1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_GB_AxB_dot3_phase2.cuh
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// AxB_dot3_phase2: fill the global buckets
//------------------------------------------------------------------------------
// BlockPrefixCallbackOp
//------------------------------------------------------------------------------
// A stateful callback functor that maintains a running prefix to be applied
// during consecutive scan operations.
struct BlockPrefixCallbackOp
{
// Running prefix
int64_t running_total ;
// Constructor
__device__ BlockPrefixCallbackOp (int64_t running_total) :
running_total(running_total) {}
// Callback operator to be entered by the first warp of threads in the
// block. Thread-0 is responsible for returning a value for seeding the
// block-wide scan.
__device__ int64_t operator()(int64_t block_aggregate)
{
int64_t old_prefix = running_total ;
running_total += block_aggregate ;
return old_prefix ;
}
} ;
//------------------------------------------------------------------------------
// blockBucketExclusiveSum
//------------------------------------------------------------------------------
__inline__ __device__ void blockBucketExclusiveSum
(
int bucketId,
int64_t *d_data,
int nblocks
)
{
// Specialize BlockScan for a 1D block of 32 threads
typedef cub::BlockScan<int64_t, 32, cub::BLOCK_SCAN_WARP_SCANS> BlockScan ;
// Allocate shared memory for BlockScan
__shared__ typename BlockScan::TempStorage temp_storage ;
// Initialize running total
BlockPrefixCallbackOp prefix_op (0) ;
// Have the block iterate over segments of items
int64_t data = 0 ;
int64_t *blockbucket = d_data ;
for (int block_id = 0 ; block_id < nblocks ; block_id += blocksize)
{
// Load a segment of consecutive items that are blocked across threads
int loc = block_id + threadIdx.x;
if (loc < nblocks)
{
data = blockbucket [bucketId*nblocks + loc] ;
}
this_thread_block().sync() ;
// Collectively compute the block-wide exclusive prefix sum
BlockScan(temp_storage).ExclusiveSum (data, data, prefix_op) ;
this_thread_block().sync() ;
if (loc < nblocks)
{
blockbucket [bucketId*nblocks + loc] = data ;
}
// this_thread_block().sync();
data = 0 ;
}
}
//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3_phase2_kernel
//------------------------------------------------------------------------------
// GB_cuda_AxB__dot3_phase2 is a CUDA kernel that takes as input the
// nanobuckets and blockbucket arrays computed by the first phase kernel,
// GB_cuda_AxB__dot3_phase1. The launch geometry of this kernel must match
// the GB_cuda_AxB_dot3_phase1 kernel, with the same # of threads and
// threadblocks.
__global__ void GB_cuda_AxB_dot3_phase2_kernel
(
// input, not modified:
int64_t *__restrict__ blockbucket, // global bucket count,
// of size NBUCKETS*nblocks
// output:
int64_t *__restrict__ offset, // global offsets, for each bucket
// inputs, not modified:
const int nblocks // input number of blocks to reduce
// across, ie size of vector for 1 bucket
)
{
//--------------------------------------------------------------------------
// sum up the bucket counts of prior threadblocks
//--------------------------------------------------------------------------
// blockbucket is an array of size NBUCKETS-by-nblocks, held by row. The
// entry blockbucket [bucket * nblocks + t] holds the # of entries
// in the bucket (in range 0 to NBUCKETS-1) found by threadblock t.
uint64_t s [NBUCKETS] ;
#pragma unroll
for (int b = 0 ; b < NBUCKETS ; b++)
{
s [b] = 0 ;
}
thread_block_tile<32> tile = tiled_partition<32>(this_thread_block() );
#pragma unroll
for (int b = 0 ; b < NBUCKETS ; b++)
{
for (int64_t tid = threadIdx.x + blockIdx.x * blockDim.x ;
tid < nblocks ;
tid += blockDim.x*gridDim.x)
{
s [b] += blockbucket [b * nblocks + tid] ;
}
this_thread_block().sync();
s [b] = GB_cuda_tile_sum_uint64 (tile, s [b]) ;
}
if (threadIdx.x == 0)
{
#pragma unroll
for (int b = 0 ; b < NBUCKETS ; b++)
{
atomicAdd ((unsigned long long int*) &(offset [b]), s [b]) ;
}
}
this_thread_block().sync();
if (gridDim.x >= NBUCKETS)
{
// Cumulative sum across blocks for each bucket
if (blockIdx.x <NBUCKETS)
{
blockBucketExclusiveSum (blockIdx.x, blockbucket, nblocks) ;
}
}
else
{
if (blockIdx.x == 0)
{
#pragma unroll
for (int b = 0 ; b < NBUCKETS ; b++)
{
blockBucketExclusiveSum (b, blockbucket, nblocks) ;
}
}
}
}
|