1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_spdn.cuh
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This CUDA kernel produces the semi-ring product of two sparse matrices of
// types GB_A_TYPE and GB_B_TYPE and common index space size n, to an output
// matrix of type GB_C_TYPE. The matrices are sparse, with different numbers of
// non-zeros and different sparsity patterns. ie. we want to produce C = A'*B
// in the sense of the given semi-ring.
// This version uses an entire threadblock to compute each C(i,j) dot product.
// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x
//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3_phase3_spdn_kernel
//------------------------------------------------------------------------------
__global__ void GB_cuda_AxB_dot3_phase3_spdn_kernel
(
int64_t start, // start of vector pairs for this kernel
int64_t end, // end of vector pairs for this kernel
int64_t *Bucket, // do the work in Bucket [start:end-1]
GrB_Matrix C, // result matrix
GrB_Matrix M, // mask matrix
GrB_Matrix A, // input matrix A
GrB_Matrix B, // input matrix B
const void *theta
)
{
// sparse-times-dense or dense-times-sparse
#if !(((GB_A_IS_SPARSE || GB_A_IS_HYPER) && \
(GB_B_IS_BITMAP || GB_B_IS_FULL)) \
|| \
((GB_B_IS_SPARSE || GB_B_IS_HYPER) && \
(GB_A_IS_BITMAP || GB_A_IS_FULL)))
#error "spdn: for sparse-dense or dense-sparse cases only"
#endif
#if !GB_A_IS_PATTERN
const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x ;
#endif
#if !GB_B_IS_PATTERN
const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x ;
#endif
GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x ;
GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
#if GB_M_IS_HYPER
const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
#endif
#if GB_A_IS_HYPER || GB_A_IS_SPARSE
const GB_Ai_TYPE *__restrict__ Ai = (GB_Ai_TYPE *) A->i ;
const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;
#else
const int64_t avlen = A->vlen ;
#endif
#if GB_A_IS_BITMAP
const int8_t *__restrict__ Ab = A->b ;
#endif
#if GB_B_IS_HYPER || GB_B_IS_SPARSE
const GB_Bi_TYPE *__restrict__ Bi = (GB_Bi_TYPE *) B->i ;
const GB_Bp_TYPE *__restrict__ Bp = (GB_Bp_TYPE *) B->p ;
#else
const int64_t bvlen = B->vlen ;
#endif
#if GB_B_IS_BITMAP
const int8_t *__restrict__ Bb = B->b ;
#endif
#if GB_A_IS_HYPER
const int64_t anvec = A->nvec ;
const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h ;
const void *A_Yp = (void *) ((A->Y == NULL) ? NULL : A->Y->p) ;
const void *A_Yi = (void *) ((A->Y == NULL) ? NULL : A->Y->i) ;
const void *A_Yx = (void *) ((A->Y == NULL) ? NULL : A->Y->x) ;
const int64_t A_hash_bits = (A->Y == NULL) ? 0 : (A->Y->vdim - 1) ;
#endif
#if GB_B_IS_HYPER
const int64_t bnvec = B->nvec ;
const GB_Bj_TYPE *__restrict__ Bh = (GB_Bj_TYPE *) B->h ;
const void *B_Yp = (void *) ((B->Y == NULL) ? NULL : B->Y->p) ;
const void *B_Yi = (void *) ((B->Y == NULL) ? NULL : B->Y->i) ;
const void *B_Yx = (void *) ((B->Y == NULL) ? NULL : B->Y->x) ;
const int64_t B_hash_bits = (B->Y == NULL) ? 0 : (B->Y->vdim - 1) ;
#endif
// zombie count for this threadblock
uint64_t zc = 0 ;
thread_block_tile<tile_sz> tile =
tiled_partition<tile_sz> (this_thread_block()) ;
GB_M_NVALS (mnz) ;
ASSERT (GB_M_IS_SPARSE || GB_M_IS_HYPER) ;
int64_t cnz_in_bucket = end - start ;
int all_in_one = (cnz_in_bucket == mnz) ;
// Main loop over pairs
int64_t kk ;
for (kk = start + blockIdx.x ; // warp per C(i,j)=A(:,i)'*B(:,j) dot product
kk < end ;
kk += gridDim.x)
{
//----------------------------------------------------------------------
// get M(i,j) and C(i,j)
//----------------------------------------------------------------------
int64_t pair_id = all_in_one ? kk : Bucket [kk] ;
int64_t i = Mi [pair_id] ;
int64_t k = Ci [pair_id] >> 4 ;
// assert: Ci [pair_id] & 0xF == GB_BUCKET_SPDN
// j = k or j = Mh [k] if C and M are hypersparse
int64_t j = GBh_M (Mh, k) ;
//----------------------------------------------------------------------
// get A(:,i)
//----------------------------------------------------------------------
#if GB_A_IS_HYPER
int64_t pA, pA_end ;
GB_hyper_hash_lookup (GB_Ap_IS_32, GB_Aj_IS_32,
Ah, anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, i, &pA, &pA_end) ;
#elif GB_A_IS_SPARSE
int64_t pA = Ap [i] ;
int64_t pA_end = Ap [i+1] ;
#else
// A is bitmap or full: only pA is needed
int64_t pA = avlen * i ;
#endif
//----------------------------------------------------------------------
// get B(:,j)
//----------------------------------------------------------------------
#if GB_B_IS_HYPER
int64_t pB, pB_end ;
GB_hyper_hash_lookup (GB_Bp_IS_32, GB_Bj_IS_32,
Bh, bnvec, Bp, B_Yp, B_Yi, B_Yx, B_hash_bits, j, &pB, &pB_end) ;
#elif GB_B_IS_SPARSE
int64_t pB = Bp [j] ;
int64_t pB_end = Bp [j+1] ;
#else
// B is bitmap or full: only pB is needed
int64_t pB = bvlen * j ;
#endif
//----------------------------------------------------------------------
// C(i,j) = A(:,i)'*B(:,j) using the entire threadblock
//----------------------------------------------------------------------
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
GB_DECLARE_IDENTITY (cij) ; // GB_Z_TYPE cij = identity
int cij_exists = 0 ;
#if ( GB_A_IS_FULL )
{
//------------------------------------------------------------------
// A is full and B is sparse/hyper
//------------------------------------------------------------------
cij_exists = true ;
for (int64_t p = pB + threadIdx.x ; p < pB_end ; p += blockDim.x)
{
int64_t k = Bi [p] ; // next row index of B(:,j)
// cij += A(k,i) * B(k,j)
GB_GETA ( aki, Ax, pA+k, ) ; // aki = A(k,i)
GB_GETB ( bkj, Bx, p, ) ; // bkj = B(k,j)
// cij += aki * bkj
GB_MULTADD ( cij, aki, bkj, i, k, j ) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
#elif ( GB_A_IS_BITMAP )
{
//------------------------------------------------------------------
// A is bitmap and B is sparse/hyper
//------------------------------------------------------------------
for (int64_t p = pB + threadIdx.x ; p < pB_end ; p += blockDim.x)
{
int64_t k = Bi [p] ; // next row index of B(:,j)
if (Ab [pA+k]) // check if A(k,i) exists
{
// cij += A(k,i) * B(k,j)
GB_DOT_MERGE (pA+k, p) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#elif ( GB_B_IS_FULL )
{
//------------------------------------------------------------------
// A is sparse/hyper and B is full
//------------------------------------------------------------------
cij_exists = true ;
for (int64_t p = pA + threadIdx.x ; p < pA_end ; p += blockDim.x)
{
int64_t k = Ai [p] ; // next row index of A(:,i)
// cij += A(k,i) * B(k,j)
GB_GETA ( aki, Ax, p, ) ; // aki = A(i,k)
GB_GETB ( bkj, Bx, pB+k, ) ; // bkj = B(j,k)
// cij += aik * bjk
GB_MULTADD ( cij, aki, bkj, i, k, j) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
#elif ( GB_B_IS_BITMAP )
{
//------------------------------------------------------------------
// A is sparse/hyper and B is bitmap
//------------------------------------------------------------------
for (int64_t p = pA + threadIdx.x ; p < pA_end ; p += blockDim.x)
{
int64_t k = Ai [p] ; // next row index of A(:,i)
if (Bb [pB+k]) // check if B(k,j) exists
{
// cij += A(k,i) * B(k,j)
GB_DOT_MERGE (p, pB+k) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#endif
//----------------------------------------------------------------------
// save C(i,j) or declare it a zombie
//----------------------------------------------------------------------
GB_CIJ_EXIST_POSTCHECK
//----------------------------------------------------------------------
// reduce sum per-thread values to a single scalar, get OR of flag
//----------------------------------------------------------------------
// Do vote here for control
cij_exists = tile.any (cij_exists) ;
tile.sync ( ) ;
#if !GB_C_ISO
if (cij_exists)
{
// FIXME: the ANY monoid needs cij_exists for each thread
cij = GB_cuda_tile_reduce_ztype (tile, cij) ;
}
#endif
// write result for this block to global mem
if (threadIdx.x == 0)
{
if (cij_exists)
{
// Cx [pair_id] = (GB_C_TYPE) cij
GB_PUTC (cij, Cx, pair_id) ;
Ci [pair_id] = i ;
}
else
{
// cij is a zombie
zc++ ;
Ci [pair_id] = GB_ZOMBIE (i) ;
}
}
//__syncthreads();
}
//--------------------------------------------------------------------------
// sum up the global zombie count
//--------------------------------------------------------------------------
if (threadIdx.x == 0 && zc > 0)
{
GB_cuda_atomic_add <uint64_t> (&(C->nzombies), zc) ;
}
}
|