* x = L\x */
}
}
|