File: GB_cuda_jit_AxB_dot3_phase3_dndn.cuh

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (223 lines) | stat: -rw-r--r-- 8,313 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_dndn.cuh
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// This CUDA kernel produces the semiring product of two dense matrices of
// types GB_A_TYPE and GB_B_TYPE and common index space size n, to an output
// matrix of type GB_C_TYPE. The matrices are dense, with uniform non-zeros and
// sparsity patterns.  ie. we want to produce C = A'*B in the sense of the
// given semi-ring.

// This version uses a simple warp-based dense dot product algorithm, when the
// vectors coming from both A and B are dense, for any size of N.

// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x

// Let b = blockIdx.x, and let s be blockDim.x. s= 32 with a variable number
// of active threads = min( min(nzA, nzB), 32) 

// Thus, threadblock b owns a semi-ring dot product on a pair of vectors. 
// The work is to load the data, do the multiply and add work and finally 
// reduce this data to a scalar, and write it to Cx[pair].

//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3_phase3_dndn_kernel
//------------------------------------------------------------------------------

__global__ void GB_cuda_AxB_dot3_phase3_dndn_kernel
(
    GrB_Matrix C,   // result matrix
    GrB_Matrix M,   // mask matrix
    GrB_Matrix A,   // input matrix A
    GrB_Matrix B,   // input matrix B
    const void *theta
)
{

    //--------------------------------------------------------------------------
    // get C, M, A, and B
    //--------------------------------------------------------------------------

    #if !GB_A_IS_PATTERN
    const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x  ;
    #endif
    #if !GB_A_IS_PATTERN
    const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x  ;
    #endif
          GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x  ;
          GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
    const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
    #if GB_M_IS_HYPER
    const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
    #endif
    // A and B are either bitmap or full
    #if GB_A_IS_BITMAP
    const int8_t  *__restrict__ Ab = A->b ;
    #endif
    #if GB_B_IS_BITMAP
    const int8_t  *__restrict__ Bb = B->b ;
    #endif

    // zombie count
    uint64_t zc = 0 ;

    GB_M_NVALS (mnz) ;

    // total items to be inspected
    int64_t vlen = A->vlen ;
    ASSERT (vlen == B->vlen) ;
    ASSERT (vlen > 0) ;

    //--------------------------------------------------------------------------
    // compute C(i,j) = A(:,i)'*B(:,j) for each entry in M(i,j)
    //--------------------------------------------------------------------------

    for (int64_t pM = blockIdx.x ; pM < mnz ; pM += gridDim.x)
    {

        //----------------------------------------------------------------------
        // get M(i,j) and C(i,j)
        //----------------------------------------------------------------------

        int64_t i = Mi [pM] ;
        int64_t kth = Ci [pM] ;             // C(i,j) is in the kth vector of C
        bool cij_exists = false ;
        GB_DECLARE_IDENTITY (cij) ;         // GB_Z_TYPE cij = identity

        //----------------------------------------------------------------------
        // The threadblock cooperates to compute a single entry C(i,j)
        //----------------------------------------------------------------------

        #ifndef GB_MASK_STRUCT
        // skip if C(i,j) is a prezombie
        if (kth >= 0)
        #endif
        {

            // j = kth or j = Mh [kth] if C and M are hypersparse
            int64_t j = GBh_M (Mh, kth) ;
            int64_t pA = vlen * i ;
            int64_t pB = vlen * j ;

            GB_DECLAREA (aki) ;
            GB_DECLAREB (bkj) ;

            #if GB_A_IS_FULL && GB_B_IS_FULL
            {
                cij_exists = true ;
                for (int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
                { 
                    // cij += A(k,i) * B(k,j)
                    GB_GETA (aki, Ax, pA+k, ) ;           // aki = A(k,i)
                    GB_GETB (bkj, Bx, pB+k, ) ;           // bkj = B(k,j)
                    GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
                }
            }
            #elif GB_A_IS_BITMAP && GB_B_IS_BITMAP
            {
                for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
                { 
                    GB_GETA (aki, Ax, pA+k, ) ;           // aki = A(k,i)
                    GB_GETB (bkj, Bx, pB+k, ) ;           // bkj = B(k,j)
                    int8_t b = (Ab [pA+k] && Bb [pB+k]) ;
                    cij_exists |= b ;
                    if (b)
                    {
                        // cij += aki * bkj
                        GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
                    }
                }
            }
            #elif GB_A_IS_FULL && GB_B_IS_BITMAP
            {
                for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
                { 
                    if (Bb [pB+k])
                    {
                        GB_GETA (aki, Ax, pA+k, ) ;           // aki = A(k,i)
                        GB_GETB (bkj, Bx, pB+k, ) ;           // bkj = B(k,j)
                        // cij += aki * bkj
                        GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
                        cij_exists = true ;
                    }
                }
            }
            #elif GB_A_IS_BITMAP && GB_B_IS_FULL
            {
                for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
                { 
                    if (Ab [pB+k])
                    {
                        GB_GETA (aki, Ax, pA+k, ) ;           // aki = A(k,i)
                        GB_GETB (bkj, Bx, pB+k, ) ;           // bkj = B(k,j)
                        // cij += aki * bkj
                        GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
                        cij_exists = true ;
                    }
                }
            }
            #endif
        }

        //----------------------------------------------------------------------
        // reduce per-thread sums to a single scalar
        //----------------------------------------------------------------------

        // FIXME: no need to do this if C(i,j) is a zombie (cij_exists is
        // always false), or if A and B are both full and C(i,j) is not a
        // zombie (cij_exists is always true).

        // FIXME: this only works if the size of the thread block is 32,
        // right?

        // Do vote here for control.
        thread_block_tile<32> tile = tiled_partition<32> (this_thread_block()) ;

        // FIXME: tile.any takes an int predicate, not bool. How does this work?
        cij_exists = tile.any (cij_exists) ;
        tile.sync();

        #if !GB_C_ISO
        // FIXME: the ANY monoid needs the cij_exists for each thread
        cij = GB_cuda_tile_reduce_ztype (tile, cij) ;
        #endif

        // FIXME: if A and B are full, and GB_MASK_STRUCT is true, cij_exists
        // is always true because vlen > 0 always holds for this kernel.

        // FIXME: if kth < 0, C(i,j) is a prezombie, and Ci [pM] already holds
        // GB_ZOMBIE (i).

        // write result for this block to global mem
        if (threadIdx.x == 0)
        {
            if (cij_exists)
            {
                // Cx [pM] = (GB_C_TYPE) cij
                GB_PUTC (cij, Cx, pM) ;
                Ci [pM] = i ;
            }
            else
            {
                // cij is a zombie
                zc++ ;
                Ci [pM] = GB_ZOMBIE (i) ;
            }
        }

        // __syncthreads ( ) ;

        if( threadIdx.x ==0 && zc > 0)
        {
            GB_cuda_atomic_add <uint64_t>( &(C->nzombies), zc) ;
        }
    }
}