1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/GB_cuda_AxB_dot3: compute C<M> = A'*B on GPU(s)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This function computes C<M>=A'*B on the GPUs. The mask must be present,
// sparse or hypersparse, and not complemented. The mask is always applied. A
// and B can have any sparsity format. C is computed as sparse or hypersparse,
// with the same format as M.
#undef GB_FREE_WORKSPACE
#define GB_FREE_WORKSPACE \
{ \
if (stream != nullptr) \
{ \
cudaStreamSynchronize (stream) ; \
cudaStreamDestroy (stream) ; \
} \
stream = nullptr ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
#include "GB_cuda_AxB.hpp"
//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3
//------------------------------------------------------------------------------
GrB_Info GB_cuda_AxB_dot3 // C<M> = A'*B using dot product method
(
GrB_Matrix C, // output matrix
const GrB_Matrix M, // mask matrix
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix A, // input matrix
const GrB_Matrix B, // input matrix
const GrB_Semiring semiring, // semiring that defines C=A*B
const bool flipxy // if true, do z=fmult(b,a) vs fmult(a,b)
)
{
//--------------------------------------------------------------------------
// create the stream
//--------------------------------------------------------------------------
// FIXME: pass in a stream instead, or checkout a stream
cudaStream_t stream = nullptr ;
CUDA_OK (cudaStreamCreate (&stream)) ;
GpuTimer kernel_timer; // FIXME: delete this?
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// when CUDA is enabled, no static headers are used in all of GraphBLAS
GrB_Info info ;
ASSERT (C != NULL && !(C->header_size == 0)) ;
ASSERT (M != NULL && !(M->header_size == 0)) ;
ASSERT (A != NULL && !(A->header_size == 0)) ;
ASSERT (B != NULL && !(B->header_size == 0)) ;
ASSERT_MATRIX_OK (M, "M for dot3 cuda A'*B", GB0) ;
ASSERT_MATRIX_OK (A, "A for dot3 cuda A'*B", GB0) ;
ASSERT_MATRIX_OK (B, "B for dot3 cuda A'*B", GB0) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT_SEMIRING_OK (semiring, "semiring for dot3 numeric A'*B", GB0) ;
ASSERT (A->vlen == B->vlen) ;
GBURBLE ("(GPU dot3) ") ;
//--------------------------------------------------------------------------
// initializations
//--------------------------------------------------------------------------
int device = -1;
// FIXME: control the GPU to use via the descriptor
CUDA_OK (cudaSetDevice ( 0 )) ;
CUDA_OK (cudaGetDevice (&device)) ;
int number_of_sms = GB_Global_gpu_sm_get (0) ;
//--------------------------------------------------------------------------
// get M
//--------------------------------------------------------------------------
const int64_t mvlen = M->vlen ;
const int64_t mvdim = M->vdim ;
const int64_t mnz = GB_nnz (M) ;
const int64_t mnvec = M->nvec ;
const bool M_is_hyper = GB_IS_HYPERSPARSE( M ) ;
//--------------------------------------------------------------------------
// get the semiring operators
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
GrB_Monoid add = semiring->add ;
ASSERT (mult->ztype == add->op->ztype) ;
GB_Opcode mult_opcode = mult->opcode ;
if (mult->xtype->code == GB_BOOL_code)
{
mult_opcode = GB_boolean_rename (mult_opcode) ;
}
bool A_is_pattern, B_is_pattern ;
GB_binop_pattern (&A_is_pattern, &B_is_pattern, flipxy, mult_opcode) ;
//--------------------------------------------------------------------------
// allocate C, the same size and # of entries as M
//--------------------------------------------------------------------------
// FUTURE: ctype need not be the op->ztype
GrB_Type ctype = add->op->ztype ;
int64_t cvlen = mvlen ;
int64_t cvdim = mvdim ;
int64_t cnz = mnz ;
int64_t cnvec = mnvec ;
int M_sparsity = (M_is_hyper) ? GxB_HYPERSPARSE : GxB_SPARSE ;
int C_sparsity = M_sparsity ;
bool C_iso = false ; // FIXME: pass in C_iso and cscalar
bool C_in_iso = false ; // FIXME: pass in C_in_iso and cscalar
if (C_iso)
{
A_is_pattern = true ;
B_is_pattern = true ;
}
GB_OK (GB_new_bix (&C, // sparse or hyper (from M), existing header
ctype, cvlen, cvdim, GB_ph_malloc, /* is_csc: */ true,
M_sparsity, /* bitmap_calloc: */ false, M->hyper_switch, cnvec,
cnz+1, // add one to cnz for cumsum of Cwork
/* numeric: */ true, /* iso: */ C_iso,
/* C pji_is_32: */ M->p_is_32, M->j_is_32, M->i_is_32)) ;
//--------------------------------------------------------------------------
// Pre-fetch arrays that will be used on the device
//--------------------------------------------------------------------------
// GB_cuda_matrix_advise (C, cnvec, cnz, which, what, device)
// advise C
size_t psize = C->p_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t jsize = C->j_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t isize = C->i_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
// FIXME: make this a helper function, something like:
// GB_cuda_matrix_memadvise (C, GB_MEMADVISE_PHIX, device, stream) ;
CUDA_OK (cudaMemAdvise (C->p, (cnvec+1) * psize,
cudaMemAdviseSetPreferredLocation, device)) ;
if (M_is_hyper)
{
CUDA_OK (cudaMemAdvise (C->h, cnvec * jsize,
cudaMemAdviseSetPreferredLocation, device)) ;
}
CUDA_OK (cudaMemAdvise (C->i, (cnz+1) * isize,
cudaMemAdviseSetPreferredLocation, device)) ;
if (!C_iso)
{
CUDA_OK (cudaMemAdvise (C->x, (cnz+1) * C->type->size ,
cudaMemAdviseSetPreferredLocation, device)) ;
}
// prefetch M (if M hypersparse: using M->h not M->Y)
GB_OK (GB_cuda_matrix_prefetch (M,
Mask_struct ? GB_PREFETCH_PHBI : GB_PREFETCH_PHBIX, device, stream)) ;
//--------------------------------------------------------------------------
// copy Mp and Mh into C
//--------------------------------------------------------------------------
// FIXME: use shallow?
CUDA_OK (cudaMemcpyAsync (C->p, M->p, (cnvec+1) * psize,
cudaMemcpyDefault, stream)) ;
if (M_is_hyper)
{
CUDA_OK (cudaMemcpyAsync (C->h, M->h, cnvec * jsize,
cudaMemcpyDefault, stream)) ;
}
C->nvals = cnz ;
C->magic = GB_MAGIC ;
C->nvec_nonempty = M->nvec_nonempty ; // FIXME
C->nvec = cnvec ;
C->jumbled = GB_JUMBLED (M) ; // C is jumbled if M is jumbled
GBURBLE ("(GPU C created and copied from M) ") ;
//--------------------------------------------------------------------------
// prefetch A and B
//--------------------------------------------------------------------------
// M might be very very sparse. A(:,i) is not needed if M(:,i) is empty.
// Likewise, B(:,j) is not needed if M(:,j) is empty. For now, try this
// heuristic: if M is hypersparse, then do not prefetch A->b or A->x.
int prefetch_b = (M_is_hyper) ? 0 : GB_PREFETCH_B ;
int prefetch_x = (M_is_hyper) ? 0 : GB_PREFETCH_X ;
int prefetch_pybi = GB_PREFETCH_PYI + prefetch_b ;
// prefetch A (if A hypersparse: using A->Y)
GB_OK (GB_cuda_matrix_prefetch (A, prefetch_pybi +
(A_is_pattern ? 0 : prefetch_x), device, stream)) ;
// prefetch B (if B hypersparse: using B->Y)
GB_OK (GB_cuda_matrix_prefetch (B, prefetch_pybi +
(B_is_pattern ? 0 : prefetch_x), device, stream)) ;
//--------------------------------------------------------------------------
// C<M>=A'*B on CUDA, in the JIT
//--------------------------------------------------------------------------
GB_OK (GB_cuda_AxB_dot3_jit (C, M, Mask_struct, A, B, semiring, flipxy,
stream, device, number_of_sms)) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C result from dot3 cuda A'*B", GB0) ;
GB_FREE_WORKSPACE ;
return GrB_SUCCESS;
}
|