1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
// CXSparse/Source/cs_qrsol: x=A\b using a sparse QR factorization
// CXSparse, Copyright (c) 2006-2022, Timothy A. Davis. All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
#include "cs.h"
/* x=A\b where A can be rectangular; b overwritten with solution */
CS_INT cs_qrsol (CS_INT order, const cs *A, CS_ENTRY *b)
{
CS_ENTRY *x ;
css *S ;
csn *N ;
cs *AT = NULL ;
CS_INT k, m, n, ok ;
if (!CS_CSC (A) || !b) return (0) ; /* check inputs */
n = A->n ;
m = A->m ;
if (m >= n)
{
S = cs_sqr (order, A, 1) ; /* ordering and symbolic analysis */
N = cs_qr (A, S) ; /* numeric QR factorization */
x = cs_calloc (S ? S->m2 : 1, sizeof (CS_ENTRY)) ; /* get workspace */
ok = (S && N && x) ;
if (ok)
{
cs_ipvec (S->pinv, b, x, m) ; /* x(0:m-1) = b(p(0:m-1) */
for (k = 0 ; k < n ; k++) /* apply Householder refl. to x */
{
cs_happly (N->L, k, N->B [k], x) ;
}
cs_usolve (N->U, x) ; /* x = R\x */
cs_ipvec (S->q, x, b, n) ; /* b(q(0:n-1)) = x(0:n-1) */
}
}
else
{
AT = cs_transpose (A, 1) ; /* Ax=b is underdetermined */
S = cs_sqr (order, AT, 1) ; /* ordering and symbolic analysis */
N = cs_qr (AT, S) ; /* numeric QR factorization of A' */
x = cs_calloc (S ? S->m2 : 1, sizeof (CS_ENTRY)) ; /* get workspace */
ok = (AT && S && N && x) ;
if (ok)
{
cs_pvec (S->q, b, x, m) ; /* x(q(0:m-1)) = b(0:m-1) */
cs_utsolve (N->U, x) ; /* x = R'\x */
for (k = m-1 ; k >= 0 ; k--) /* apply Householder refl. to x */
{
cs_happly (N->L, k, N->B [k], x) ;
}
cs_pvec (S->pinv, x, b, n) ; /* b(0:n-1) = x(p(0:n-1)) */
}
}
cs_free (x) ;
cs_sfree (S) ;
cs_nfree (N) ;
cs_spfree (AT) ;
return (ok) ;
}
|