1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_dndn.cuh
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This CUDA kernel produces the semiring product of two dense matrices of
// types GB_A_TYPE and GB_B_TYPE and common index space size n, to an output
// matrix of type GB_C_TYPE. The matrices are dense, with uniform non-zeros and
// sparsity patterns. ie. we want to produce C = A'*B in the sense of the
// given semi-ring.
// This version uses a simple warp-based dense dot product algorithm, when the
// vectors coming from both A and B are dense, for any size of N.
// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x
// Let b = blockIdx.x, and let s be blockDim.x. s= 32 with a variable number
// of active threads = min( min(nzA, nzB), 32)
// Thus, threadblock b owns a semi-ring dot product on a pair of vectors.
// The work is to load the data, do the multiply and add work and finally
// reduce this data to a scalar, and write it to Cx[pair].
//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3_phase3_dndn_kernel
//------------------------------------------------------------------------------
__global__ void GB_cuda_AxB_dot3_phase3_dndn_kernel
(
GrB_Matrix C, // result matrix
GrB_Matrix M, // mask matrix
GrB_Matrix A, // input matrix A
GrB_Matrix B, // input matrix B
const void *theta
)
{
//--------------------------------------------------------------------------
// get C, M, A, and B
//--------------------------------------------------------------------------
#if !GB_A_IS_PATTERN
const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x ;
#endif
#if !GB_A_IS_PATTERN
const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x ;
#endif
GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x ;
GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
#if GB_M_IS_HYPER
const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
#endif
// A and B are either bitmap or full
#if GB_A_IS_BITMAP
const int8_t *__restrict__ Ab = A->b ;
#endif
#if GB_B_IS_BITMAP
const int8_t *__restrict__ Bb = B->b ;
#endif
// zombie count
uint64_t zc = 0 ;
GB_M_NVALS (mnz) ;
// total items to be inspected
int64_t vlen = A->vlen ;
ASSERT (vlen == B->vlen) ;
ASSERT (vlen > 0) ;
//--------------------------------------------------------------------------
// compute C(i,j) = A(:,i)'*B(:,j) for each entry in M(i,j)
//--------------------------------------------------------------------------
for (int64_t pM = blockIdx.x ; pM < mnz ; pM += gridDim.x)
{
//----------------------------------------------------------------------
// get M(i,j) and C(i,j)
//----------------------------------------------------------------------
int64_t i = Mi [pM] ;
int64_t kth = Ci [pM] ; // C(i,j) is in the kth vector of C
bool cij_exists = false ;
GB_DECLARE_IDENTITY (cij) ; // GB_Z_TYPE cij = identity
//----------------------------------------------------------------------
// The threadblock cooperates to compute a single entry C(i,j)
//----------------------------------------------------------------------
#ifndef GB_MASK_STRUCT
// skip if C(i,j) is a prezombie
if (kth >= 0)
#endif
{
// j = kth or j = Mh [kth] if C and M are hypersparse
int64_t j = GBh_M (Mh, kth) ;
int64_t pA = vlen * i ;
int64_t pB = vlen * j ;
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
#if GB_A_IS_FULL && GB_B_IS_FULL
{
cij_exists = true ;
for (int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
{
// cij += A(k,i) * B(k,j)
GB_GETA (aki, Ax, pA+k, ) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k, ) ; // bkj = B(k,j)
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; // cij += aki * bkj
}
}
#elif GB_A_IS_BITMAP && GB_B_IS_BITMAP
{
for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
{
GB_GETA (aki, Ax, pA+k, ) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k, ) ; // bkj = B(k,j)
int8_t b = (Ab [pA+k] && Bb [pB+k]) ;
cij_exists |= b ;
if (b)
{
// cij += aki * bkj
GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
}
}
}
#elif GB_A_IS_FULL && GB_B_IS_BITMAP
{
for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
{
if (Bb [pB+k])
{
GB_GETA (aki, Ax, pA+k, ) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k, ) ; // bkj = B(k,j)
// cij += aki * bkj
GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
cij_exists = true ;
}
}
}
#elif GB_A_IS_BITMAP && GB_B_IS_FULL
{
for ( int64_t k = threadIdx.x ; k < vlen ; k += blockDim.x)
{
if (Ab [pB+k])
{
GB_GETA (aki, Ax, pA+k, ) ; // aki = A(k,i)
GB_GETB (bkj, Bx, pB+k, ) ; // bkj = B(k,j)
// cij += aki * bkj
GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
cij_exists = true ;
}
}
}
#endif
}
//----------------------------------------------------------------------
// reduce per-thread sums to a single scalar
//----------------------------------------------------------------------
// FIXME: no need to do this if C(i,j) is a zombie (cij_exists is
// always false), or if A and B are both full and C(i,j) is not a
// zombie (cij_exists is always true).
// FIXME: this only works if the size of the thread block is 32,
// right?
// Do vote here for control.
thread_block_tile<32> tile = tiled_partition<32> (this_thread_block()) ;
// FIXME: tile.any takes an int predicate, not bool. How does this work?
cij_exists = tile.any (cij_exists) ;
tile.sync();
#if !GB_C_ISO
// FIXME: the ANY monoid needs the cij_exists for each thread
cij = GB_cuda_tile_reduce_ztype (tile, cij) ;
#endif
// FIXME: if A and B are full, and GB_MASK_STRUCT is true, cij_exists
// is always true because vlen > 0 always holds for this kernel.
// FIXME: if kth < 0, C(i,j) is a prezombie, and Ci [pM] already holds
// GB_ZOMBIE (i).
// write result for this block to global mem
if (threadIdx.x == 0)
{
if (cij_exists)
{
// Cx [pM] = (GB_C_TYPE) cij
GB_PUTC (cij, Cx, pM) ;
Ci [pM] = i ;
}
else
{
// cij is a zombie
zc++ ;
Ci [pM] = GB_ZOMBIE (i) ;
}
}
// __syncthreads ( ) ;
if( threadIdx.x ==0 && zc > 0)
{
GB_cuda_atomic_add <uint64_t>( &(C->nzombies), zc) ;
}
}
}
|