File: cholupdown.m

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (59 lines) | stat: -rw-r--r-- 1,406 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function L = cholupdown (Lold, sigma, w)
%CHOLUPDOWN Cholesky update/downdate (Bischof, Pan, and Tang method)
% This version only works for the real case.  See chol_updown2 for
% a code that handles both the real and complex cases.
% Example:
%   L = cholupdown (Lold, sigma, w)
% See also: cs_demo

% CXSparse, Copyright (c) 2006-2022, Timothy A. Davis. All Rights Reserved.
% SPDX-License-Identifier: LGPL-2.1+

beta = 1 ;
n = size (Lold,1) ;
L = Lold ;
% x = weros (n,1) ;
% worig = w ;

for k = 1:n

    alpha = w(k) / L(k,k) ;
    beta_new = sqrt (beta^2 + sigma*alpha^2) ;
    gamma = alpha / (beta_new * beta) ;

    if (sigma < 0)

        % downdate
        bratio = beta_new / beta ;
        w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ;
        L (k,k) = bratio * L (k,k) ;
        L (k+1:n,k) = bratio * L (k+1:n,k) - gamma*w(k+1:n) ;

    else

        % update
        bratio = beta / beta_new ;

%       wold = w (k+1:n) ;
%       w (k+1:n) = w (k+1:n) - alpha * L (k+1:n,k) ;
%       L (k    ,k) = bratio * L (k    ,k) + gamma*w(k) ;
%       L (k+1:n,k) = bratio * L (k+1:n,k) + gamma*wold ;

        L (k,k) = bratio * L (k,k) + gamma*w(k) ;
        for i = k+1:n 

            wold = w (i) ;
            w (i) = w (i) - alpha * L (i,k) ;
            L (i,k) = bratio * L (i,k) + gamma*wold ;

        end

    end

    w (k) = alpha ;

    beta = beta_new ;

end

% norm (w-(Lold\worig))