1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// CXSparse/MATLAB/CSparse/cs_mex: utility functions for MATLAB interface
// CXSparse, Copyright (c) 2006-2022, Timothy A. Davis. All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
#include "cs_mex.h"
/* check MATLAB input argument */
void cs_mex_check (int64_t nel, int64_t m, int64_t n, int square, int sparse,
int values, const mxArray *A)
{
int64_t nnel, mm = mxGetM (A), nn = mxGetN (A) ;
#ifdef NCOMPLEX
if (values)
{
if (mxIsComplex (A)) mexErrMsgTxt ("complex matrices not supported") ;
}
#endif
if (sparse && !mxIsSparse (A)) mexErrMsgTxt ("matrix must be sparse") ;
if (!sparse)
{
if (mxIsSparse (A)) mexErrMsgTxt ("matrix must be full") ;
if (values && !mxIsDouble (A)) mexErrMsgTxt ("matrix must be double") ;
}
if (nel)
{
/* check number of elements */
nnel = mxGetNumberOfElements (A) ;
if (m >= 0 && n >= 0 && m*n != nnel) mexErrMsgTxt ("wrong length") ;
}
else
{
/* check row and/or column dimensions */
if (m >= 0 && m != mm) mexErrMsgTxt ("wrong dimension") ;
if (n >= 0 && n != nn) mexErrMsgTxt ("wrong dimension") ;
}
if (square && mm != nn) mexErrMsgTxt ("matrix must be square") ;
}
/* get a real (or pattern) MATLAB sparse matrix and convert to cs_dl */
cs_dl *cs_dl_mex_get_sparse (cs_dl *A, int square, int values,
const mxArray *Amatlab)
{
cs_mex_check (0, -1, -1, square, 1, values, Amatlab) ;
A->m = mxGetM (Amatlab) ;
A->n = mxGetN (Amatlab) ;
A->p = (int64_t *) mxGetJc (Amatlab) ;
A->i = (int64_t *) mxGetIr (Amatlab) ;
A->x = values ? mxGetPr (Amatlab) : NULL ;
A->nzmax = mxGetNzmax (Amatlab) ;
A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */
return (A) ;
}
/* return a real sparse matrix to MATLAB */
mxArray *cs_dl_mex_put_sparse (cs_dl **Ahandle)
{
cs_dl *A ;
mxArray *Amatlab ;
if (!Ahandle || !CS_CSC ((*Ahandle))) mexErrMsgTxt ("invalid sparse matrix") ;
A = *Ahandle ;
Amatlab = mxCreateSparse (0, 0, 0, mxREAL) ;
mxSetM (Amatlab, A->m) ;
mxSetN (Amatlab, A->n) ;
mxSetNzmax (Amatlab, A->nzmax) ;
cs_dl_free (mxGetJc (Amatlab)) ;
cs_dl_free (mxGetIr (Amatlab)) ;
cs_dl_free (mxGetPr (Amatlab)) ;
mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */
mxSetIr (Amatlab, (void *) (A->i)) ;
if (A->x == NULL)
{
/* A is a pattern only matrix; return all 1's to MATLAB */
int64_t i, nz ;
nz = A->p [A->n] ;
A->x = cs_dl_malloc (CS_MAX (nz,1), sizeof (double)) ;
for (i = 0 ; i < nz ; i++)
{
A->x [i] = 1 ;
}
}
mxSetPr (Amatlab, A->x) ;
cs_dl_free (A) ; /* frees A struct only, not A->p, etc */
*Ahandle = NULL ;
return (Amatlab) ;
}
/* get a real MATLAB dense column vector */
double *cs_dl_mex_get_double (int64_t n, const mxArray *X)
{
cs_mex_check (0, n, 1, 0, 0, 1, X) ;
return (mxGetPr (X)) ;
}
/* return a double vector to MATLAB */
double *cs_dl_mex_put_double (int64_t n, const double *b, mxArray **X)
{
double *x ;
int64_t k ;
*X = mxCreateDoubleMatrix (n, 1, mxREAL) ; /* create x */
x = mxGetPr (*X) ;
for (k = 0 ; k < n ; k++) x [k] = b [k] ; /* copy x = b */
return (x) ;
}
/* get a MATLAB flint array and convert to int64_t */
int64_t *cs_dl_mex_get_int (int64_t n, const mxArray *Imatlab, int64_t *imax,
int lo)
{
double *p ;
int64_t i, k, *C = cs_dl_malloc (n, sizeof (int64_t)) ;
cs_mex_check (1, n, 1, 0, 0, 1, Imatlab) ;
if (mxIsComplex (Imatlab))
{
mexErrMsgTxt ("integer input cannot be complex") ;
}
p = mxGetPr (Imatlab) ;
*imax = 0 ;
for (k = 0 ; k < n ; k++)
{
i = p [k] ;
C [k] = i - 1 ;
if (i < lo) mexErrMsgTxt ("index out of bounds") ;
*imax = CS_MAX (*imax, i) ;
}
return (C) ;
}
/* return an int64_t array to MATLAB as a flint row vector */
mxArray *cs_dl_mex_put_int (int64_t *p, int64_t n, int64_t offset, int do_free)
{
mxArray *X = mxCreateDoubleMatrix (1, n, mxREAL) ;
double *x = mxGetPr (X) ;
int64_t k ;
for (k = 0 ; k < n ; k++) x [k] = (p ? p [k] : k) + offset ;
if (do_free) cs_dl_free (p) ;
return (X) ;
}
#ifndef NCOMPLEX
/* copy a MATLAB real or complex vector into a cs_cl complex vector */
static cs_complex_t *cs_cl_get_vector (int64_t n, int64_t size,
const mxArray *Xmatlab)
{
int64_t p ;
double *X, *Z ;
cs_complex_t *Y ;
X = mxGetPr (Xmatlab) ;
Z = (mxIsComplex (Xmatlab)) ? mxGetPi (Xmatlab) : NULL ;
Y = cs_dl_malloc (size, sizeof (cs_complex_t)) ;
for (p = 0 ; p < n ; p++)
{
Y [p] = X [p] + I * (Z ? Z [p] : 0) ;
}
return (Y) ;
}
/* get a real or complex MATLAB sparse matrix and convert to cs_cl */
cs_cl *cs_cl_mex_get_sparse (cs_cl *A, int square, const mxArray *Amatlab)
{
cs_mex_check (0, -1, -1, square, 1, 1, Amatlab) ;
A->m = mxGetM (Amatlab) ;
A->n = mxGetN (Amatlab) ;
A->p = (int64_t *) mxGetJc (Amatlab) ;
A->i = (int64_t *) mxGetIr (Amatlab) ;
A->nzmax = mxGetNzmax (Amatlab) ;
A->x = cs_cl_get_vector (A->p [A->n], A->nzmax, Amatlab) ;
A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */
return (A) ;
}
/* return a complex sparse matrix to MATLAB */
mxArray *cs_cl_mex_put_sparse (cs_cl **Ahandle)
{
cs_cl *A ;
double *x, *z ;
mxArray *Amatlab ;
int64_t k ;
if (!Ahandle || !CS_CSC ((*Ahandle))) mexErrMsgTxt ("invalid sparse matrix") ;
A = *Ahandle ;
if (A->x == NULL) mexErrMsgTxt ("invalid complex sparse matrix") ;
Amatlab = mxCreateSparse (0, 0, 0, mxCOMPLEX) ;
mxSetM (Amatlab, A->m) ;
mxSetN (Amatlab, A->n) ;
mxSetNzmax (Amatlab, A->nzmax) ;
cs_dl_free (mxGetJc (Amatlab)) ;
cs_dl_free (mxGetIr (Amatlab)) ;
cs_dl_free (mxGetPr (Amatlab)) ;
cs_dl_free (mxGetPi (Amatlab)) ;
mxSetJc (Amatlab, (void *) (A->p)) ; /* assign A->p pointer to MATLAB A */
mxSetIr (Amatlab, (void *) (A->i)) ;
x = cs_dl_malloc (A->nzmax, sizeof (double)) ;
z = cs_dl_malloc (A->nzmax, sizeof (double)) ;
for (k = 0 ; k < A->nzmax ; k++)
{
x [k] = creal (A->x [k]) ; /* copy and split numerical values */
z [k] = cimag (A->x [k]) ;
}
cs_cl_free (A->x) ; /* free copy of complex values */
mxSetPr (Amatlab, x) ; /* x and z will not be NULL, even if nz==0 */
mxSetPi (Amatlab, z) ;
cs_dl_free (A) ; /* frees A struct only, not A->p, etc */
*Ahandle = NULL ;
return (Amatlab) ;
}
/* get a real or complex MATLAB dense column vector, and copy to cs_complex_t */
cs_complex_t *cs_cl_mex_get_double (int64_t n, const mxArray *X)
{
cs_mex_check (0, n, 1, 0, 0, 1, X) ;
return (cs_cl_get_vector (n, n, X)) ;
}
/* copy a complex vector back to MATLAB and free it */
mxArray *cs_cl_mex_put_double (int64_t n, cs_complex_t *b)
{
double *x, *z ;
mxArray *X ;
int64_t k ;
X = mxCreateDoubleMatrix (n, 1, mxCOMPLEX) ; /* create x */
x = mxGetPr (X) ;
z = mxGetPi (X) ;
for (k = 0 ; k < n ; k++)
{
x [k] = creal (b [k]) ; /* copy x = b */
z [k] = cimag (b [k]) ;
}
cs_cl_free (b) ;
return (X) ;
}
#endif
|