File: GB_cuda_jit_AxB_dot3_phase3_vsdn.cuh

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (280 lines) | stat: -rw-r--r-- 10,450 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_vsdn.cuh
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

//******************************************************************************
//  Sparse dot products in batch form, sparse - dense case. 
//  Each thread in this kernel is responsible for m vector-pairs(x,y), 
//  m = 256/sz, where sz is in {4, 16, 64, 256}
//  We know each non-zero on the sparse side will hit a dense value.
//  Parameters:

//  C         <- C result matrix 
//  M         <- Mask matrix 
//  A         <- A matrix to multiply, sparse 
//  B         <- B matrix to multiply, dense in sparse format? 
//******************************************************************************

//------------------------------------------------------------------------------
// GB_cuda_AxB_dot3_phase3_vsdn_kernel
//------------------------------------------------------------------------------

__global__ void GB_cuda_AxB_dot3_phase3_vsdn_kernel
( 
    int64_t start,
    int64_t end,
    int64_t *Bucket,  // do the work in Bucket [start:end-1]
    GrB_Matrix C, 
    GrB_Matrix M, 
    GrB_Matrix A, 
    GrB_Matrix B,
    const void *theta
)
{

    // sparse-times-dense or dense-times-sparse
    #if !(((GB_A_IS_SPARSE || GB_A_IS_HYPER) &&         \
           (GB_B_IS_BITMAP || GB_B_IS_FULL))            \
            ||                                          \
          ((GB_B_IS_SPARSE || GB_B_IS_HYPER) &&         \
           (GB_A_IS_BITMAP || GB_A_IS_FULL)))
    #error "vsdn: for sparse-dense or dense-sparse cases only"
    #endif

    #if !GB_A_IS_PATTERN
    const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x  ;
    #endif
    #if !GB_B_IS_PATTERN
    const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x  ;
    #endif
          GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x  ;
    GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
    const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
    #if GB_M_IS_HYPER
    const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
    #endif

    #if GB_A_IS_HYPER || GB_A_IS_SPARSE
    const GB_Ai_TYPE *__restrict__ Ai = (GB_Ai_TYPE *) A->i ;
    const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;
    #else
    const int64_t avlen = A->vlen ;
    #endif

    #if GB_A_IS_BITMAP
    const int8_t *__restrict__ Ab = A->b ;
    #endif

    #if GB_B_IS_HYPER || GB_B_IS_SPARSE
    const GB_Bi_TYPE *__restrict__ Bi = (GB_Bi_TYPE *) B->i ;
    const GB_Bp_TYPE *__restrict__ Bp = (GB_Bp_TYPE *) B->p ;
    #else
    const int64_t bvlen = B->vlen ;
    #endif

    #if GB_B_IS_BITMAP
    const int8_t *__restrict__ Bb = B->b ;
    #endif

    #if GB_A_IS_HYPER
    const int64_t anvec = A->nvec ;
    const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h ;
    const void *A_Yp = (void *) ((A->Y == NULL) ? NULL : A->Y->p) ;
    const void *A_Yi = (void *) ((A->Y == NULL) ? NULL : A->Y->i) ;
    const void *A_Yx = (void *) ((A->Y == NULL) ? NULL : A->Y->x) ;
    const int64_t A_hash_bits = (A->Y == NULL) ? 0 : (A->Y->vdim - 1) ;
    #endif

    #if GB_B_IS_HYPER
    const int64_t bnvec = B->nvec ;
    const GB_Bj_TYPE *__restrict__ Bh = (GB_Bj_TYPE *) B->h ;
    const void *B_Yp = (void *) ((B->Y == NULL) ? NULL : B->Y->p) ;
    const void *B_Yi = (void *) ((B->Y == NULL) ? NULL : B->Y->i) ;
    const void *B_Yx = (void *) ((B->Y == NULL) ? NULL : B->Y->x) ;
    const int64_t B_hash_bits = (B->Y == NULL) ? 0 : (B->Y->vdim - 1) ;
    #endif

    uint64_t zc = 0 ;       // zombie count

    GB_M_NVALS (mnz) ;
    ASSERT (GB_M_IS_SPARSE || GB_M_IS_HYPER) ;
    int64_t cnz_in_bucket = end - start ;
    int all_in_one = (cnz_in_bucket == mnz) ;

    for (int64_t kk = start + threadIdx.x + blockIdx.x*blockDim.x ;
                 kk < end ;
                 kk += gridDim.x*blockDim.x)
    {

        //----------------------------------------------------------------------
        // get the entry C(i,j)
        //----------------------------------------------------------------------

        int64_t pair_id = all_in_one ? kk : Bucket[ kk ];
        int64_t i = Mi [pair_id] ;
        int64_t k = Ci [pair_id] >> 4;  // vector of C encoded in phase1
        // assert: Ci [pair_id] & 0xF == GB_BUCKET_VSDN
        // j = k or j = Mh [k] if C and M are hypersparse
        int64_t j = GBh_M (Mh, k) ;

        //----------------------------------------------------------------------
        // get A(:,i)
        //----------------------------------------------------------------------

        #if GB_A_IS_HYPER
        int64_t pA, pA_end ;
        GB_hyper_hash_lookup (GB_Ap_IS_32, GB_Aj_IS_32,
            Ah, anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, i, &pA, &pA_end) ;
        #elif GB_A_IS_SPARSE
        int64_t pA     = Ap[i] ;
        int64_t pA_end = Ap[i+1] ;
        #else
        // A is bitmap or full: only pA is needed
        int64_t pA = avlen * i ;
        #endif

        //----------------------------------------------------------------------
        // get B(:,j)
        //----------------------------------------------------------------------

        #if GB_B_IS_HYPER
        int64_t pB, pB_end ;
        GB_hyper_hash_lookup (GB_Bp_IS_32, GB_Bj_IS_32,
            Bh, bnvec, Bp, B_Yp, B_Yi, B_Yx, B_hash_bits, j, &pB, &pB_end) ;
        #elif GB_B_IS_SPARSE
        int64_t pB       = Bp [j] ;
        int64_t pB_end   = Bp [j+1] ;
        #else
        // B is bitmap or full: only pB is needed
        int64_t pB = bvlen * j ;
        #endif

        //----------------------------------------------------------------------
        // C(i,j) = A(:,i)'*B(:,j)
        //----------------------------------------------------------------------

        GB_DECLAREA (aki) ;
        GB_DECLAREB (bkj) ;
        GB_DECLARE_IDENTITY (cij) ;         // GB_Z_TYPE cij = identity
        bool cij_exists = false ;

        uint64_t my_nzombies = 0 ;

        #if ( GB_A_IS_FULL )
        {
            int64_t nnzB = pB_end - pB ;
            if (nnzB > 0)
            {

                //--------------------------------------------------------------
                // A is full and B is sparse/hyper
                //--------------------------------------------------------------

                cij_exists = true ;
                for (int64_t p = pB ; p < pB_end ; p++)
                {
                    int64_t k = Bi [p] ;        // next row index of B(:,j)
                    // cij += A(k,i) * B(k,j)
                    GB_GETA ( aki, Ax, pA+k, ) ;           // aki = A(k,i)
                    GB_GETB ( bkj, Bx, p, ) ;              // bkj = B(k,j)
                    GB_MULTADD ( cij, aki, bkj, i, k, j) ; // cij += aki * bkj
                    GB_DOT_TERMINAL (cij) ;     // break if cij == terminal
                }
            }
        }
        #elif ( GB_A_IS_BITMAP )
        {
            //------------------------------------------------------------------
            // A is bitmap and B is sparse/hyper
            //------------------------------------------------------------------

            for (int64_t p = pB ; p < pB_end ; p++)
            {
                int64_t k = Bi [p] ;        // next row index of B(:,j)
                if (Ab [pA+k])              // check if A(k,i) exists
                {
                    // cij += A(k,i) * B(k,j)
                    GB_DOT_MERGE (pA+k, p) ;
                    GB_DOT_TERMINAL (cij) ;     // break if cij == terminal
                }
            }
        }
        #elif ( GB_B_IS_FULL )
        {
            int64_t nnzA = pA_end - pA ;
            if (nnzA > 0)
            {

                //--------------------------------------------------------------
                // A is sparse/hyper and B is full
                //--------------------------------------------------------------

                cij_exists = true ;
                for (int64_t p = pA ; p < pA_end ; p++)
                {
                    int64_t k = Ai [p] ;        // next row index of A(:,i)
                    // cij += A(k,i) * B(k,j)
                    GB_GETA ( aki, Ax, p, ) ;              // aki = A(i,k)
                    GB_GETB ( bkj, Bx, pB+k, ) ;           // bkj = B(j,k)
                    GB_MULTADD ( cij, aki, bkj, i, k, j) ; // cij += aik * bjk
                    GB_DOT_TERMINAL (cij) ;     // break if cij == terminal
                }
            }
        }
        #elif ( GB_B_IS_BITMAP )
        {

            //------------------------------------------------------------------
            // A is sparse/hyper and B is bitmap
            //------------------------------------------------------------------

            for (int64_t p = pA ; p < pA_end ; p++)
            {
                int64_t k = Ai [p] ;        // next row index of A(:,i)
                if (Bb [pB+k])              // check if B(k,j) exists
                {
                    // cij += A(k,i) * B(k,j)
                    GB_DOT_MERGE (p, pB+k) ;
                    GB_DOT_TERMINAL (cij) ;     // break if cij == terminal
                }
            }
        }
        #endif

        //----------------------------------------------------------------------
        // save C(i,j) or declare it a zombie
        //----------------------------------------------------------------------

        GB_CIJ_EXIST_POSTCHECK
        if (cij_exists)
        {
            // Cx [pair_id] = (GB_C_TYPE) cij
            GB_PUTC (cij, Cx, pair_id) ;
            Ci [pair_id] = i ;
        }
        else
        {
            my_nzombies++ ;
            Ci [pair_id] = GB_ZOMBIE (i) ;
        }

        // sum up the zombie count:
        thread_block_tile<tile_sz> tile =
            tiled_partition<tile_sz> (this_thread_block ()) ;
        zc += GB_cuda_tile_sum_uint64 (tile, my_nzombies) ;
    }

    if (threadIdx.x == 0 && zc > 0)
    {
        // this threadblock accumulates its zombie count into the global
        // zombie count
        GB_cuda_atomic_add <uint64_t>( &(C->nzombies), zc) ;
    }
}